{ "cells": [ { "cell_type": "markdown", "id": "47f1d548", "metadata": {}, "source": [ "# Python Programming Language for Data Analysis with Pandas Library\n", "\n", "\n", "**In this workshop we will analyze the data set with information on return and Morningstar Sustainalytics rating of 2000+ ETF from 2015 to 2021 using the `pandas` library.** \n", "\n", "Python programming language has numerous functions. These functions are organized into modules. Modules are python scripts that contain Python objects. In order to use the objects inside these modules (or commonly known as libraries), we must first import either the entire module or specific objects in it. \n", "\n", "**`pandas` (Python for Data Analysis)** is a popular python library for data analysis. We will use this library extensively in this workshop. This library is automatically installed during Anaconda installation. It is also installed and available on Google Colab or UofT Jupyter Hub. \n", "\n", "Other popular python libraries are **`NumPy` (Numerical Python)** and **`matplotlib`** used for scientific computing and visualization, respectively. We will use these libraries too. " ] }, { "cell_type": "code", "execution_count": 1, "id": "bc3397b2", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "from matplotlib import pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "id": "9fd7b134", "metadata": {}, "outputs": [], "source": [ "# read select columns only\n", "col_list=['Name', 'Ticker', 'Base Currency', 'Global Broad Category Group',\n", " 'Fund Size Base Currency', 'Domicile', 'month',\n", " 'Monthly Return Base Currency', 'Total Market Value(Net) Portfolio Currency', \n", " 'asset_class', 'Morningstar Rating Overall', 'Carbon Risk Classification',\n", " 'Portfolio Environmental Risk Score', 'Portfolio Governance Risk Score',\n", " 'Portfolio Social Risk Score', 'Currency Code', 'Exchange Rate USD']\n", "etf = pd.read_csv('ETF_Data_final.csv', sep=\",\", header=0, index_col=None, usecols=col_list)" ] }, { "cell_type": "code", "execution_count": 3, "id": "e13f276c", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
NameTickerBase_CurrencyGlobal_Broad_Category_GroupFund_Size_Base_CurrencyDomicileMonthMonthly_Return_Base_CurrencyTotal_Market_Value_Portfolio_CurrencyAsset_ClassMorningstar_Rating_OverallCarbon_Risk_ClassificationPortfolio_Environmental_Risk_ScorePortfolio_Governance_Risk_ScorePortfolio_Social_Risk_ScoreCurrency_CodeExchange_Rate_USD
0AAF First Priority CLO Bond ETFAAAUS DollarFixed Income10002701.0United States2020-10-010.002819563230.0bondNaNNaNNaNNaNNaNUSD1.0
1AAF First Priority CLO Bond ETFAAAUS DollarFixed Income10002701.0United States2020-11-010.614059615667.0bondNaNNaNNaNNaNNaNUSD1.0
2AAF First Priority CLO Bond ETFAAAUS DollarFixed Income10002701.0United States2020-12-010.278859633997.0bondNaNNaNNaNNaNNaNUSD1.0
3AAF First Priority CLO Bond ETFAAAUS DollarFixed Income10002701.0United States2021-01-010.438889173441.0bondNaNNaNNaNNaNNaNUSD1.0
4AAF First Priority CLO Bond ETFAAAUS DollarFixed Income10002701.0United States2021-02-01-0.135159609404.0bondNaNNaNNaNNaNNaNUSD1.0
\n", "
" ], "text/plain": [ " Name Ticker Base_Currency \\\n", "0 AAF First Priority CLO Bond ETF AAA US Dollar \n", "1 AAF First Priority CLO Bond ETF AAA US Dollar \n", "2 AAF First Priority CLO Bond ETF AAA US Dollar \n", "3 AAF First Priority CLO Bond ETF AAA US Dollar \n", "4 AAF First Priority CLO Bond ETF AAA US Dollar \n", "\n", " Global_Broad_Category_Group Fund_Size_Base_Currency Domicile \\\n", "0 Fixed Income 10002701.0 United States \n", "1 Fixed Income 10002701.0 United States \n", "2 Fixed Income 10002701.0 United States \n", "3 Fixed Income 10002701.0 United States \n", "4 Fixed Income 10002701.0 United States \n", "\n", " Month Monthly_Return_Base_Currency \\\n", "0 2020-10-01 0.00281 \n", "1 2020-11-01 0.61405 \n", "2 2020-12-01 0.27885 \n", "3 2021-01-01 0.43888 \n", "4 2021-02-01 -0.13515 \n", "\n", " Total_Market_Value_Portfolio_Currency Asset_Class \\\n", "0 9563230.0 bond \n", "1 9615667.0 bond \n", "2 9633997.0 bond \n", "3 9173441.0 bond \n", "4 9609404.0 bond \n", "\n", " Morningstar_Rating_Overall Carbon_Risk_Classification \\\n", "0 NaN NaN \n", "1 NaN NaN \n", "2 NaN NaN \n", "3 NaN NaN \n", "4 NaN NaN \n", "\n", " Portfolio_Environmental_Risk_Score Portfolio_Governance_Risk_Score \\\n", "0 NaN NaN \n", "1 NaN NaN \n", "2 NaN NaN \n", "3 NaN NaN \n", "4 NaN NaN \n", "\n", " Portfolio_Social_Risk_Score Currency_Code Exchange_Rate_USD \n", "0 NaN USD 1.0 \n", "1 NaN USD 1.0 \n", "2 NaN USD 1.0 \n", "3 NaN USD 1.0 \n", "4 NaN USD 1.0 " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# change column names\n", "etf.columns = ['Name', 'Ticker', 'Base_Currency', 'Global_Broad_Category_Group',\n", " 'Fund_Size_Base_Currency', 'Domicile', 'Month',\n", " 'Monthly_Return_Base_Currency', 'Total_Market_Value_Portfolio_Currency', \n", " 'Asset_Class', 'Morningstar_Rating_Overall', 'Carbon_Risk_Classification',\n", " 'Portfolio_Environmental_Risk_Score', 'Portfolio_Governance_Risk_Score',\n", " 'Portfolio_Social_Risk_Score', 'Currency_Code', 'Exchange_Rate_USD']\n", "etf.head()" ] }, { "cell_type": "code", "execution_count": 4, "id": "2cb1d6cb", "metadata": {}, "outputs": [], "source": [ "etf['date'] = pd.to_datetime(etf['Month'],format='%Y-%m-%d', errors='coerce')\n", "etf['month'] = etf['date'].dt.month\n", "etf['year'] = etf['date'].dt.year\n", "\n", "etf['monthly_return_USD'] = etf['Monthly_Return_Base_Currency']*etf['Exchange_Rate_USD']\n", "etf['total_market_value_USD'] = etf['Total_Market_Value_Portfolio_Currency']*etf['Exchange_Rate_USD']\n", "\n", "etf['total_mkt_val_net_USD_millions'] = etf['total_market_value_USD']/1000000\n", "etf['primary_key'] = etf['Ticker'] + etf['Currency_Code']" ] }, { "cell_type": "code", "execution_count": 5, "id": "a38b1cfc", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(133999, 24)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "etf.dropna(subset=['Monthly_Return_Base_Currency','Total_Market_Value_Portfolio_Currency'], inplace=True)\n", "etf.shape" ] }, { "cell_type": "markdown", "id": "b740d618", "metadata": {}, "source": [ "## 3. Time Series\n", "\n", "In this section we will learn to do manipulate time series data using the pandas library:\n", "\n", "1. Resample time series data to some offset period and get aggregate values for each time period\n", "2. Shift time series data to one or more periods in past or in the future.\n", "3. Calculate rollowing window statistics of time series data\n", "\n" ] }, { "cell_type": "markdown", "id": "cf5b1c12", "metadata": {}, "source": [ "### 3a. Resample" ] }, { "cell_type": "markdown", "id": "20b71817", "metadata": {}, "source": [ "While `Groupby` works really well for summarizing categorical data, `resample` provides additional functionalities specific to timeseries data. For instance, we can aggregate the monthly data to provide a yearly average value. \n", "To use the `resample` method, we must set the index of our data to `DateTimeIndex`. " ] }, { "cell_type": "code", "execution_count": 6, "id": "00dbbbed", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Asset_Classtotal_mkt_val_net_USD_millionsmonthly_return_USD
date
2020-10-01bond9.5632300.00281
2020-11-01bond9.6156670.61405
2020-12-01bond9.6339970.27885
2021-01-01bond9.1734410.43888
2021-02-01bond9.609404-0.13515
\n", "
" ], "text/plain": [ " Asset_Class total_mkt_val_net_USD_millions monthly_return_USD\n", "date \n", "2020-10-01 bond 9.563230 0.00281\n", "2020-11-01 bond 9.615667 0.61405\n", "2020-12-01 bond 9.633997 0.27885\n", "2021-01-01 bond 9.173441 0.43888\n", "2021-02-01 bond 9.609404 -0.13515" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "etf_ts = etf[['Asset_Class','date','total_mkt_val_net_USD_millions', 'monthly_return_USD']]\n", "etf_ts.set_index('date', inplace=True)\n", "etf_ts.head()" ] }, { "cell_type": "code", "execution_count": 7, "id": "0b2e277a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
total_mkt_val_net_USD_millionsmonthly_return_USD
meanstdmeanstd
date
2015-01-313183.82873718430.417679-1.3247196.849391
2015-02-283765.76762321642.7974665.2977379.277657
2015-03-313418.09300620675.761848-0.33637810.137502
2015-04-303450.13288220906.1080082.1541388.376473
2015-05-313415.77635720800.4205580.64420810.366596
...............
2021-08-315992.29653355590.7074061.4103684.975738
2021-09-305710.72383752567.640147-2.8637406.088118
2021-10-315914.07307855071.9888953.3988338.019355
2021-11-305841.72900354312.915781-2.4231635.526236
2021-12-315901.50906156537.5490262.3402548.419392
\n", "

84 rows × 4 columns

\n", "
" ], "text/plain": [ " total_mkt_val_net_USD_millions monthly_return_USD \\\n", " mean std mean \n", "date \n", "2015-01-31 3183.828737 18430.417679 -1.324719 \n", "2015-02-28 3765.767623 21642.797466 5.297737 \n", "2015-03-31 3418.093006 20675.761848 -0.336378 \n", "2015-04-30 3450.132882 20906.108008 2.154138 \n", "2015-05-31 3415.776357 20800.420558 0.644208 \n", "... ... ... ... \n", "2021-08-31 5992.296533 55590.707406 1.410368 \n", "2021-09-30 5710.723837 52567.640147 -2.863740 \n", "2021-10-31 5914.073078 55071.988895 3.398833 \n", "2021-11-30 5841.729003 54312.915781 -2.423163 \n", "2021-12-31 5901.509061 56537.549026 2.340254 \n", "\n", " \n", " std \n", "date \n", "2015-01-31 6.849391 \n", "2015-02-28 9.277657 \n", "2015-03-31 10.137502 \n", "2015-04-30 8.376473 \n", "2015-05-31 10.366596 \n", "... ... \n", "2021-08-31 4.975738 \n", "2021-09-30 6.088118 \n", "2021-10-31 8.019355 \n", "2021-11-30 5.526236 \n", "2021-12-31 8.419392 \n", "\n", "[84 rows x 4 columns]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "etf_ts.resample('M').agg(['mean', 'std'])" ] }, { "cell_type": "code", "execution_count": 8, "id": "cb05ded2", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
total_mkt_val_net_USD_millionsmonthly_return_USD
meanstdmeanstd
date
2015-12-313273.53406720024.001693-0.1986319.794917
2016-12-313181.60145121180.3965162.565560129.306492
2017-12-313941.49959627262.9775562.15364247.985924
2018-12-314186.19810130848.868047-0.70395618.651800
2019-12-314865.18190441651.8698111.5928868.835964
2020-12-315159.64708446542.9064611.84665223.737086
2021-12-315821.63909953590.2823181.26008515.790632
\n", "
" ], "text/plain": [ " total_mkt_val_net_USD_millions monthly_return_USD \\\n", " mean std mean \n", "date \n", "2015-12-31 3273.534067 20024.001693 -0.198631 \n", "2016-12-31 3181.601451 21180.396516 2.565560 \n", "2017-12-31 3941.499596 27262.977556 2.153642 \n", "2018-12-31 4186.198101 30848.868047 -0.703956 \n", "2019-12-31 4865.181904 41651.869811 1.592886 \n", "2020-12-31 5159.647084 46542.906461 1.846652 \n", "2021-12-31 5821.639099 53590.282318 1.260085 \n", "\n", " \n", " std \n", "date \n", "2015-12-31 9.794917 \n", "2016-12-31 129.306492 \n", "2017-12-31 47.985924 \n", "2018-12-31 18.651800 \n", "2019-12-31 8.835964 \n", "2020-12-31 23.737086 \n", "2021-12-31 15.790632 " ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "etf_ts.resample('Y').agg(['mean', 'std'])" ] }, { "cell_type": "markdown", "id": "85040583", "metadata": {}, "source": [ "Here, `Y` and `M` specifies that we want to aggregate by year and month, respectively.\n", "\n", "`groupby` and `resample` can be combined together to get time series summary of each group separately. " ] }, { "cell_type": "code", "execution_count": 9, "id": "e1612a5a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
total_mkt_val_net_USD_millionsmonthly_return_USD
Asset_Classdate
bond2019-03-316047.3134841.554015
2019-06-306318.8168160.885401
2019-09-308734.9523960.719377
2019-12-319845.7699290.449509
2020-03-319503.206176-1.867094
............
real_estate2020-12-311728.7438323.878103
2021-03-311904.3393515.288274
2021-06-302204.2386183.179804
2021-09-302356.648146-0.449579
2021-12-312451.8125532.027683
\n", "

96 rows × 2 columns

\n", "
" ], "text/plain": [ " total_mkt_val_net_USD_millions monthly_return_USD\n", "Asset_Class date \n", "bond 2019-03-31 6047.313484 1.554015\n", " 2019-06-30 6318.816816 0.885401\n", " 2019-09-30 8734.952396 0.719377\n", " 2019-12-31 9845.769929 0.449509\n", " 2020-03-31 9503.206176 -1.867094\n", "... ... ...\n", "real_estate 2020-12-31 1728.743832 3.878103\n", " 2021-03-31 1904.339351 5.288274\n", " 2021-06-30 2204.238618 3.179804\n", " 2021-09-30 2356.648146 -0.449579\n", " 2021-12-31 2451.812553 2.027683\n", "\n", "[96 rows x 2 columns]" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "etf_ts.groupby('Asset_Class').resample(rule='Q').mean()" ] }, { "cell_type": "code", "execution_count": 10, "id": "a763516d", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
total_mkt_val_net_USD_millionsmonthly_return_USD
Asset_Classdate
bond2019-01-065728.1210372.286208
2019-01-13NaNNaN
2019-01-20NaNNaN
2019-01-27NaNNaN
2019-02-036221.7454201.292262
............
real_estate2021-11-072413.999719-2.377704
2021-11-14NaNNaN
2021-11-21NaNNaN
2021-11-28NaNNaN
2021-12-052456.5681693.415575
\n", "

1239 rows × 2 columns

\n", "
" ], "text/plain": [ " total_mkt_val_net_USD_millions monthly_return_USD\n", "Asset_Class date \n", "bond 2019-01-06 5728.121037 2.286208\n", " 2019-01-13 NaN NaN\n", " 2019-01-20 NaN NaN\n", " 2019-01-27 NaN NaN\n", " 2019-02-03 6221.745420 1.292262\n", "... ... ...\n", "real_estate 2021-11-07 2413.999719 -2.377704\n", " 2021-11-14 NaN NaN\n", " 2021-11-21 NaN NaN\n", " 2021-11-28 NaN NaN\n", " 2021-12-05 2456.568169 3.415575\n", "\n", "[1239 rows x 2 columns]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "etf_ts.groupby('Asset_Class').resample(rule='W').mean()" ] }, { "cell_type": "markdown", "id": "0fe2edf1", "metadata": {}, "source": [ "If you use `resample` with an offset period that requires interpolation, then the `NaN` values can be either filled with the previous or the next value in the time series using `bfill` and `ffill` respectively. " ] }, { "cell_type": "code", "execution_count": 11, "id": "fbb60b23", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
total_mkt_val_net_USD_millionsmonthly_return_USD
Asset_Classdate
bond2019-01-065728.1210372.286208
2019-01-136221.7454201.292262
2019-01-206221.7454201.292262
2019-01-276221.7454201.292262
2019-02-036221.7454201.292262
............
real_estate2021-11-072413.999719-2.377704
2021-11-142456.5681693.415575
2021-11-212456.5681693.415575
2021-11-282456.5681693.415575
2021-12-052456.5681693.415575
\n", "

1239 rows × 2 columns

\n", "
" ], "text/plain": [ " total_mkt_val_net_USD_millions monthly_return_USD\n", "Asset_Class date \n", "bond 2019-01-06 5728.121037 2.286208\n", " 2019-01-13 6221.745420 1.292262\n", " 2019-01-20 6221.745420 1.292262\n", " 2019-01-27 6221.745420 1.292262\n", " 2019-02-03 6221.745420 1.292262\n", "... ... ...\n", "real_estate 2021-11-07 2413.999719 -2.377704\n", " 2021-11-14 2456.568169 3.415575\n", " 2021-11-21 2456.568169 3.415575\n", " 2021-11-28 2456.568169 3.415575\n", " 2021-12-05 2456.568169 3.415575\n", "\n", "[1239 rows x 2 columns]" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "etf_ts.groupby('Asset_Class').resample(rule='W').mean().bfill()" ] }, { "cell_type": "code", "execution_count": 12, "id": "a6d918c9", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
total_mkt_val_net_USD_millions_ffillmonthly_return_USD_ffill
Asset_Classdate
bond2019-01-065728.1210372.286208
2019-01-135728.1210372.286208
2019-01-205728.1210372.286208
2019-01-275728.1210372.286208
2019-02-036221.7454201.292262
............
real_estate2021-11-072413.999719-2.377704
2021-11-142413.999719-2.377704
2021-11-212413.999719-2.377704
2021-11-282413.999719-2.377704
2021-12-052456.5681693.415575
\n", "

1239 rows × 2 columns

\n", "
" ], "text/plain": [ " total_mkt_val_net_USD_millions_ffill \\\n", "Asset_Class date \n", "bond 2019-01-06 5728.121037 \n", " 2019-01-13 5728.121037 \n", " 2019-01-20 5728.121037 \n", " 2019-01-27 5728.121037 \n", " 2019-02-03 6221.745420 \n", "... ... \n", "real_estate 2021-11-07 2413.999719 \n", " 2021-11-14 2413.999719 \n", " 2021-11-21 2413.999719 \n", " 2021-11-28 2413.999719 \n", " 2021-12-05 2456.568169 \n", "\n", " monthly_return_USD_ffill \n", "Asset_Class date \n", "bond 2019-01-06 2.286208 \n", " 2019-01-13 2.286208 \n", " 2019-01-20 2.286208 \n", " 2019-01-27 2.286208 \n", " 2019-02-03 1.292262 \n", "... ... \n", "real_estate 2021-11-07 -2.377704 \n", " 2021-11-14 -2.377704 \n", " 2021-11-21 -2.377704 \n", " 2021-11-28 -2.377704 \n", " 2021-12-05 3.415575 \n", "\n", "[1239 rows x 2 columns]" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "etf_ts.groupby('Asset_Class').resample(rule='W').mean().ffill().add_suffix('_ffill')" ] }, { "cell_type": "markdown", "id": "e2ab5bcb", "metadata": {}, "source": [ "### 3b. Shift \n", "\n", "The `shift` method allows us to shift the data to one or more period in the future." ] }, { "cell_type": "code", "execution_count": 13, "id": "1e2681d4", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TickerAsset_Classtotal_mkt_val_net_USD_millionsmonthly_return_USD
date
2015-01-01VTIequity380000.0-2.77358
2015-02-01VTIequity405000.05.77334
2015-03-01VTIequity404000.0-1.00821
2015-04-01VTIequity406000.00.42831
2015-05-01VTIequity410000.01.39069
\n", "
" ], "text/plain": [ " Ticker Asset_Class total_mkt_val_net_USD_millions \\\n", "date \n", "2015-01-01 VTI equity 380000.0 \n", "2015-02-01 VTI equity 405000.0 \n", "2015-03-01 VTI equity 404000.0 \n", "2015-04-01 VTI equity 406000.0 \n", "2015-05-01 VTI equity 410000.0 \n", "\n", " monthly_return_USD \n", "date \n", "2015-01-01 -2.77358 \n", "2015-02-01 5.77334 \n", "2015-03-01 -1.00821 \n", "2015-04-01 0.42831 \n", "2015-05-01 1.39069 " ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cols_of_interest = ['Ticker','date','Asset_Class','total_mkt_val_net_USD_millions', 'monthly_return_USD']\n", "VTIUSD_ts = etf.loc[etf['primary_key']=='VTIUSD', cols_of_interest]\n", "VTIUSD_ts.set_index('date',inplace=True)\n", "VTIUSD_ts.head()" ] }, { "cell_type": "code", "execution_count": 14, "id": "9982b219", "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TickerAsset_Classtotal_mkt_val_net_USD_millionsmonthly_return_USD
date
2015-01-01NaNNaNNaNNaN
2015-02-01VTIequity380000.0-2.77358
2015-03-01VTIequity405000.05.77334
2015-04-01VTIequity404000.0-1.00821
2015-05-01VTIequity406000.00.42831
...............
2021-08-01VTIequity1270000.01.70952
2021-09-01VTIequity1310000.02.87189
2021-10-01VTIequity1250000.0-4.48534
2021-11-01VTIequity1350000.06.71981
2021-12-01VTIequity1330000.0-1.48133
\n", "

84 rows × 4 columns

\n", "
" ], "text/plain": [ " Ticker Asset_Class total_mkt_val_net_USD_millions \\\n", "date \n", "2015-01-01 NaN NaN NaN \n", "2015-02-01 VTI equity 380000.0 \n", "2015-03-01 VTI equity 405000.0 \n", "2015-04-01 VTI equity 404000.0 \n", "2015-05-01 VTI equity 406000.0 \n", "... ... ... ... \n", "2021-08-01 VTI equity 1270000.0 \n", "2021-09-01 VTI equity 1310000.0 \n", "2021-10-01 VTI equity 1250000.0 \n", "2021-11-01 VTI equity 1350000.0 \n", "2021-12-01 VTI equity 1330000.0 \n", "\n", " monthly_return_USD \n", "date \n", "2015-01-01 NaN \n", "2015-02-01 -2.77358 \n", "2015-03-01 5.77334 \n", "2015-04-01 -1.00821 \n", "2015-05-01 0.42831 \n", "... ... \n", "2021-08-01 1.70952 \n", "2021-09-01 2.87189 \n", "2021-10-01 -4.48534 \n", "2021-11-01 6.71981 \n", "2021-12-01 -1.48133 \n", "\n", "[84 rows x 4 columns]" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "VTIUSD_ts.shift(periods=1)" ] }, { "cell_type": "markdown", "id": "54743536", "metadata": {}, "source": [ "Specifying a negative value in the `periods` parameter of `shift` method allows us to shift the data to past i.e. create a lag of the time value. " ] }, { "cell_type": "code", "execution_count": 15, "id": "c38d6c9e", "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TickerAsset_Classtotal_mkt_val_net_USD_millionsmonthly_return_USD
date
2015-01-01VTIequity405000.05.77334
2015-02-01VTIequity404000.0-1.00821
2015-03-01VTIequity406000.00.42831
2015-04-01VTIequity410000.01.39069
2015-05-01VTIequity403000.0-1.70118
...............
2021-08-01VTIequity1250000.0-4.48534
2021-09-01VTIequity1350000.06.71981
2021-10-01VTIequity1330000.0-1.48133
2021-11-01VTIequity1330000.03.81444
2021-12-01NaNNaNNaNNaN
\n", "

84 rows × 4 columns

\n", "
" ], "text/plain": [ " Ticker Asset_Class total_mkt_val_net_USD_millions \\\n", "date \n", "2015-01-01 VTI equity 405000.0 \n", "2015-02-01 VTI equity 404000.0 \n", "2015-03-01 VTI equity 406000.0 \n", "2015-04-01 VTI equity 410000.0 \n", "2015-05-01 VTI equity 403000.0 \n", "... ... ... ... \n", "2021-08-01 VTI equity 1250000.0 \n", "2021-09-01 VTI equity 1350000.0 \n", "2021-10-01 VTI equity 1330000.0 \n", "2021-11-01 VTI equity 1330000.0 \n", "2021-12-01 NaN NaN NaN \n", "\n", " monthly_return_USD \n", "date \n", "2015-01-01 5.77334 \n", "2015-02-01 -1.00821 \n", "2015-03-01 0.42831 \n", "2015-04-01 1.39069 \n", "2015-05-01 -1.70118 \n", "... ... \n", "2021-08-01 -4.48534 \n", "2021-09-01 6.71981 \n", "2021-10-01 -1.48133 \n", "2021-11-01 3.81444 \n", "2021-12-01 NaN \n", "\n", "[84 rows x 4 columns]" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "VTIUSD_ts.shift(periods=-1)" ] }, { "cell_type": "code", "execution_count": 16, "id": "5c55eef6", "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TickerAsset_Classtotal_mkt_val_net_USD_millionsmonthly_return_USDshifted_mktvalchange_mktval
date
2015-01-01VTIequity380000.0-2.77358NaNNaN
2015-02-01VTIequity405000.05.77334380000.01.065789
2015-03-01VTIequity404000.0-1.00821405000.00.997531
2015-04-01VTIequity406000.00.42831404000.01.004950
2015-05-01VTIequity410000.01.39069406000.01.009852
\n", "
" ], "text/plain": [ " Ticker Asset_Class total_mkt_val_net_USD_millions \\\n", "date \n", "2015-01-01 VTI equity 380000.0 \n", "2015-02-01 VTI equity 405000.0 \n", "2015-03-01 VTI equity 404000.0 \n", "2015-04-01 VTI equity 406000.0 \n", "2015-05-01 VTI equity 410000.0 \n", "\n", " monthly_return_USD shifted_mktval change_mktval \n", "date \n", "2015-01-01 -2.77358 NaN NaN \n", "2015-02-01 5.77334 380000.0 1.065789 \n", "2015-03-01 -1.00821 405000.0 0.997531 \n", "2015-04-01 0.42831 404000.0 1.004950 \n", "2015-05-01 1.39069 406000.0 1.009852 " ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "VTIUSD_ts['shifted_mktval'] = VTIUSD_ts['total_mkt_val_net_USD_millions'].shift(periods=1)\n", "VTIUSD_ts['change_mktval'] = VTIUSD_ts['total_mkt_val_net_USD_millions']/VTIUSD_ts['shifted_mktval']\n", "VTIUSD_ts.head()" ] }, { "cell_type": "markdown", "id": "66dc01e5", "metadata": {}, "source": [ "### 3c. Rolling Statistics\n" ] }, { "cell_type": "markdown", "id": "d62842c5", "metadata": {}, "source": [ "When working with time series rolling-window analysis is often of interest. It involves calculating some statistic for a speficied number of adjacent time interval, which is the window. Pandas provied the `rolling` method for this. " ] }, { "cell_type": "code", "execution_count": 18, "id": "4a1acdd6", "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
total_mkt_val_net_USD_millionsmonthly_return_USDshifted_mktvalchange_mktval
date
2015-01-01NaNNaNNaNNaN
2015-02-01NaNNaNNaNNaN
2015-03-013.963333e+050.663850NaNNaN
2015-04-014.050000e+051.7311473.963333e+051.022757
2015-05-014.066667e+050.2702634.050000e+051.004111
...............
2021-08-011.276667e+062.3771931.246667e+061.024029
2021-09-011.276667e+060.0320231.276667e+061.000565
2021-10-011.303333e+061.7021201.276667e+061.021898
2021-11-011.310000e+060.2510471.303333e+061.006461
2021-12-011.336667e+063.0176401.310000e+061.021728
\n", "

84 rows × 4 columns

\n", "
" ], "text/plain": [ " total_mkt_val_net_USD_millions monthly_return_USD \\\n", "date \n", "2015-01-01 NaN NaN \n", "2015-02-01 NaN NaN \n", "2015-03-01 3.963333e+05 0.663850 \n", "2015-04-01 4.050000e+05 1.731147 \n", "2015-05-01 4.066667e+05 0.270263 \n", "... ... ... \n", "2021-08-01 1.276667e+06 2.377193 \n", "2021-09-01 1.276667e+06 0.032023 \n", "2021-10-01 1.303333e+06 1.702120 \n", "2021-11-01 1.310000e+06 0.251047 \n", "2021-12-01 1.336667e+06 3.017640 \n", "\n", " shifted_mktval change_mktval \n", "date \n", "2015-01-01 NaN NaN \n", "2015-02-01 NaN NaN \n", "2015-03-01 NaN NaN \n", "2015-04-01 3.963333e+05 1.022757 \n", "2015-05-01 4.050000e+05 1.004111 \n", "... ... ... \n", "2021-08-01 1.246667e+06 1.024029 \n", "2021-09-01 1.276667e+06 1.000565 \n", "2021-10-01 1.276667e+06 1.021898 \n", "2021-11-01 1.303333e+06 1.006461 \n", "2021-12-01 1.310000e+06 1.021728 \n", "\n", "[84 rows x 4 columns]" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "VTIUSD_rollavg_ts = VTIUSD_ts.rolling(window=3).mean()\n", "VTIUSD_rollavg_ts" ] }, { "cell_type": "markdown", "id": "8834af5f", "metadata": {}, "source": [ "Combining the iterative power of `groupby` with `rolling` method can provide us with rolling statistics for each group." ] }, { "cell_type": "code", "execution_count": 19, "id": "84768eb6", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "bond\n", "commodity\n", "equity\n", "real_estate\n" ] }, { "data": { "text/plain": [ "date\n", "2019-01-31 NaN\n", "2019-02-28 NaN\n", "2019-03-31 NaN\n", "2019-04-30 1.377916\n", "2019-05-31 0.901677\n", "2019-06-30 0.946168\n", "2019-07-31 0.849611\n", "2019-08-31 0.965082\n", "2019-09-30 0.907135\n", "2019-10-31 0.573879\n", "2019-11-30 0.400174\n", "2019-12-31 0.373054\n", "2020-01-31 0.704979\n", "2020-02-29 0.537340\n", "2020-03-31 -1.083670\n", "2020-04-30 -0.093364\n", "2020-05-31 0.153724\n", "2020-06-30 2.152636\n", "2020-07-31 4.245856\n", "2020-08-31 3.113248\n", "2020-09-30 2.453982\n", "2020-10-31 0.480344\n", "2020-11-30 0.713282\n", "2020-12-31 1.648145\n", "2021-01-31 3.007691\n", "2021-02-28 3.333025\n", "2021-03-31 2.582951\n", "2021-04-30 1.943867\n", "2021-05-31 0.722866\n", "2021-06-30 0.710754\n", "2021-07-31 0.892714\n", "2021-08-31 0.557501\n", "2021-09-30 0.261947\n", "2021-10-31 0.257473\n", "2021-11-30 0.045962\n", "2021-12-31 0.049682\n", "Freq: M, Name: monthly_return_USD, dtype: float64" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "asset_grouped_rolling_stat = []\n", "for i,j in etf_ts.groupby('Asset_Class')['monthly_return_USD']:\n", " print(i)\n", " asset_grouped_rolling_stat.append(j.resample('M').mean().rolling(4).mean())\n", "asset_grouped_rolling_stat[0]" ] }, { "cell_type": "code", "execution_count": 20, "id": "8fddbbb9", "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "date\n", "2015-01-31 NaN\n", "2015-02-28 NaN\n", "2015-03-31 NaN\n", "2015-04-30 0.406920\n", "2015-05-31 -0.855643\n", " ... \n", "2021-08-31 1.897829\n", "2021-09-30 0.229511\n", "2021-10-31 0.938252\n", "2021-11-30 0.085800\n", "2021-12-31 0.514813\n", "Freq: M, Name: monthly_return_USD, Length: 84, dtype: float64" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "asset_grouped_rolling_stat[-1]" ] }, { "cell_type": "markdown", "id": "5030cc6c", "metadata": {}, "source": [ "## 4. Visualization\n", "### 4a. Quick Visualization of Pandas DataFrame or Series" ] }, { "cell_type": "markdown", "id": "31a59002", "metadata": {}, "source": [ "The simplest way of plotting a numeric column in pandas is to take the column of interest and specify the `kind` parameter to the type of plot we want. We should add a line `plt.show()` to display the plot. For example, histogram can be created by providing `hist` argument to the `kind` parameter." ] }, { "cell_type": "code", "execution_count": 21, "id": "7ba5f56d", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD4CAYAAADrRI2NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAP0ElEQVR4nO3dfYxldX3H8fdHoEWURggDbhAcNFstGllwpKa0VvAJIS1gQytp7MZSV1pINPUPV9tUWtNm21Tpg626RuLW+lCs8lAx1mVjJSZWHOhWFoHgw0qBDTs+BbQGuuu3f9yz7bA7s3Nnd869M/N7v5Kbe87vnjO/78nNfvbc3z33d1JVSJLa8aRxFyBJGi2DX5IaY/BLUmMMfklqjMEvSY05ctwFDOOEE06oycnJcZchSSvK7bff/p2qmti/fUUE/+TkJNPT0+MuQ5JWlCTfnqvdoR5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWrMivjlrrRcTW68eWx979x04dj61srmGb8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMb0Ff5Kjk9yW5D+T3JXkj7v245NsTXJf93xcXzVIkg7U5xn/Y8B5VXUGsA44P8mLgY3AtqpaC2zr1iVJI9Jb8NfAD7vVo7pHARcBW7r2LcDFfdUgSTpQr2P8SY5Ish3YDWytqi8DJ1XVLoDu+cQ+a5AkPVGvwV9Ve6tqHfAM4Owkzx923yQbkkwnmZ6ZmemtRklqzUiu6qmqHwD/BpwPPJxkDUD3vHuefTZX1VRVTU1MTIyiTElqQp9X9UwkeVq3/GTg5cA9wE3A+m6z9cCNfdUgSTpQn/PxrwG2JDmCwX8w11XVp5N8CbguyeXA/cClPdYgSdpPb8FfVV8Fzpyj/bvAy/rqV5J0cP5yV5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1Jjegj/JKUk+n+TuJHcleVPXfnWSB5Ns7x4X9FWDJOlAR/b4t/cAb6mqO5IcC9yeZGv32jVV9Zc99i1JmkdvwV9Vu4Bd3fKjSe4GTu6rP0nScEYyxp9kEjgT+HLXdFWSrya5Nslx8+yzIcl0kumZmZlRlClJTeg9+JM8Ffgk8OaqegR4L/BsYB2DTwTvmmu/qtpcVVNVNTUxMdF3mZLUjF6DP8lRDEL/I1X1KYCqeriq9lbVT4APAGf3WYMk6Yn6vKonwAeBu6vq3bPa18za7BJgR181SJIO1OdVPecArwPuTLK9a3s7cFmSdUABO4E39liDJGk/fV7V80Ugc7z0mb76lCQtzF/uSlJjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktSY3oI/ySlJPp/k7iR3JXlT1358kq1J7uuej+urBknSgYYK/iTPP4S/vQd4S1X9HPBi4MokpwMbgW1VtRbY1q1LkkZk2DP+9yW5LcnvJXnaMDtU1a6quqNbfhS4GzgZuAjY0m22Bbh4URVLkg7LUMFfVb8I/CZwCjCd5KNJXjFsJ0kmgTOBLwMnVdWu7u/uAk6cZ58NSaaTTM/MzAzblSRpAUOP8VfVfcAfAm8Ffhn4myT3JHnNwfZL8lTgk8Cbq+qRRfS3uaqmqmpqYmJi2N0kSQsYdoz/BUmuYTBccx7wK93Y/XnANQfZ7ygGof+RqvpU1/xwkjXd62uA3YdRvyRpkYY9438PcAdwRlVdOWvs/iEGnwIOkCTAB4G7q+rds166CVjfLa8HbjyUwiVJh+bIIbe7APhxVe0FSPIk4Oiq+u+q+vA8+5wDvA64M8n2ru3twCbguiSXA/cDlx5q8ZKkxRs2+G8BXg78sFs/Bvgc8Avz7VBVXwQyz8svG7ZASdLSGnao5+iq2hf6dMvH9FOSJKlPw57x/yjJWfvG9pO8EPhxf2VJWsjkxpvH0u/OTReOpV8tnWGD/83AJ5I81K2vAX6jl4okSb0aKvir6itJngs8h8G4/T1V9T+9ViZJ6sWwZ/wALwImu33OTEJV/UMvVUmSejNU8Cf5MPBsYDuwt2suwOCXpBVm2DP+KeD0qqo+i5Ek9W/Yyzl3AE/vsxBJ0mgMe8Z/AvC1JLcBj+1rrKpf7aUqSVJvhg3+q/ssQpI0OsNezvmFJM8E1lbVLUmOAY7otzRJUh+GnZb5DcA/A+/vmk4GbuipJklSj4b9cvdKBrNtPgL/d1OWOe+cJUla3oYN/seq6vF9K0mOZHAdvyRphRk2+L+Q5O3Ak7t77X4C+Jf+ypIk9WXY4N8IzAB3Am8EPsM8d96SJC1vw17V8xPgA91DkrSCDTtXz7eYY0y/qp615BVJknq1mLl69jmawX1yj1/6ciRJfRtqjL+qvjvr8WBV/RVwXr+lSZL6MOxQz1mzVp/E4BPAsb1UJEnq1bBDPe+atbwH2An8+pJXI0nq3bBX9ZzbdyGSpNEYdqjn9w/2elW9e2nKkST1bdgfcE0Bv8tgcraTgSuA0xmM88851p/k2iS7k+yY1XZ1kgeTbO8eFxxe+ZKkxVrMjVjOqqpHYRDgwCeq6ncOss+HgPdw4H15r6mqv1xknZKkJTLsGf+pwOOz1h8HJg+2Q1XdCnzv0MqSJPVl2DP+DwO3JbmewS94L+HAM/lhXZXkt4Bp4C1V9f25NkqyAdgAcOqppx5iV5Kk/Q37A64/BV4PfB/4AfD6qvqzQ+jvvcCzgXXALp54mej+fW6uqqmqmpqYmDiEriRJcxl2qAfgGOCRqvpr4IEkpy22s6p6uKr2zpr07ezF/g1J0uEZ9taL7wDeCrytazoK+MfFdpZkzazVS4Ad820rSerHsGP8lwBnAncAVNVDSQ46ZUOSjwEvBU5I8gDwDuClSdYx+J5gJ4O5/SVJIzRs8D9eVZWkAJI8ZaEdquqyOZo/uJjiJElLb9gx/uuSvB94WpI3ALfgTVkkaUVa8Iw/SYB/Ap4LPAI8B/ijqtrac22SpB4sGPzdEM8NVfVCwLCXpBVu2KGef0/yol4rkSSNxLBf7p4LXJFkJ/AjIAw+DLygr8IkSf04aPAnObWq7gdePaJ6JEk9W+iM/wYGs3J+O8knq+rXRlCTJKlHC43xZ9bys/osRJI0GgsFf82zLElaoRYa6jkjySMMzvyf3C3D/3+5+zO9VidJWnIHDf6qOmJUhUiSRmMx0zJLklYBg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUmGHn45eWtcmNN4+7BGnF8Ixfkhpj8EtSY3oL/iTXJtmdZMestuOTbE1yX/d8XF/9S5Lm1ucZ/4eA8/dr2whsq6q1wLZuXZI0Qr0Ff1XdCnxvv+aLgC3d8hbg4r76lyTNbdRj/CdV1S6A7vnE+TZMsiHJdJLpmZmZkRUoSavdsv1yt6o2V9VUVU1NTEyMuxxJWjVGHfwPJ1kD0D3vHnH/ktS8UQf/TcD6bnk9cOOI+5ek5vV5OefHgC8Bz0nyQJLLgU3AK5LcB7yiW5ckjVBvUzZU1WXzvPSyvvqUJC1s2X65K0nqh8EvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGuOtFyUtyjhvc7lz04Vj63s18Yxfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4JekxoxlPv4kO4FHgb3AnqqaGkcdktSicd6I5dyq+s4Y+5ekJjnUI0mNGVfwF/C5JLcn2TDXBkk2JJlOMj0zMzPi8iRp9RpX8J9TVWcBrwauTPKS/Teoqs1VNVVVUxMTE6OvUJJWqbEEf1U91D3vBq4Hzh5HHZLUopEHf5KnJDl23zLwSmDHqOuQpFaN46qek4Drk+zr/6NV9dkx1CFJTRp58FfVN4EzRt2vJGnAyzklqTHj/AGXejK58eZxlyBpGfOMX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNcZI2SStGixMQ7tx04ZL/Tc/4JakxBr8kNcbgl6TGGPyS1BiDX5Ias+qv6mnxKgBJOhjP+CWpMQa/JDXG4Jekxowl+JOcn+TeJF9PsnEcNUhSq0Ye/EmOAP4OeDVwOnBZktNHXYcktWocZ/xnA1+vqm9W1ePAx4GLxlCHJDVpHJdzngz816z1B4Cf33+jJBuADd3qD5PcC5wAfKf3CsfH41vZVvvxweo/xmV3fPnzw9r9mXM1jiP4M0dbHdBQtRnY/IQdk+mqmuqrsHHz+Fa21X58sPqPcbUf3z7jGOp5ADhl1vozgIfGUIckNWkcwf8VYG2S05L8FPBa4KYx1CFJTRr5UE9V7UlyFfCvwBHAtVV115C7b154kxXN41vZVvvxweo/xtV+fACk6oDhdUnSKuYvdyWpMQa/JDVm2Qd/kkuT3JXkJ0mmZrVPJvlxku3d433jrPNQzXd83Wtv66a1uDfJq8ZV41JKcnWSB2e9bxeMu6alsNqnIUmyM8md3Xs2Pe56lkKSa5PsTrJjVtvxSbYmua97Pm6cNfZl2Qc/sAN4DXDrHK99o6rWdY8rRlzXUpnz+LppLF4LPA84H/j7brqL1eCaWe/bZ8ZdzOFqaBqSc7v3bLVc5/4hBv+2ZtsIbKuqtcC2bn3VWfbBX1V3V9W9466jLwc5vouAj1fVY1X1LeDrDKa70PLjNCQrUFXdCnxvv+aLgC3d8hbg4lHWNCrLPvgXcFqS/0jyhSS/NO5ilthcU1ucPKZaltpVSb7afdReDR+lV/N7tU8Bn0tyezedymp1UlXtAuieTxxzPb1YFrdeTHIL8PQ5XvqDqrpxnt12AadW1XeTvBC4IcnzquqR3go9RId4fENNbbEcHex4gfcC72RwLO8E3gX89uiq68WKfa8W4ZyqeijJicDWJPd0Z8xagZZF8FfVyw9hn8eAx7rl25N8A/hZYNl98XQox8cKntpi2ONN8gHg0z2XMwor9r0aVlU91D3vTnI9g+Gt1Rj8DydZU1W7kqwBdo+7oD6s2KGeJBP7vuxM8ixgLfDN8Va1pG4CXpvkp5OcxuD4bhtzTYet+8e0zyUMvtxe6Vb1NCRJnpLk2H3LwCtZHe/bXG4C1nfL64H5PpGvaMvijP9gklwC/C0wAdycZHtVvQp4CfAnSfYAe4Erqmr/L2qWvfmOr6ruSnId8DVgD3BlVe0dZ61L5C+SrGMwFLITeONYq1kChzkNyUpwEnB9Ehhkxker6rPjLenwJfkY8FLghCQPAO8ANgHXJbkcuB+4dHwV9scpGySpMSt2qEeSdGgMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktSY/wVWHydKn06oIgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "etf.loc[etf['primary_key']=='VTIUSD','monthly_return_USD'].plot(kind='hist')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "c8f54f00", "metadata": {}, "source": [ "We can also use `plot.hist` method to create a histogram. Additional parameters such as `bins` and `alpha` are also provided to control the number of bins in the histogram and the intensity of color, respectively. " ] }, { "cell_type": "code", "execution_count": 22, "id": "aa72080d", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAD4CAYAAADmWv3KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAO3klEQVR4nO3df4xlZ13H8fen3UJbLKmkAzTAsK3WIhCgZWBjKmgrQkEBi6ClShCBgQgGookUJEIkJmrCT0XoosjPBUuxtSIgLQoNiWzpQgP9RYBSlmWr5UdMoTZdWr7+MXe3d7czs2dn7jN35tn3K5nMOeeec5/vM3fuZ88+58xzU1VIkvpzxLQLkCS1YcBLUqcMeEnqlAEvSZ0y4CWpU5umXcC4E044oTZv3jztMiRpw9ixY8f3qmpmscfWVcBv3ryZq666atplSNKGkeRbSz3mEI0kdcqAl6ROGfCS1CkDXpI6ZcBLUqcMeEnqVNOAT3J8kouS3JDk+iS/0LI9SdLdWt8H/1bgk1X17CT3Ao5t3J4kaaRZwCe5L/BE4PcAqmoPsKdVe5Kk/bU8gz8Z+C7wj0keDewAXlFVt43vlGQemAeYnZ1tWI40Gdu279y3fN4Wf2e1frUcg98EnA68o6pOA24Dzj9wp6raWlVzVTU3M7PodAqSpBVoGfC7gF1VtX20fhELgS9JWgPNAr6q/hv4dpJTR5t+BbiuVXuSpP21vovmD4EPju6guRF4QeP2JEkjTQO+qq4G5lq2IUlanH/JKkmdMuAlqVMGvCR1yoCXpE4Z8JLUKQNekjplwEtSpwx4SeqUAS9JnTLgJalTBrwkdcqAl6ROGfCS1CkDXpI6ZcBLUqcMeEnqlAEvSZ0y4CWpUwa8JHXKgJekThnwktQpA16SOmXAS1KnDHhJ6pQBL0md2tTyyZPcBPwQuAu4s6rmWrYnSbpb04AfObOqvrcG7UiSxjhEI0mdan0GX8CnkhRwQVVtPXCHJPPAPMDs7GzjcqT1Y9v2nYtuP2+L7wNNRusz+DOq6nTgqcDLkjzxwB2qamtVzVXV3MzMTONyJOnw0TTgq2r36PstwMXA41u2J0m6W7OAT3KfJMftXQaeDFzTqj1J0v5ajsE/ALg4yd52tlXVJxu2J0ka0yzgq+pG4NGtnl+StDxvk5SkThnwktQpA16SOmXAS1KnDHhJ6pQBL0mdMuAlqVMGvCR1yoCXpE4Z8JLUKQNekjplwEtSpwx4SeqUAS9JnTLgJalTBrwkdcqAl6ROGfCS1CkDXpI6ZcBLUqcMeEnqlAEvSZ0y4CWpUwa8JHXKgJekThnwktSp5gGf5MgkX0rysdZtSZLuthZn8K8Arl+DdiRJY5oGfJIHA78G/H3LdiRJ97Sp8fO/BfgT4LildkgyD8wDzM7ONi5Hh4Nt23fuWz5vy3R+p9a6hvXQZ60/zc7gk/w6cEtV7Vhuv6raWlVzVTU3MzPTqhxJOuy0HKI5A3hGkpuADwNnJflAw/YkSWOaBXxVvbqqHlxVm4Fzgf+oqt9t1Z4kaX/eBy9JnWp9kRWAqvoM8Jm1aEuStGDQGXySR7YuRJI0WUOHaN6Z5Mokf5Dk+JYFSZImY1DAV9UvAr8DPAS4Ksm2JL/atDJJ0qoMvshaVV8DXgu8Cvgl4G1JbkjyrFbFSZJWbugY/KOSvJmFOWXOAp5eVT8/Wn5zw/okSSs09C6avwXeBbymqm7fu7Gqdid5bZPKJEmrMjTgnwbcXlV3ASQ5Aji6qv6vqt7frDpJ0ooNHYO/HDhmbP3Y0TZJ0jo1NOCPrqof7V0ZLR/bpiRJ0iQMDfjbkpy+dyXJY4Hbl9lfkjRlQ8fgXwl8JMnu0fqJwG83qUiSNBGDAr6qvpDkYcCpQIAbqurHTSuTJK3KoUw29jhg8+iY05JQVe9rUpUkadUGBXyS9wM/A1wN3DXaXIABL0nr1NAz+Dng4VVVLYuRJE3O0LtorgEe2LIQSdJkDT2DPwG4LsmVwB17N1bVM5pUJUlataEB//qWRUiSJm/obZKfTfJQ4JSqujzJscCRbUuTJK3G0OmCXwxcBFww2vQg4JJGNUmSJmDoRdaXAWcAt8K+D/+4f6uiJEmrNzTg76iqPXtXkmxi4T54SdI6NTTgP5vkNcAxo89i/Qjwr+3KkiSt1tCAPx/4LvAV4CXAx1n4fFZJ0jo19C6an7DwkX3valuOJGlShs5F800WGXOvqpOXOeZo4Arg3qN2Lqqq162wTknSITqUuWj2Ohp4DnC/gxxzB3BWVf0oyVHA55J8oqo+v4I6JUmHaNAYfFV9f+zrO1X1FuCsgxxTYx/zd9ToyztvJGmNDB2iOX1s9QgWzuiPG3DckcAO4GeBt1fV9kX2mQfmAWZnZ4eUI60b27bvbLr/Useet2XYe2Ulx6gfQ4do3ji2fCdwE/BbBzuoqu4CHpPkeODiJI+sqmsO2GcrsBVgbm7OM3xJmpChd9GcuZpGqup/k3wGOJuFqYclSY0NHaL5o+Uer6o3LXLMDPDjUbgfAzwJ+KsVVSlJOmSHchfN44BLR+tPZ+EWyG8vc8yJwHtH4/BHABdW1cdWWqgk6dAcygd+nF5VPwRI8nrgI1X1oqUOqKovA6etukJJ0ooMnapgFtgztr4H2DzxaiRJEzP0DP79wJVJLmbhXvZzgPc1q0qStGpD76L5iySfAJ4w2vSCqvpSu7IkSas1dIgG4Fjg1qp6K7AryUmNapIkTcDQj+x7HfAq4NWjTUcBH2hVlCRp9YaewZ8DPAO4DaCqdjNgqgJJ0vQMDfg9VVWMJgtLcp92JUmSJmFowF+Y5ALg+CQvBi7HD/+QpHXtoHfRJAnwT8DDgFuBU4E/q6rLGtcmSVqFgwZ8VVWSS6rqsYChLkkbxNAhms8neVzTSiRJEzX0L1nPBF6a5CYW7qQJCyf3j2pVmCRpdZYN+CSzVbUTeOoa1SNJmpCDncFfwsIskt9K8tGq+s01qEmSNAEHG4PP2PLJLQuRJE3WwQK+lliWJK1zBxuieXSSW1k4kz9mtAx3X2S9b9PqJEkrtmzAV9WRa1WIJGmyDmW6YEnSBmLAS1KnDHhJ6pQBL0mdMuAlqVMGvCR1yoCXpE4Z8JLUqWYBn+QhSf4zyfVJrk3yilZtSZLuaeh88CtxJ/DHVfXFJMcBO5JcVlXXNWxTkjTS7Ay+qm6uqi+Oln8IXA88qFV7kqT9tTyD3yfJZuA0YPsij80D8wCzs7NrUY7WoW3bd+5bPm/L0r8HQ/ebtPF219JS7S5Xz5Bah/wcJ/WzntZrpjW4yJrkp4CPAq+sqlsPfLyqtlbVXFXNzczMtC5Hkg4bTQM+yVEshPsHq+qfW7YlSdpfy7toAvwDcH1VvalVO5KkxbU8gz8DeB5wVpKrR19Pa9ieJGlMs4usVfU59v9MV0nSGvIvWSWpUwa8JHXKgJekThnwktQpA16SOmXAS1KnDHhJ6pQBL0mdMuAlqVMGvCR1yoCXpE4Z8JLUKQNekjplwEtSpwx4SeqUAS9JnTLgJalTBrwkdcqAl6ROGfCS1CkDXpI6ZcBLUqcMeEnqlAEvSZ0y4CWpU80CPsm7k9yS5JpWbUiSltbyDP49wNkNn1+StIxmAV9VVwA/aPX8kqTlbZp2AUnmgXmA2dnZFT/Ptu079y2ft2XlzzMt4/XDsD4M6fOh/lwOrGOxY1fznK1em6XqXk1/ljq2tWm1u1zbQ36Oh/o8h/o7u5He4y3emysx9YusVbW1quaqam5mZmba5UhSN6Ye8JKkNgx4SepUy9skPwT8F3Bqkl1JXtiqLUnSPTW7yFpVz2313JKkg3OIRpI6ZcBLUqcMeEnqlAEvSZ0y4CWpUwa8JHXKgJekThnwktQpA16SOmXAS1KnDHhJ6pQBL0mdMuAlqVMGvCR1yoCXpE4Z8JLUKQNekjplwEtSpwx4SeqUAS9JnTLgJalTBrwkdcqAl6ROGfCS1CkDXpI6ZcBLUqeaBnySs5N8NcnXk5zfsi1J0v6aBXySI4G3A08FHg48N8nDW7UnSdpfyzP4xwNfr6obq2oP8GHgmQ3bkySNSVW1eeLk2cDZVfWi0frzgC1V9fID9psH5kerpwLfB77XpKj14wT67qP929h67x/01ceHVtXMYg9sathoFtl2j39NqmorsHXfQclVVTXXsK6p672P9m9j671/cHj0EdoO0ewCHjK2/mBgd8P2JEljWgb8F4BTkpyU5F7AucClDduTJI1pNkRTVXcmeTnw78CRwLur6toBh249+C4bXu99tH8bW+/9g8Ojj+0uskqSpsu/ZJWkThnwktSpdRPwSZ6T5NokP0kyN7Z9c5Lbk1w9+nrnNOtcqaX6N3rs1aPpHL6a5CnTqnFSkrw+yXfGXrOnTbumSTgcpt5IclOSr4xet6umXc9qJXl3kluSXDO27X5JLkvytdH3n55mjS2tm4AHrgGeBVyxyGPfqKrHjL5eusZ1Tcqi/RtN33Au8AjgbODvRtM8bHRvHnvNPj7tYlbrMJt648zR69bDfeLvYeF9Ne584NNVdQrw6dF6l9ZNwFfV9VX11WnX0coy/Xsm8OGquqOqvgl8nYVpHrS+OPXGBlRVVwA/OGDzM4H3jpbfC/zGWta0ltZNwB/ESUm+lOSzSZ4w7WIm7EHAt8fWd422bXQvT/Ll0X+Re/gvcK+v04EK+FSSHaNpRHr0gKq6GWD0/f5TrqeZllMV3EOSy4EHLvLQn1bVvyxx2M3AbFV9P8ljgUuSPKKqbm1W6AqtsH+DpnRYb5brK/AO4A0s9OMNwBuB31+76prYkK/TCpxRVbuT3B+4LMkNo7NgbUBrGvBV9aQVHHMHcMdoeUeSbwA/B6y7C0Ar6R8bdEqHoX1N8i7gY43LWQsb8nU6VFW1e/T9liQXszA01VvA/0+SE6vq5iQnArdMu6BW1v0QTZKZvRcdk5wMnALcON2qJupS4Nwk905yEgv9u3LKNa3K6E2z1zksXGDe6LqfeiPJfZIct3cZeDJ9vHYHuhR4/mj5+cBS/7ve8Nb0DH45Sc4B/gaYAf4tydVV9RTgicCfJ7kTuAt4aVUdeNFk3Vuqf1V1bZILgeuAO4GXVdVd06x1Av46yWNYGMK4CXjJVKuZgFVMvbGRPAC4OAksZMO2qvrkdEtanSQfAn4ZOCHJLuB1wF8CFyZ5IbATeM70KmzLqQokqVPrfohGkrQyBrwkdcqAl6ROGfCS1CkDXpI6ZcBLUqcMeEnq1P8D8mgKEok4SMMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "etf.loc[etf['primary_key']=='VTIUSD','monthly_return_USD'].plot.hist(bins=100, alpha=0.4)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 23, "id": "8187db70", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "max 13.258340\n", "mean 1.229949\n", "min -13.797190\n", "Name: monthly_return_USD, dtype: float64" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "etf.loc[etf['primary_key']=='VTIUSD','monthly_return_USD'].agg(['max','mean','min'])" ] }, { "cell_type": "markdown", "id": "5ffd9470", "metadata": {}, "source": [ "Plots can also be created out of `groupby` objects. For example we can create barplot of each operation on a group and display them together." ] }, { "cell_type": "code", "execution_count": 24, "id": "1a6fa5c3", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Asset_Classtotal_mkt_val_net_USD_millionsmonthly_return_USD
date
2020-10-01bond9.5632300.00281
2020-11-01bond9.6156670.61405
2020-12-01bond9.6339970.27885
2021-01-01bond9.1734410.43888
2021-02-01bond9.609404-0.13515
\n", "
" ], "text/plain": [ " Asset_Class total_mkt_val_net_USD_millions monthly_return_USD\n", "date \n", "2020-10-01 bond 9.563230 0.00281\n", "2020-11-01 bond 9.615667 0.61405\n", "2020-12-01 bond 9.633997 0.27885\n", "2021-01-01 bond 9.173441 0.43888\n", "2021-02-01 bond 9.609404 -0.13515" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "etf_ts.head()" ] }, { "cell_type": "code", "execution_count": 25, "id": "185e753a", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEGCAYAAABlxeIAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABoZklEQVR4nO2dZ3hU1daA351eSQcCAULoJaF3KUoRRBTsjapSVdCrop9XLIj9qperIqiAIoqACqggvfcAoZdQ0gghpPfJlP39OJMQSE8mfb/PM89M9tlnn3XmZM46e6211xJSShQKhUKhsKpqARQKhUJRPVAKQaFQKBSAUggKhUKhMKMUgkKhUCgApRAUCoVCYcamqgUoK97e3tLf37+qxVAoFIoaxZEjR+KklD4FbauxCsHf35/g4OCqFkOhUChqFEKI8MK2KZORQqFQKAClEBQKhUJhRikEhUKhUAA12IdQEHq9nqioKLKysqpalFqPg4MDfn5+2NraVrUoCoXCQtQqhRAVFYWrqyv+/v4IIapanFqLlJL4+HiioqJo3rx5VYujUCgsRK0yGWVlZeHl5aWUQQUjhMDLy0vNxBSKWkatUgiAUgaVhPqeFYraR61TCAqFomZw9loKe0LjqloMRR6UQrAwYWFhdOzY0eLj+vv7ExenfjyK2sNrv51gxs9HMZlUTZbqglIICoWi0gmLS+d4VDLJmXrOxaRWtTgKM0ohVAAGg4Hx48cTFBTEQw89REZGBlu3bqVLly4EBgYyadIkdDodoD35v/XWW3Tt2pXAwEDOnTsHQHx8PMOGDaNLly5MmTIFVdlOUZv483h07ueDV+KrUBJFXmpV2Gle3vnzNGeiUyw6ZvtG9XhrVIdi+50/f57vv/+efv36MWnSJD777DMWLlzI1q1bad26NePGjWPBggXMmjULAG9vb44ePcrXX3/Np59+ynfffcc777zDHXfcwZw5c/j7779ZtGiRRc9FoagqpJSsPR5NT39PopMzOXA5non9VPhydUDNECqAJk2a0K9fPwCeeuoptm7dSvPmzWndujUA48ePZ9euXbn9H3jgAQC6detGWFgYALt27eKpp54CYOTIkXh4eFTiGSgUFcfZa6lcjE1jVOdG9GruxaErCcqPUE2otTOEkjzJVxSlDcm0t7cHwNraGoPBUOZxFIqawLrj0dhYCUYG+uJgY8VvR6MIjU2jTUPXqhatzlPsDEEIsVgIESuEOJWnzVMIsVkIEWp+98iz7XUhxEUhxHkhxN152rsJIU6at80X5rudEMJeCPGruf2gEMLfwudY6URERLB//34AfvnlF4YMGUJYWBgXL14EYNmyZQwcOLDIMQYMGMDy5csB2LBhA4mJiRUrtEJRCZhMkj+PR3NHK288ne3oHeAFwIHLyo9QHSiJyWgpMPy2tteArVLKVsBW898IIdoDjwEdzPt8LYSwNu+zAJgMtDK/csZ8GkiUUrYEPgc+KuvJVBfatWvHDz/8QFBQEAkJCbz44ossWbKEhx9+mMDAQKysrJg6dWqRY7z11lvs2rWLrl27smnTJpo2bVpJ0isUFcfRiESuJmVyX6dGAPh5ONLY3VE5lqsJxZqMpJS7Cnhqvx8YZP78A7ADmG1uXyGl1AFXhBAXgZ5CiDCgnpRyP4AQ4kdgNLDBvM/b5rFWA18KIYSsoWE1/v7+nDlzJl/74MGDOXbsWL72HJ8BQPfu3dmxYwcAXl5ebNq0KXfb559/bnFZFYrysO9iHFFJmfRu7kUTT8cSmTjXHY/G3saKYR0aAppZtFdzT3ZeuIGUUplJq5iy+hAaSCmvAUgprwkh6pvbGwMH8vSLMrfpzZ9vb8/ZJ9I8lkEIkQx4AflWYQkhJqPNMtQTs0JRhZyISmLCksNkG00ANHZ3pFeAJ0/0bEp3f88C9zEYTaw/eY3B7erjYn/z1tMrwJPfj13lYmwarRooP0JVYukoo4LUuyyivah98jdKuUhK2V1K2d3Hp8CSoAqFooJJTM9m2k9H8XG15/fpfXn3/g50auLGtnOxjFt8iMs30grcb9+leOLSsrmvU+Nb2nP9CFcSKlx2RdGUVSFcF0L4ApjfY83tUUCTPP38gGhzu18B7bfsI4SwAdwA9Z+hUFRDTCbJrF9DuJGq4+snu9K1qQfj+vjz9ZPd2DCzP/Y2Vjz38zGy9MZb9ss2mPh292Vc7W0Y1ObWh7mmnk40rOfAQeVYLpLopEze/fMMp64mV9gxyqoQ1gHjzZ/HA2vztD9mjhxqjuY8PmQ2L6UKIXqbo4vG3bZPzlgPAdtqqv9Aoajt/G/bRXZeuMGcUe3p1MT9lm2+bo58+nAnzlxL4cMN53LbdQYj05cfZXdoHK8Mb4ODrfUt+wkh6B3gyYHLCWpFfgFk6Y38b2sod/1nB4v3XuHjjecr7FglCTv9BdgPtBFCRAkhngY+BIYKIUKBoea/kVKeBlYCZ4B/gBlSypxHhWnAd8BF4BKaQxnge8DL7IB+CXPEkkKhqF7svHCDL7ZeYEyXxjzZq2Af3uB2DXj6juYs3RfGxtMxZOmNTFl2hC1nr/Pu/R0Y18e/wP16BXgRl6bjclx6BZ5B1XMkPJHkDH2J+287d52hn+/kP5svcFfb+jzVuym7LtwgIj6jQuQrSZTR44VsGlxI/3nAvALag4F8aUCllFnAw8XJoVAoqpZPN56nuZcz88Z0LDIa6NXhbTh0JYFXVh2nnW89DoUl8MEDgTzes/BAkF7NNUf0gcvxtPBxsYi8Ukp0BlO+GUlZx0nJ0mMwSnzdHMoUDXXgcjyPLTqAg60V93VqxNje/gT6uRXaf09oHJOWBtO6gQs/P9OLvi29iUnO4pdDkfx8KILXRrQtz2kViEpdUccYNGgQwcHBANxzzz0kJSWRlJTE119/XcWSKao7CenZdGnqgZNd0c+R9jbWfPlEF0wSDocl8MlDnYpUBgDNvZ2p72rPwcuWcx+uOBxJt7mby5zTbG3IVXq9v4XW/95A2zf/oee8rfT9cBv9P97OnLWn2HE+Np+vpCgW77mCh5MtY7o05s/j1xj15R7u/2ovp6Pz+wQS0rN5aWUILeu7sHbGHfRt6Q1AQzcHBretz6rgSHSGkh+7pCiFUIdZv3497u7uSiEoSkRqlh5Xh5JFqjfzcmbZ0z356ZlePNTNr9j+Qgh6NvfkSLjlVuT/cyqG9GwjU386UiozjZSS+VtDmbkiBF83R57pH8Crw9swd3RH3rmvA20b1mNlcCQTlhym1/tbuRhbfPruiPgMNp+9zhO9mvLBA0EcfGMw79zXgevJWTzx7UFORt1UClJKXl19gqQMPfMf64Kj3a0znCd7NyM+PZuNp6/f0p6lNzLj56P8fDCixOd6O0ohVAA//vgjQUFBdOrUibFjxxIeHs7gwYMJCgpi8ODBRERoF2zChAlMmzaNO++8k4CAAHbu3MmkSZNo164dEyZMyB3PxcWF2bNn061bN4YMGcKhQ4cYNGgQAQEBrFu3DtDqSU+cOJHAwEC6dOnC9u3bAcjMzOSxxx4jKCiIRx99lMzMzNxxc4ruvPbaa1y6dInOnTvzyiuvMHbsWNauXZvb78knn8w9jqJuIqUkTWfA2b7k5pcuTT3o28K7xP3bNHDlalImGdmG4jsXQ5beyMEr8fQO8ORaciazfj1WogR62QYTr6w+wWebL/BAl8b8OqU3s4e3Zfqglozt3Yzxff35bnx3QuYMY/GE7mTpjSzdF1bsuD/sD8NaCMb29gegnoMt4/v6s2pqH1zsbXjyuwOciEoCYPnBCLacvc7sEW1p36hevrH6t/SmiacjPx8Mz22TUvLmmlP8feIa//fHSf46EZ1vv5JQa5PbseE1iDlp2TEbBsKID4vscvr0aebNm8fevXvx9vYmISGB8ePHM27cOMaPH8/ixYt54YUXWLNmDQCJiYls27aNdevWMWrUKPbu3ct3331Hjx49CAkJoXPnzqSnpzNo0CA++ugjxowZw7///W82b97MmTNnGD9+PPfddx9fffUVACdPnuTcuXMMGzaMCxcusGDBApycnDhx4gQnTpyga9eu+WT+8MMPOXXqFCEhIQDs3LmTzz//nPvvv5/k5GT27dvHDz/8YNGvUlGzyNQbMUlwsbetsGM093EGICwuo8AbYWkIDkskS29iyoAWRCVm8Oba08zfFsqsIa0L3Sc2NYtZK0LYdymemYNbMWtIq0J9BQ621tzVtgEjg3xZcyya10e0w9m+4Ntpms7AysOR3BPoS0M3h1u2NfF04tcpvXls0QGe/O4gb4/qwNy/zjCgtQ8T+/oXOJ6VleCJns346J9zXIxNo2V9F34+FMGqI1FMGRjA0fBEXvr1ON4u9rlrPEqKmiFYmG3btvHQQw/h7a09GXl6erJ//36eeOIJAMaOHcuePXty+48aNQohBIGBgTRo0CA311GHDh1y01rY2dkxfLiW+ikwMJCBAwdia2tLYGBgbp89e/YwduxYANq2bUuzZs24cOHCLWm0g4KCCAoKKvYcBg4cyMWLF4mNjeWXX37hwQcfxMam9j47KIonLUt7ancpocmoLDT31hTCFQtEGu0KvYGdtRW9Ajx5qnczHujamP9uDWX7udh8fdN0Bj7ffIFBn+zgcFgC/3m4Ey8ObV0ix/ETPZuSpjMU+UT+25EoUnUGJvbzL3C7n4cTv07pg4eTHf9adRwXexs+fTgIK6vCj/9wdz9srQU/H4zgaEQib687zaA2Prx6d1u+Hdedpl5OTP4xmAvXS1eNrvb+yot5kq8oSpKPJe/2nNTXVlZWuZ9z/s5JhW1ra5u7T95+efsUFb9dloiIsWPHsnz5clasWMHixYtLvb+idpGm0/7PXAt5CrYEOQqhsJXOpWHXhRt097/pAH9/TCDnrqUy5acjBDZ2o52vK+1865FtMPHV9ovEpWUzMtCXV+5ug79ZjpLQrZkHreq78POhSB7tkd9xbjJJlu4Lo3MTd7o0LbymSWN3R1ZM7s2ba04x6Y7m1Hd1KLQvgLeLPXd3aMjqI5H8fTIaXzdHvni0M9ZWAncnO5ZO7MEDX+9j/OJDLHu6Fy3rlyxyS80QLMzgwYNZuXIl8fHaqsuEhAT69u3LihUrAFi+fDl33HGHxY+bN132hQsXiIiIoE2bNre0nzp1ihMnTuTb19XVldTUW58kJkyYwBdffAFAhw5VV1tCUT3IUQguFagQnOxs8HVzKPcMITYli3MxqfRvdXNFtIOtNd9P6M4TPZtiLQRrQ6J5449TvPPnGQK8Xfhjel++erJrqZQBaA9bT/RqyvHIpAKjhXZciOVKXDqT7ii+Ilwjd0e+n9CDfi1L5nd5slczUrIMJGfq+eapbrg72eVu8/NwYsnEHqRmGRjy2U7u+nQHb687zfbz+WdIeam9M4QqokOHDrzxxhsMHDgQa2trunTpwvz585k0aRKffPIJPj4+LFmyxOLHnT59OlOnTiUwMBAbGxuWLl2Kvb0906ZNY+LEiQQFBdG5c2d69uyZb18vLy/69etHx44dGTFiBJ988gkNGjSgXbt2jB492uKyKmoelWEyAm2WUN7FabtDtbyY/VvdemP1dXPk7fu0hxspJVGJmSRn6unQqF65sqyO6dKYDzecY8WhSOaOvnVdwZK9YTSs58CIjg3LPH5h9A7wZEJff+5o6V2gz6VDIzc2vjiATadj2HnhBr8ciijeAS6lrJGvbt26yds5c+ZMvjZF2UhPT5cBAQEyKSmp0D7q+647/HPqmmw2+y95Mqrw/wdL8MYfJ2TgW/9Ik8lU5jFe+OWo7DZ3kzQayz5GaXlxxTHZcc4/Ml2nl1JKaTKZ5I/7w2Sz2X/JL7eFVpocRZGZbZA7z8dKIFgWcl9VJiNFPrZs2ULbtm15/vnncXMrfCWlou6QO0OoQJMRQHNvF1KyDCSkZ5dpf5NJsic0jjtaehfplLU0j/dqSqrOwF/Hr5GlNzL7txO8ueYUg9r4MKGQaKHKxsHWmgGti84SrUxGinwMGTIkd62EQgGQnl05JqOAPJFGXi72xfTOz5lrKcSnZxd747M03Zt50LK+C4v3XmH5wXCORyXz/F0tmTWkNdaVqJjKi5ohKBSKYkmtpBlCgHktQln9CLtCbwBwR6uSL4izBEIInujZlHMxqVy6kc7Csd3417A2NUoZgJohKBSKEpCmM2BrLbC3qdhnyMbujthaCy7fKKNCuHCDdr71ig3brAge6dGE66lZPNytSYnDPKsbSiEoFIpiScsy4GJvU+E1j22srWjq6cSVuOLXIqwMjmT5gXCGdWjIfZ0a4elsx5HwRCb1Kz7EsyJwsbfh9RHtquTYlkIpBIVCUSxaHqPKuV0093Ypdi3CmegU/r3mFPUcbPhk43k+2XieAG9n9EZZ6f6D2oTyIVRToqOjeeihhwAICQlh/fr1VSyRoi6Tap4hVAYtfJwJi8/AWEgyuoxsA8//chR3R1s2zhrA3tfu4rURbbG3taaxuyPdmhW+IlhRNGqGUE1p1KgRq1evBjSFEBwczD333FPFUinqKuk6Q4lTX5eX5t7OZBtMRCdl0sTTKd/2d9ad4XJcOj893Ss3EmnqwBZMHdiiUuSrzagZQgXw008/0bNnTzp37syUKVMwGo0sWbKE1q1bM3DgQJ599lmee+45QEsRkXPjBy3VNUBYWBgdO3YkOzubOXPm8Ouvv9K5c2d+/fVXWrVqxY0bWjSFyWSiZcuWxMXFVf6JKuoMabrKmyHk5jQqwGz05/Fofg2OZNrAFiVO8aAoObV2hvDRoY84l3Cu+I6loK1nW2b3nF1kn7Nnz/Lrr7+yd+9ebG1tmT59Oj/99BNvvfUWR44cwc3NjTvvvJMuXbqU6Jh2dna8++67BAcH8+WXXwJw7tw5li9fzqxZs9iyZQudOnXKza6qUFQEaTpDqfP8lJUAcwnNKzfSGJjHHxCZkMH//X6SLk3deXFo4WmsFWWn1iqEqmLr1q0cOXKEHj16AFqBmn379jFo0CB8fLR/7kcffZQLFy6U+RiTJk3i/vvvZ9asWSxevJiJEydaRHaFojAq04fg7WKHq71NPsfyR/+cwyQl8x/rgq21Mm5UBLVWIRT3JF9RSCkZP348H3zwQW7bmjVr+OOPPwrsb2Njg8lkyt03O7v4JftNmjShQYMGbNu2jYMHD+ZmM1UoKoo0nR6XUlRLKw9CCJr73JrkLioxgw2nYnj6juYF+hUUlkGpWQszePBgVq9eTWyslmY2ISGBLl26sGPHDuLj49Hr9axatSq3v7+/P0eOHAFg7dq16PX5a78WlJ76mWee4amnnuKRRx7B2rpyfqiKuonBaCJLb6rQamm309zb+ZbFaT+Ys3SOryZ5gWorSiFYmPbt2/Pee+8xbNgwgoKCGDp0KNeuXePtt9+mT58+DBky5JYyls8++yw7d+6kZ8+eHDx4EGfn/HbaO++8kzNnzuQ6lQHuu+8+0tLSlLlIUeGk64xAxecxykuAtwvRyZlk6Y2k6QysOBTJiI4NaezuWGky1EVqrcmoKnn00Ud59NFHb2nr3bt37s176dKlBAcHA9CgQQMOHDiQ2y/H1OTv78+pU6cArQzn4cOHbxnv+PHjdOrUibZt21bYeSgUAKk6bdZakdXSbqe5jzNSQnh8BnsvxpGqM/BM/4BKO35dRSmEGsiHH37IggULlO9AUSnkVkur1BmCNlMOjU1lyb4rdGvmQecm7pV2/LqKMhlVARMmTMgNIS0Lr732GuHh4RVSilOhuJ3KqoWQl5y1CN/uvkJkQibPlKAEpaL8KIWgUCiKJNU8Q6isXEY5x2pQz57jkUn4eTgyrIPlS1Aq8qMUgkKhKJJ0s0KorNQVOeTMEib2a17j6grUVJRCUCgURVIVJiOAdr71qOdgwyPd/Sr1uHUZ5VRWKBRFUhVOZYCXh7Xh2f4BuDpU3vqHuo5SCAqFokhyymc621Xu7cLZ3qZS/RYKZTKqdvj7+1ssc+nSpUuJjo62WD9F3SRNZ8DZzlrZ8esASiFUIFLK3DxFVYFSCApLkJZVedXSFFVLrb3KMe+/j+6sZdNf27drS8P/+78i+4SFhTFixAjuvPNO9u/fz+jRo/nrr7/Q6XSMGTOGd955B4DRo0cTGRlJVlYWM2fOZPLkySWS4aeffmL+/PlkZ2fTq1cvvv76awCefvppgoODEUIwadIkmjRpQnBwME8++SSOjo7s37+fTz75hD///JPMzEz69u3LwoUL+e233/L1O3PmDC+99BJpaWl4e3uzdOlSfH19y/flKWosadmGSvcfKKoGNUOoAM6fP8+4ceP46KOPuHr1KocOHSIkJIQjR46wa9cuABYvXsyRI0cIDg5m/vz5xMfHFztu3loLISEhWFtbs3z5ckJCQrh69SqnTp3i5MmTTJw4kYceeoju3bvnbnd0dOS5557j8OHDnDp1iszMTP766698/WxsbHj++edZvXo1R44cYdKkSbzxxhsV/ZUpqjFpWYZKTVuhqDpq7VUu7km+ImnWrBm9e/fm5ZdfZtOmTbnFcNLS0ggNDWXAgAHMnz8/NyV2ZGQkoaGheHl5FTluQbUW6tevz6hRo7h8+TLPP/88I0eOZNiwYQXuv337dj7++GMyMjJISEigQ4cOjBo16pY+58+f59SpUwwdOhQAo9GoZgd1nDSdmiHUFcp1lYUQLwLPABI4CUwEnIBfAX8gDHhESplo7v868DRgBF6QUm40t3cDlgKOwHpgppSy4ArbNYCcjKVSSl5//XWmTJlyy/YdO3awZcsW9u/fj5OTE4MGDSIrK6vYcQuqtZDD8ePH2bhxI1999RUrV65k8eLFt2zPyspi+vTpBAcH06RJE95+++0CjymlpEOHDuzfv780p6yoxaRlGfB2UTUI6gJlNhkJIRoDLwDdpZQdAWvgMeA1YKuUshWw1fw3Qoj25u0dgOHA10KInET+C4DJQCvza3hZ5apO3H333SxevJi0tDQArl69SmxsLMnJyXh4eODk5MS5c+duyXZaFAXVWggPDycuLg6TycSDDz7I3LlzOXr0KHBrHYWcm7+3tzdpaWm31HHO269NmzbcuHEjVyHo9XpOnz5tgW9DUVPR6imrtQB1gfLOA20ARyGEHm1mEA28Dgwyb/8B2AHMBu4HVkgpdcAVIcRFoKcQIgyoJ6XcDyCE+BEYDWwop2xVzrBhwzh79ix9+vQBwMXFhZ9++onhw4fzzTffEBQURJs2bejdu3eJxstba8FkMmFra8tXX32Fo6MjEydOzI1oyplBTJgwgalTp+Y6i5999lkCAwPx9/fPNTsV1G/16tW88MILJCcnYzAYmDVrFh06dLDwt6OoKaRmVV61NEXVIspjmRFCzATmAZnAJinlk0KIJCmle54+iVJKDyHEl8ABKeVP5vbv0W76YcCHUsoh5vb+wGwp5b0FHG8y2kyCpk2bdgsPD79l+9mzZ2nXrl2Zz0dROtT3XfuRUtLyjQ1MHRjAK3er2hu1ASHEESll94K2lcdk5IH21N8caAQ4CyGeKmqXAtpkEe35G6VcJKXsLqXsnlOwXqFQVBxZehNGk1QmozpCeUxGQ4ArUsobAEKI34G+wHUhhK+U8poQwheINfePAprk2d8PzcQUZf58e3udJT4+nsGDB+dr37p1a7GRSAqFJcmplqaijOoG5bnKEUBvIYQTmsloMBAMpAPjgQ/N72vN/dcBPwshPkObUbQCDkkpjUKIVCFEb+AgMA74X1mFklIiRM1eYu/l5UVISEhVi1EkNTgITFEKcjKdqnUIdYMyX2Up5UEhxGrgKGAAjgGLABdgpRDiaTSl8bC5/2khxErgjLn/DCml0TzcNG6GnW6gjA5lBwcH4uPj8fLyqvFKoTojpSQ+Ph4HB4eqFkVRweRmOlUKoU5QrqsspXwLeOu2Zh3abKGg/vPQnNC3twcDHcsjC4Cfnx9RUVHcuHGjvEMpisHBwQE/P5WnvraTVgXV0hRVR626yra2tjRvrmqvKhSWItdkpHwIdQKVy0ihUBSKMhnVLZRCUCgUhVJV1dIUVYNSCAqFolBSq6iesqJqUApBoVAUSprOgK21wN5G3SrqAuoqKxSKQknXadXSVBh33UApBIVCUShpWQZlLqpDKIWgUCgKJVWnFEJdonYoBH0mZCZVtRQKRa0jLcug1iDUIWqHQtj0JiwbXdVSKBS1jjQ1Q6hT1A6FEH8R4i9VtRQKRa0jXWfAxUGlvq4r1A6FkB4HuhTQF1+XWKFQlBzNh6CqpdUVaolCMJdcSFdJ7RQKS6KijOoWNV8hmEzaDAGUQlAoLIjBaCJTb1TV0uoQNV8hZCVBTlmFHMWgUCjKTbpO+12pPEZ1h5qvEPLOCtQMQaGwGDnlM1W1tLpDLVMIsYX3UygUpULNEOoetUwhKJORQmEp0swzBFUtre5Q8xVCmlkh2Lkok5FCYUFU6uu6R81XCOk3QFiBdyulEBQKC5JTHEelrqg71A6F4OQFLg1vzhYUCkW5SVMzhDpH7VAIzj7g7K1mCAqFBVHlM+setUAhxGnKwNkHMuK0hWoKhaLc5CgEZzulEOoKtUAhmGcILvXBZNAWqikUinKTlmXAyc4aaytVLa2uUHsUgrPPzb8VCkW5Uamv6x41WyHos7Qspzk+BFAKQaGwEKk6g/If1DFqtkLIMC9EUzMEhcLipGUZVNqKOkbNVgg5N39nH3Cub25Tq5UVCkuQrmYIdY4arhDyzBCcPAGhZggKhQXINpiIS9MpH0Ido4YrhJwZgjdYWWsL1NJUgjuFoiDORKeQkJ5dbL89oXEM/+8uwuIz6OHvWQmSKaoLNVv959z8c/wHzj5qhqBQFMDOCzeYtPQw7o62fPBAIMM6NMzXJzopk3l/n+Xvk9do5uXEkgk9uLNt/SqQVlFV1GyFkH4DbBzBzln729lb+RAUits4H5PKjOVHaVXfBWsrweRlR3i0exPeHNUeZztr9l+KZ/nBCDaejsHaSvCvoa15dkAADra1rJZyzCnY9z8Y+Cp4tahqaaolNVwhxIGLDwjzwhmX+hAdUqUiKRTVidjULCYtPYyTnTVLJvbAy9me/269wIIdl9h7KQ47aysux6Xj7mTLxH7+jO/rj5+HU1WLXTFsmwsX/oGz6+DuedBt4s17hwKo8Qrhxk1zESiTkaLOYjCaeGHFMZzsbBjSrj79W/lgJQTP/niEhPRsVk7pg6+bIwCv3N2WO9vUZ87a0zjZWfP84JaM6Ohb+2YEeYm/BBc2QvdJkHAZ/npR+/u+/2kPkgqgNiiEeo1u/u3srS1U02eBrUPVyaVQVDJ7L8Wz/mQM9jZWrD4ShZ21Fb7uDkQkZLDwqW4E+rnd0r+7vyfrZ/avImmrgIMLwcoGBr6mPTgeWgib34IFfeGZLeDhX9USVgtqeJRR3M0VynBztpCh/AiKusXvR6Nwc7Tl2Jyh/PJsb8b3bYajrTXv3NehQAdynSIrGUKWQ8cHwbUBWFlB72kweTsYdPDbs2A0VLWU1YJyKQQhhLsQYrUQ4pwQ4qwQoo8QwlMIsVkIEWp+98jT/3UhxEUhxHkhxN152rsJIU6at80XooSGvXwmo/o32xWKOkKazsDG0zHcG+SLk50NfVp48cbI9vwzawDj+vhXtXhVz7HlkJ0Gvafe2t6gA4z6AqIOwc4Pq0S06kZ5Zwj/Bf6RUrYFOgFngdeArVLKVsBW898IIdoDjwEdgOHA10KIHKPlAmAy0Mr8Gl7skU1GMOnz+xBARRop6hT/nIohS2/iga6Nq1qU6ofJCAe/gaZ9oFGX/Ns7PghdnoJdn8KV3ZUvXzWjzApBCFEPGAB8DyClzJZSJgH3Az+Yu/0AjDZ/vh9YIaXUSSmvABeBnkIIX6CelHK/lFICP+bZp3BM5ineLQrBbD5Si9MUdYg/jkXRzMuJrk09iu9c17jwDySFQ6+phfcZ8bEWhvr7ZMhIqDzZqiHlmSEEADeAJUKIY0KI74QQzkADKeU1APN7jgu/MRCZZ/8oc1tj8+fb2/MhhJgshAgWQgQnJeRJW5GDSnCnqGNcS85k36V4RnduTEktrXWKAwvArQm0vbfwPnbO8NBizfe49jmQsvLkq2aURyHYAF2BBVLKLkA6ZvNQIRT03yqLaM/fKOUiKWV3KWV393o5i9HyKAQ7Z22hmlIIijrCmmPRSIkyFxVEzCkI2w09ngHrYgIqfTvBkLfh/N9wZm2liFcdKY9CiAKipJQHzX+vRlMQ181mIMzvsXn6N8mzvx8QbW73K6C9aIwFmIyE0BaqKR+Cog4gpeSPY1F0a+ZBMy/nqhan+nH6dxDW0HVcyfr3mgr128OWt8FQfM6n2kiZFYKUMgaIFEK0MTcNBs4A64Dx5rbxQI66XQc8JoSwF0I0R3MeHzKblVKFEL3N0UXj8uxTODk+BCevW9udfSBd+RAUtZ/T0SlcuJ7GmC5qdlAgkYfAN8icCbkEWFnD0Hch8QoEL65Y2aop5V2Y9jywXAhhB1wGJqIpmZVCiKeBCOBhACnlaSHESjSlYQBmSCmN5nGmAUsBR2CD+VU0Jj04euafCjr7QMrVcp6WQlH9+ePYVeysrbg3yLeqRal+GPVw9UjJZwc5tBwCAYO0MNROj4Gje0VIV20pl0KQUoYA3QvYNLiQ/vOAeQW0BwMdS3Vwk+FWc1EOzt5w7XiphlIoahoGo4m1IdHc1bY+7k52VS1O9SPmJOgzoEmv0u0nBAydCwsHwJ7PtBlDHaLmrlQ2FqYQ6mtO5TocKaCo/SSkZ9OmoQsPdvMrvnNdJPKQ9l5ahQCamanT43DgG0iKuNkuJegzLSNfNaXm5jIyGTQH8u04+2jbMhNLbjtUKGoY9es5sPyZ3lUtRvUl8iDU8wO3MvpX7vq35pTe+Aa0GQFXdmmvlGjoMwMGzwEbe8vKXA2o2QqhwBlCntXKSiEoFHWTyEPQpGfZ93drrN34d/9HS5ft5AX+/TUlsP9LTTk8+D34tLaczNWAWqgQzKuV02/UuoulUChKQHIUpERB0xfKN86AV8GrFTQM1MJRrcwW9vb3awvYFg6AER9CtwnlFrm6UHMVAtya6TQHF5XgTqGo00Sal0aVZ4YAWgr9zo/nb287Ehp1hT+mwJ8zwaM5BAws37GqCTXXqQzFmIzqsEIwGWH7+1qWR11aVUujUFQukYfA1gkalC5wsVTU84XHV4CNA5z7u+KOU8nUPoXg6AmIuq0Qzq6DnR/B2unwaWv4Y5qWydFkqmrJFIqKJ+IANO4G1rYVexw7J2g+EEI31pqoxtqnEKxtNGdyXVUIUmqOMK+WMPEfCHwIzv4JP9wLn3eADbMhfL9SDoraSXa6tgahvOaiktJ6GCSGQVxo5Ryvgql9CiGnva4qhItbtB/EHS9Csz5w33x4+YIWEdG4KwQvgSXD4fP2WqSEQlGbuHoUpBGaVFJIbitzna/QjZVzvAqm5ioEYQX2rgVvc67DCe52/0eLvw585GabnZM2U3hsObx6SVMOVraweU6tmeoqFMBNh7JfQQkUKgD3JlC/A1xQCqFqsbLRlpkXhLMPpF2vXHmqA+H7IGI/9JsJNoWkM7B31ZTDHTMh+tjNFZ0KRW0g8iB4t6ncNUith2m/u6zkyjtmBVFzFYJ1EflbGnWGhMsQe67SxKkW7P6Ppgy7ji2+b6fHwcENDi6oeLkUisrAZCr/grSy0OpubV3UpW0VehidUcfuqN0k68qmeFKzU1lwvOjfe81dh+DdqvBtnZ+CbfPg8Hcw8tPKk6kquXZc8x8MfgtsHYvvb+esZYLc/7W2kMdN5cRR1HDiQyErCZpWckoPvx7g4K6ZjTqMKfFuV9OusvL8SjINmdhZ2WFnbYe9tT2+Lr40q9cM/3r+1LOrx/Ebx1l3aR3/hP1DanYq3Rp047th32Fjlf/2vefqHtL16XSp34X6TtqarAx9Bj+f+5klp5aQkp1SpEw1VyEUhbOXdmGOr4AhbxXua6hN7P4M7N2gx9Ml36fHs7D/Kzj8vfY9KRQ1mfB92ntZEtqVB2sbaDUUQjdrsxSrog0vsRmxLDqxiN9CfwPAycYJvUlPtjEbY25FAA1HG0cyDZk42jgyuOlg/Fz9+Ob4N3wV8hUzu868pe+v537lvYPv5f7d2KUxHb07cujaIRJ1iQzwG8CMzjPoQIdCZaudCgG0snknVsCJlaW7SdZEkiK1sn/9X9LMQCXFoxm0uQeOLIWBr5ZsZqFQVEdMJu3Bxqul9qpsWt0NJ1dB9NFCHdp6o57/hfyPn8/+jNFk5IFWDzA5aDINnBvc0udq2lXCU8IJSwnjatpVOnh1YEizITjbalXxbmTc4LuT39G1flf6+/UHYFPYJuYdnMcgv0E8G/QsIbEhHIs9xrHYY7T3as+0ztPo5NOp2NOovQrBr7tWJ/Xw99B9UuEO6NrAmTWAhC4l8B3cTu9pcO4vTXF2G198f4WiOnL+b7h+EsYsqprfesvBWuTjhY0FKgSDycDs3bPZHL6ZUQGjmNZ5Gk1cm+TrZ2tti7+bP/5u/gyk4HQYr/V8jZNxJ3l9z+usHrWaiJQIXtv9Gp3rd+bjgR/jaONIkE8Q4zqUsjgQNdmpXBxCaLOE2NNaBEBt5vQaTfl5Ni/9vs36QYNAOPiNCkFV1ExMJtjxkTYz6Phg1cjg5KmZqi78k2+TSZqYs3cOm8M383L3l3m///s3lcG1E5oPrxQ42Djwn4H/QW/U89zW53hh+ws0q9eM/931PxxtyjfLr70KAaDjQ5oJ5fB3VS1JxZEUCVeDof3osu0vBPSeCrFn1EI1Rc0kZ3Yw4NX8JXUrk1bDIOaEVjPBjJSSuQfm8uflP3mu83OM75BnFp5wWcuY+nkH+Kw9rJqgFeVJLr4EsL+bP+/0fYfziedxtXNlwZAFuNmXwlxcCLVbIdg5aRFHZ9ZBai1dl3BmrfbeYXTZx+j4kJbv/dAii4ikUFQa1WF2kEPbe7X3o8sAbWbw8eGPWX1hNU93fJrJQZNv7X9lNyBh4GwtMioqGP6ZDV8EwspxELanyFn78ObDmX/nfH4Y/gMNnRta5BRqrw8hh+6T4MBXcPRHGPhKVUtjeU7/AQ2DwDOg7GPYOmghqHv/q8043PPbNhWKakle30FVzg5Aq7/S5h448DUX2w9n7pHPOBp7lCfbPcnMrjMRt/s2wvdqJX8HvX7T7xF/SQvyOLZMe9ir3x46PgAth2q/89simO5seqdFT6F2zxAAvFtCwJ2w73+ag9loqGqJLEeOuag8s4Mcuk/S3oMXl38shaIyqE6zAzOZfZ/nC0fJwxvGcjn5Mu/2fZfZPWbnVwZSQtheaNb3Vie4VwsYNhdeOgv3f6VF/m17DxYNhP+00TIXV2AivdqvEABG/gcadoS/X4Jv+mnxwrXBgZpjLiqr/yAv7k2h9Qg4+gPos8o/nkJR0VSy70Bv1LM1fCtp2flrjEgp2RK+hTHB7/K9uxsjM/WsG/krY1qNya8MAJLCtapu/ncUfDBbR+jyFDy7DV4OhdHfQPP+WkTg4uEQe9bCZ6dRNxSCVwuY8Dc8uhyM2bD8IVg1vuYrhTNrtGmkVwvLjNfzWciIN4exKhTVnAMLwL1Zpc0O5h2cx6wdsxi6eihfHPmCuEwtgebp+NNM3DiRF3e8iKONI4s7/4v3YqLxOL2u8MHC9mrvzfoVf2CX+lrltocWawrCygaW3lshSqH2+xByEALa3atFAmx/T7OXh+8tXENXd5KjIOowDJ5juTEDBmk1ZA99C50es9y4CoWliT2r/X6HvFMps4PfLvzGb6G/8WCrB0nTp7Hk9BJ+PPMjXep34VDMITwdPHmz95s80OoBLaXE0VXaPab7RLCxzz9g+D5w9ACftqUTxLuV9nD7w72aUhj/JzRor23LSobrp0GfqVVys3HQjm1lDQizaaroNRp1RyHkYGOnOXGO/ggHF9ZchWBJc1EOQmizhA2vannlG3e13NgKhSU5/D1Y25dtMWYpORV3inkH59HHtw9v9n4TaytrIlIiWHp6KTujdjKp4ySeDXwWFzuXmzsNeBmWjYaQ5Tf9c3kJ36PNDopJc1Eg3i01pbB0JPwwSruHxZzQwljLSd1TCKDZ57qOg31f1tzEbqf/gIaBljMX5dDpMdjyjrZ2o/HXlh27GmEwGYhJj8HPtQZe+7qOLk3LU9ZhtJa3rAJJyErgxR0v4u3ozUcDPsLayhqApvWaMqdPEbPzgEHQuDvs+VxTWnnLeSZf1aqs9ZxSdsFyzOC/PK6lsfftBJ2f1N7tXcGgM78ytRrryJsm8nceLnTYuqkQALo/rUUeBS+2rNmloshI0FZch+/TpsrRx+CuNy1/HAc36PQoHFsOQ+eW/gdnMmp+iLTrmn3XoZ7lZSwnUkre2PMGG65s4P96/R+PtVXmscpg39V9XEu/xpBmQ8q3iOrkKshO1X7DFYjBZODVXa+SkJnAj/f8iIeDR8l3FgIGvAK/PKrNErpNuLkt3Ow/8C+B/6AovFrAc5atZ1J3FYJHMy2q5shSLUrB1qGqJSqc+EuwcKD2I7C219LtDnod+syomOP1eFZTlHs+g7vnFd/faIA/Z8LFzVrpUmmu19x6BDyxomJkLAdrLq5h/ZX1+Ln4Me/gPOIy45jReUbB0SAWIiU7he0R24lJjyEuM474rHjS9em80esNmtZrWmHHrQ7EZ8bz4aEP+SdMS+vwwaEPGNx0MA+0eoAeDXtgJUphNpFSMxc1CKzwugfrLq3j4LWDvNP3HTp4FZ4htFBa362ls9j+AQQ+rKWcB00h2LtBg46WFdgC1F2FAJq9/Pzfmvml8+NVLU3hHP8F9Okwdo0Wt1yQk8qSNGhvrpXwpXasu94sPGGYlJrPIeQnLdrDMwBcGmjFQi5t16atFS1vKbicdJn3D75Pr4a9WDBkAe8dfI+FJxYSlxnHv3v/u8Ac8+UhLDmM5WeXs/bSWjINmQC42bvh7eBNVFoU84/N59OBtbNmh5SSv6/8zUeHPiJdn85znZ+jb6O+rL20lvWX17P+ynp6NezFomGLSq4Uog5roab3fl6hSeyklCw7s4w2Hm0Y07LkNQ5uQQhtlr14mGaeHjRbaw/bq9U7N5ufqhN1WyEEDALv1lrKhuqqEKSEE79qsraw7KrEIrn3v1r2xt3/0aIW7n6/4B/g/i8h+HvoNwuGvnOz3c0Pzq/XKlg1719pYhdFliGLl3e9jJOtE+/3fx9ba1ve7vM2Xg5efHvyWxKyEvig/we5aYbLQ0hsCItOLGL31d3YWtkyovkIHm/7OK09WmNnrvY3/+h8vjv5HaFBobTyKKLgUw0kJj2GuQfmsitqF0HeQbzb711auGv+rkCfQF7u/jI/nP6BL0O+ZFPYJoY3H16ygQ9/D3aut9YMLyEhsSH8cu4Xnuv8HE3qFb0a/8C1A1xMusjcfnPLN3Ns2gva3Xcz4khKrZBPSaoaVgF1Yx1CYQgBPSdrOcyjgqtamoKJPAhJERD0aOUe18oK7v0Cek2DA1/DXy9qK0PzcmYtbPq3Voxo8G0Fdpr1A2ENl7dXmsjF8Wnwp4QmhvJev/dyq0kJIXih6wu81vM1dkbt5LG/HuN8wvlix5JSEpsRi96kv6X9xI0TTN08lbEbxnI6/jTTO01n00ObmHfHPDp6d8xVBgDjO4zHydaJb45/Y9kTLYDI1Eje3vc2u6N2V+hxTNLEyvMrGb12NIdjDvNK91f4ccSPucogBwcbB54JfIZWHq3479H/ojfqCxkxD+nx2my+02Ng71J8/zzEpMcwc/tM1l9Zz8N/Pczfl/8usv+yM8vwdPDknub3lOo4BTLkbTDqYMcHN/0HzapndGPdniHAzaiaQ4sKLWxRpZz4FWydbibOqkyEgOEfaFFZez7TzECNu2qRDM71tZXffj1h9IL84XMO9bTv8/KOSnfaJ2Ylsvzscg7HHEaiRVYYpZETN04wocOE3KIieXmy3ZO09mjN7F2zeXL9k/xfr/9jTMtbV5km65LZf20/e6L2sDd6L3GZcVgLa3ydffFz9UNKycGYg7jbu/Nitxd5rM1jONk6FSqnm70bT7Z7kkUnFnEh8QKtPVpb/LtI16fz7Ylv+fHMj+hNejaGbWT1fatp7NK40H2MJiPRadFcSblCC/cWRfbNQUrJ+cTzfHjoQ45cP0Iv31681eetAnP+52BtZc2LXV9k+tbprLqwiifaPVH0QUKWazfWUha8yjZm86+d/yLLkMU3Q75h4YmFvLb7NfZF7+ONXm/ku0ZXkq+w++pupneafosCLzNeLbTQ08PfQ8IVsHPRfkPVECFr6Grd7t27y+BgCz3Vr39Vc6LOOgn1fC0zpiUwZMOnrbTyfA9WcQrvkJ/h/Aa4FqLNWAA8/OGZreDsXfA+2z+AXR/Dq5e1RTgVTEx6DD+c/oHfQn8j05BJJ59OONjcDBbwr+fP7B6zsc0bAngbcZlxvL77dQ5cO8Adje/A3tqe6+nXuZ5xnbjMOCSSenb16NuoL53rdyY+M56o1CgiUyNJyU5hTKsxPN728RKbnZJ1yQz/bTh9GvXhs0Gflfs7AO3mHJUaxZ7oPSw6sYi4zDjua3EfD7d+mGlbptHCvQVLhy+9xV+iN+n58tiX7Ivex5XkK+iMOgDsrOyY2mkqEzpMyPe96Y16gq8HsyNyBzujdnI17Squtq680uMVRrccXSJTi5SSZzY9w8Wki/w95u9bY/lv7QhfdgdnH5iUv+ZAUczdP5eVF1by+aDPGdJsCAaTgW+Of8OiE4toVq8ZXw/++hYT0nsH3uP30N/Z/NBmvBwtFNaaHgfzu4AuBVoMhrG/W2bcMiCEOCKlLPDpV80QQKsadvhbOLgAhr5b1dLc5OJmrWh4ZZuLCqLzE9oLtBDY2DNaJkYnz8L3CRgEOz/U0vi2G1UhYiXrktkVtYttEdvYEbUDKSUjA0YyqeOkfGaKkuDt6M03Q77h25Pf8uv5X3G3d6eBUwNaebSikUsjevv2pqN3R4s5n3NmCQtPLOR8wnnaeLYp0zgmaWLdpXXsjtrNsdhj3Mi8AUCQTxDz75xPoE8gAHP6zOHVXa+y8MRCZnTWotTSstN4acdL7L+2n96+vXm0zaO0cG9BE9cm/HLuF+Yfm8/6K+t5u+/btHJvxe6ru9kasZXdUbtJ06dhb21Pb9/ePB34NIObDsbToYj/idsQQvBitxd5/O/HWXp6Kc91ea7gjuH7IP4i9H+5VN/LH6F/sPLCSp7u+DRDmg0BwMbKhue6PEcv3168uONFxv0zjoVDF9LaozXJumTWXVrHyICRllMGoD003TELtr5b/nDTCkTNEHJYNREuboEXT5WuLnFFsnKc9kN46VzVp/YtC0Y9fOSvKbR7LfP0C9pT5abwTaw6v4rg68EYpZH6jvUZ6j+Use3HlsjEUZ1I1iUz4rcR9PTtyRd3flHq/TMNmfx7z7/ZFL6Jhs4N6Vq/K90adKNr/a60cG+R70n9jT1v8Nflv1h892KauDZhxtYZhCaG8laftxjTKn9EzfaI7cw7OI/YjFhsrWzJNmXjYe/BoCaDuLPJnfRu1Lvclbpe3vkyu6J28feYv/Fx8snf4ffJcP4f+Nc5rc5JCQiOCWbK5il0bdCVb4Z8k7uoLC+Xki4xefNkMg2ZfD34a47GHuXzI5+zetTqMivnQtFnan6EXtOq1BJR1AxBKYQcokO0FLND3tE0eVWTmQSfttZsjyM+rGppys7yR7QnuxeOWmS4kNgQPg3+lOM3jtPUtSnD/IdxV5O76ODdoXTx7NWMr0O+ZsHxBXStfzNdiIONAy92e5G2noXnu4lJj+GFbS9wLuEcL3V7ifEdxhdrqknXp/PIn4+gM+qwElYk6ZL4bNBn3NG4cEdnuj6dxacWk2nI5K4md9G5fmeLhuhGpERw/5r7GdNqTP4VwJmJ8J+2WvbPkf8p0XirLqzi/YPv4+fix48jil5UdjXtKpM3TeZG5g0cbRxp5d6K7+6uvVUWi1II5f4FCSGshRDHhBB/mf/2FEJsFkKEmt898vR9XQhxUQhxXghxd572bkKIk+Zt80VFrhAqjEadNRPHgQVa7HxVc3ad5kALKn14XbWixZ2QcOmm36EU6I16YtJjOBN/ht1Ru3l558uM3TCW6LRo3u37LutGr2Nm15kE+gTWaGUAMLb9WAY3HYyNlU3u60z8GV7d9SpZhoLTkR+/cZzH/36ciNQIvhz8JRM6TiiR3d7Z1pmPBnxEfGY82cZslg5fWqQyyNnn+S7P82qPV+nesLvF12s0rdeU+1vez7pL63LXa+RyYhUYsrS1McWgN+p5d/+7vLv/XXr59uKne34qdoVxY5fG/DDiB5q6NiUhK4En2z1ZnlOp2Ugpy/UCXgJ+Bv4y//0x8Jr582vAR+bP7YHjgD3QHLgEWJu3HQL6oKXi2wCMKO643bp1kxbn4jYp36on5ZEfLD92aVkyUsr53aQ0mapakvJx/UypvlOdQSfXXVwnH//rcdlxacdbXt2XdZdfHvtSpmenV7DQ1YO9V/fKjks7yk8OfZJv26Frh2S3Zd3k8NXDZWhCaJnGPxV3Ssamx5ZXTIuxN0o73x0RO242mkxSft1Xym8GFLt/WHKYHLt+rOy4tKP8LPgzaTAaSnX8FF2K3BGxQ5pq+m+uGIBgWch9tVxqXgjhB4wE5pkVA8D9wCDz5x+AHcBsc/sKKaUOuCKEuAj0FEKEAfWklPvNY/4IjDYrhsolYJBWX2DvfK0Wc1kyEVqC5CgI2w13/rtCV2NWCj5ttZXLl3cU+oQnpSQiNYK/Lv/FyvMrSchKoLlbc6Z2moqPow9ejl54OXjhX88fdwf3ShW/KunbqC+PtH6EH8/8yF1N76JrA82cdCb+DM9ve57GLo1ZMnxJqZy4eSlTOoYKpHvD7jjZOLEzaicDmwzUGqOPwvVT2srkAsg2ZrMtYhurL6zmYMxBHKwd+GTAJyVf6JYHVzvXm8eto5R33vcF8CrgmqetgZTyGoCU8poQor65vTFwIE+/KHOb3vz59vZ8CCEmA5MBmjatgPwvQmj+g9WTtJQWFRQZUyznzbqwQxmXzFcnhNAU7cWt2sI2KyuklJyOP82+6H2cuHGCEzdOkKhLRCAY4DeAJ9o9QR/fPhWaW6im8FL3l9gbvZc3977JqlGriMmIYermqbjZubFw6MIyK4PqiJ21Hf0a92Nn1E6klNr1P/KDtg6n40P5+v8T9g/vH3ifRF0ijV0a80KXFxjdcnTBTmlFiSizQhBC3AvESimPCCEGlWSXAtpkEe35G6VcBCwCzalcMklLSbv7tSyde77QFoNVxU3p/AatTqx3y8o/dkUQcCec+JXrEbv5K/Uiay+t5UryFW2TWwADmwykk08nevn2KnIhU13E2daZuf3mMmnjJN498C5Hrh9BCMGiYYto6NywqsWzOAP8BrA5fDNnE87S3qUpnPoNOjyQL2vunqt7eH3X67T3as+H/T+kd6PeNd6PVB0ozwyhH3CfEOIewAGoJ4T4CbguhPA1zw58gVhz/ygg76/dD4g2t/sV0F41WNtAn+dgwytakRi/bpV7fF2qZi7qOblyj1tBpOvT2WqTzd8NfDiw83lMSLrU78Lbfd4ufxrkOkKPhj14ou0T/HzuZ1xsXVgyfAnN6jWrarEqhP6N+yMQ7Dy3mvZJKZCdls/UeCruFC/teIkW7i34Zug3uNq5FjKaorSUWSFIKV8HXgcwzxBellI+JYT4BBgPfGh+N5f2Yh3wsxDiM6AR0Ao4JKU0CiFShRC9gYPAOOB/ZZXLInR6DLaai8RUtkK4tE2r+9xmROUe14IYTAb2Re/jr8t/sT1iO1nGLBo7OPF0Ftw/8lua+fWuahFrHDO7zsRgMjCqxagiw1BrNFeP4HX4ewL1Rnae/olp0de1FOp50lyHp4Qzfct0PB08WTBkgVIGFqYiVjt9CKwUQjwNRAAPA0gpTwshVgJnAAMwQ0ppNO8zDVgKOKI5k0vlUP778t+EJoYyq9ssi5wADvW0xVTHfoJh71V4VaZbOP8POLhDk5p307yUdIm1F9fy5+U/icuMw93enftb3s/IgJF0Tk9DrHgSVoyHJ1dW21wu1RUnWyfe7FMBBZGqA1Jqdbw3/h/YOTGoaTvm66O5MW03Pg2CcrvFZcYxZbNWZeybId8oX0EFYBGFIKXcgRZNhJQyHhhcSL95aBFJt7cHA2WuFrHoxCIuJ1+mX+N+9GjYo6zD3EqPZ7S0ziE/Qb+ZlhmzOExGCN2o5S6qQSuTr6Vd4819b3Lw2kFshA39/fpzf8v7GdB4wK35b57eCD89BItHwMNLofWwKpNZUU3IToc/Z8HJldB6OIz5hoFZN5i/7kF2JYfyoFkh6E16Xtz+IglZCSy+ezH+bv5VKnZtpcZ7YSJTIrmcrBWX/vzI5zlrI8pPg/ZaCufD3+dP+1xRRAVr5Sdblz5krqrYHL6ZB/98kJM3TvJSt5fY8vAW5t81n8FNB+dPIle/HTyzRcv++MtjWkJBRd0l/hJ8N1QriXnnv+GxX8DRg1burfB19mVn1M7crp8f+ZyQGyG82/ddOnpXv0pjtYWa8xhaCDuidgAwOWgyi04sYnP4Zob5W+jJs8fTWgjqpa3aU3tFc2EDWNlAyyEVf6xykmnI5KNDH/Fb6G909OrIRwM+KlkpyHq+MHEDrJqg1VhIuKKlC6nsNR97Pof9X4GrL3g21yq9OXlrtaBTrkJKNGSlaKVWvVpoUV8NAivfp1RbubxTy9UlBDy1+pb/eSEEA/0GsvbSWnRGHbuidrHszDKeaPtEmdYXKEpOzVcIkTto6d6SaZ2msTV8K/OPzefOpndia1V4iuMS03aUtqjq0LeVoxDO/6OVyHR0r/hjlRGjyciGsA18dewrrqZdZVLHSTzX+bkiU0rnw94FHl+hld7cNx8Sw2DMwuKTlmWnQ1IkJJtf9RprdWtLy+7/mLNO9tdqPVw/DefWg0mv1ayu10gb272JprAubtXSiAB0egLu+aTUBVrqBEaDdoMvrjRk8GJY/4qmZB9foSnk2xjYZCArzq9g1flVfBnyJUHeQbzcvXSZThWlp0YrhJTsFI5eP8r4DuOxsbJhVrdZPL/tef4I/YNH2lggB5CNHXQdD7s+0W5aHv75+xiytSypN85p4ao2ZSyokRgGN86WKF9LVSClZGvEVr4K+YqLSRdp49GGb4d9Sy/fXmUb0NpGS1Tm1QI2vqE9lT/6k3YzzktyFJxcrZkVrp/KP87A2TDo9ZKvF9n7X00ZBD4CY765efMyGrRc9Y4e+ccyGTX5ji6D3Z9qVeweWqzlv1JoM6nD32nlVIU1DHgZuk3IX0vbaIBNb8DBb6DlUO07vG19QQ49GvbA0caRjw5/hJu9G58O/LR0Dx2KMlGjFcLeq3sxSAODmgwCYKDfQLrW78rXIV9zb8C9ONk6kWXIIvh6MDcybtDKoxUt3VveUjSlWLpN0J4og5doNYONes3OH3tWWzRzdh1kJWt9U69pT49l4by56Eeb6jclPp9wnnf2v8PJuJP41/Pnk4GfMKzZsPIvBBIC+szQFgL+9gx81g4cPbUnRo/m2veZU3LQr6dmZ/bw157c6zWGHR/Czo+0+gwjPi7e7LT/K9g8Bzo+aK7yludJ1tqm8NoOVtbg3hTuegMCBsJvz8J3Q7TaGb2n1fz0ImUlM0m7uR9YoNXtaDkE9Fnmmd+XMOg1aNobIg5oadzDdmlJDnvPgGFzi5xJ2Fvb07dRX7ZFbOPD/h/i61KNClfVYmp0+uvBnw1mf/R+tj+yPTfXeUhsCGM3jOWuJneRZcziyPUjudWfAKyFNc3dmtPeqz29fHvRq2EvGjg3KPpgvz6l3bDtnG7e/EErhdd2pLas/tI2rcDOmEXQqQwFbX68H1KuwXOHSr9vBaEz6lh4fCFLTi2hnn09Xuz2IvcG3GvxTJcAxJ6DC/9A4hXNTJN4BWydtZt34EMFmhWQEja/Cfv+p12D0Qvyz9CSIrVCQ6Gb4fx6aD8aHvy+fFFcGQmwdoY23mO/QFsL1N2tacRdhGWjNdNd23uh/7+08qpSanW0t74L0cdu9nf01MyhHR/QrmkJiEyNJDwlvNhMrIrSUSvrIXTr3k06/MuBQU0GMe+OWyNZ/7XjX2wK30SAWwB9G/WlX+N++Ln4cTHpIucSznE+4TzHbxwnUZcIaOkTujboSmOXxjR0boivsy8BbgE30+ZeP6OZGhzqaY5HZy/tCbX5wJt2b6Neu6lfPapF0jQsRSREVgp8HAB9plebim3HYo8xZ+8cwlLCuK/FfbzS/ZXqm1huz+ew5W3wbgMu9UFYaa/Ua5opD8CtKXQcA3e9CZYwPRj18FUvzSwydW/VJUKsCmJOacpASnji14JrkUupKfjUa9C0j3Zt6tJ3VI2plQqhXad20uYlGz4b9BlDm93q8NUZdaToUopcuGKSJi4kXuBA9AEOXDvAqfhTJOtuPv072jiy5O4ldPAuRUbI1OuwcIDmqJy8o2TOYSnhj6lwYgU8uw0aV30Uy4FrB5i2ZRoNnBowp/cc+jbuW9UiFU/IL9pCQmkEadK+V4d6Wh6lVkPBu7XlTTsnV8NvT8MD30HQw5Ydu7oSeRiWP6jNjseuAZ/WVS2RopTUSoXQpF0T6fN/Pux+bHeJC5oXR4Y+g5iMGK6lXeOd/e9glEZWjFxRuhWREQdg6UjNnvrYL8U/FeVEvNz5Bgx8tXwnUAQZ+gySdEmk69PJMGSQZciio3fHfN/d2fizTNw4EV9nX5YOX6pyDRWFyQQL+2vRT88dtszMozpzZRf8/Jg2Cxu/TvOrKGoctVIhuLd0l48ueJSFQxdWyPjnE84zdsNYWrq3ZPHdi0vniD64UHOsDZ0L/V4ovN+ZdbByrGb/fvA7iz7Bnoo7xZHrRzgdf5qz8WcJSwnL18fH0YdXerzCcP/hCCGITIlk7Iax2FnbsWzEsuJ9KwrNt/TLo3DvF9B9YlVLU3GkRMNXvbUosHFrwLX2ZVqtK9RKheDY3FF+v/57nmj3RIUdY2vEVmZtn8XIgJF8cMcHJc/PL6V2oz+/ASZtKngx07XjsHg41G8PE/7SzEwWIDwlnE8Pf5q7YK+hc0M6eHWgnWc76jvVx9HWEWcbZ4zSyILjCzgTf4ZeDXsxtdNU5uybQ0p2Cj+O+JEAtwCLyFPrkRK+H6aFx75wDGxL8eBQU5ASfn5UmyFM26uFCitqLLVWIVw6eYlGLo2K71wOvj3xLfOPzWdm15k8E/hMgX2klLkO69CkUEITQ0nIuME9V8/xoE7gMnUPOOQxvdw4Dz+O1hyfz24D1/I/iadlp7HoxCKWnV2GnZUdk4Mmc3/L+/F29C50H6PJyOoLq/nvsf+Smp2Ko40j3w37jiCfoEL3URTAld3ww71w9/taGG1tI+QXWDMV7v5AC3xQ1GhqpULwaOkhEy8mVvhxpJTM3j2bDVc2MK3TNKZ2mnpL/H2GPoO3973NhjAtQautlS0BbgHYWdtxMu4kLiYTD9n58uT9y2joVF+Lhd/2Htg5a3bYhoGFHjvbmM2BawfYEr6F/df2YyNscLN3w83eDRdbFzINmSRnJ5OiS+F6xnUyDZmMbjmamV1nFqkIbic+M54lp5YwwG8APX17Fr+DIj8/joaYEzDzONjXopTMKdfg617g0w4mri9+FbKi2lMrFUJQlyB54tiJSjlWtjGbuQfmsubiGoY1G8Z7d7yHo40jUalRzNo+iwuJF5jWaRpDmw2lmVuz3LQZp+NO88OO19iUdgUrYc3nRncGRoRocdv3fq455wogJTuFjw99zNaIraTp03CxdaFvo77YWtuSrNMUQEp2Ck62TrjZaQoiJ9W0SvxVRUQdge/ugsFztJj82oCU8Mvj2rqCqXtrTwW/Ok6tVAjdu3eXwcHBlXY8KSU/nP6Bz458RjuvdoxvP573D72PSZr4eMDHhS+eMRmJXnYvL+kucdHOjgWtxtKj76uFOpD1Jj0ztszg8PXDjAoYxZBmQ+jt2xs76zKmxFBUHssfgahDMPNEoSkZahQnVsLvz8KwedD3uaqWRmEhilIIaqVICRFCMKHjBP531/8ISw5j9u7Z+Dj6sGLkiqJXUlpZ0+jBH1kQ8Dh+9ZrxfPgfnI4/U2BXKSUfHfqI/df2M6f3HN7t9y4D/AYoZVBTGDQbMhPh0KKqlqT8xJyEv17SUob0nlbV0igqCTVDKAMXEy+yJWILY9uPLdUaiOvp1xn/z3jS9eksHb6UFu63RmssP7ucDw99yMSOE3mp20uWFltRGdSGWUJSJHw/VAt6eHozuDWuaokUFqRWmow6+frK49euVbUYpSYyJZJx/4xDIBjdcjSdfDoR5BPEqbhTPLftOQb5DeLzOz8vf+I4RdVw9Qh8e5eWImNADUzXnJmkhUOnXIVJ/0CDUqzUV9QIaqVC6OjgKPetW0u9YTWvDGNoYihv73+b03GnMZrLSlsLa1p7tGbp8KU42RZTF0BRvfn5UW3F+qyTNWuWYNDBTw9qsj/1m5bZVVHrqJUKIdDDQ/7Wth0Bf67DxrvkIZbViUxDJqfjTnP8xnHCU8KZ3nk6DZ3VCtAaz9Wj8O2dcNe/YcArFXMMk1FL/X3jHOjSIDsN9BnQahj0faH0RZakhD+mwIlf61ZupjpIrVQI3QID5XJhhXP//vh9+b+SryJWKCqDnFnCzOMVUwFv73+12g5eLbVFj3YuWlK/sN3g4A79X4Kek0u+Av74Ck0hDPo/zTmuqLXUyigjYW+Pz6xZpG3dSvKatVUtjkJxK3f+H+hS4ffJ2tO8JblxHrbN09azPBesrXYfv05LgTJlt5aOevMcmN9VK+xk1Bc9XlKkVtKyaZ+a6fdQWIwaqxAAPMePw7F7N67Pm4c+OrqqxVEobuLbCUZ8BKEbYdtcy41rMsKa6VodjpGf5V/P4huk2f/H/6VFB/01S6vbcHK1lp0133gmWDNNm13cXkVOUeeo0QpBWFvT6IMPkCYT1/79JjXV/KWopfR4RivBuudz7YZsCfZ/CVeD4Z5Pi86B1by/FjL6+AqwcdDqNiwcAKd+v3XGcGihZma6+/2Cq9Ip6hQ1WiEA2DVpQv1/vUT6vn2krF9f1eIoFDcRAkZ8Ak37aiU3rx4t33h5TUUlKUMpBLQZAVP3aI5ifTqsnghfBMLOj7WkfFvehtYjoOu48smmqBXUWKdy3oVp0mgk7OFHMNy4QcCGDVi7WKZgjkJhEdJuaFFHJqMWedRqaKF5rApESk2Z/P0SJIXD9INly5BrMsLFLdpK6otbtDYnL5h+oHTyKGo0tTLK6PaVypnHjxP22ON4jh9Pg9fqdpRE5smTXH9vHlb16uHcqydOvXrh0L49pvR0sk6dIvPkKXQXL+I+ZjTOfWtAeczawLUTWqK4lChAQKMu0HIw2DqBMVtbA2AygJMnuPqCSwMta2roJji5ChIug7W9Vkip/X3llyfuIoQs12TwV0Xs6xJ1QiEAXHtzDkm//07z33/HoU3drPWauHIl1+e+h7WnJ1bOzmRfvgyAcHREZmbm9rNydkbq9TRZtBDn3r2rSty6hZRaYaTQTdorKhgw//6sbEBYg1F3204Cmg+AwIeh3aiKCWFV1Ar0V68SOXUqVq71cH/kYeoNH46Vw82CTab0dDKPH8elX7+6oRAMiYlcHj4Cu1YtabZsWZ1am2DS6YiZO5fk1b/h3Lcvjf7zKTYeHhhu3CD90CEyj4Vg4+2FQ2Agjh07Ik0mIsaNI/tqNE2//w6nLl2q+hQALcGf7vx50vfuJTsiEkxGpMEIJiMOgUF4PvVkVYtoOfRmBW1tf7P2ti4N0q5DagxkxINfD6jnW3UyKmoE2VFXiRg3DmNaGjYeHmSHh2Pl6orbqFEIWxsygo+Qde4cGI20P3+ubigE0J6QY+a8RaOPPsTt/vurQLLKRx8bS9T0GWSdOoXX1Cn4PP88wrr48EF9bCzhY8diTEyi2Q9LcWjXrkzHl1KSvm8fUpeNU/duWNcreboGU3Y2uguhZJ0+TUZwMOn792OMiwPA2sMDYWsL1tZgNGKIjaXh22/h8dhjZZJToahJSL2etF27yDp/Hn14BNmRkeivXcOpWze8p0zGvlUrALIjIwkfPx5TegZNv/8ehw7tyTh0mKRVq0jduBGsrHAMCsKxezecunXHtf8ddUchSJOJsMcfRx8RSfM1a7BtULudZborV4h85lkMiYk0/uRjXAcPLtX++qtXCXtqLFKnw+9/83HqVkD950KQUpK2bRtxX31N1hlzSm8hsG/bFueePbBycUUfHY3+6lX00dHI7GysXFywcnXB2tkFQ1IiutCLoNfCIK09PXHu2xfnfv1w7tsH2wY3HafSaCRy+nTS9+6j2ZLFOPXoUarzVChqCqaMDJJW/0bC0qW566tsGjTArmlTrL29SNu5C5mRgcuQwbiPGUPMe/OQGRk0XbIYh/bt840lbGwQdjdT6NcZH0IOukuXuPLQwzgGBtJ0yeISPS3XRDJPniRy8hQAmixaiGNg4eU4i0J35QoR48ZjuHEDh6AgPMeOpd7dw8DGhqyzZ0nfu4+MA/uRegM2Pj7Y+Phg7eFByqaN6M6cxbZpU7ynTsW2cWMyDh8m4/BhMkNCkNnZ2NSvj22jRtg2boxwsMeUlo4pLQ1TaipWLi44dOiAQ/v2OHRoj62fX5FmPmNqKmGPPIoxOZnmq1Zi27jwtMyGxER0oaFY2dkh7O0R9vbYeHpi7e5epu9IoahoTBkZxC9eQuKyZRiTk3Hs1g2vpyfh3LfvLb4AQ2Iiict+IuGnnzClpGDt7q4pgxLO8OucQgBI+mMN115/He8ZM/B5vvZVe0rbvYeomTOx8fSk6XffYufvX67xTOnpJK1ZQ+Kyn8gOC8PaxxsMRoyJWt1q+7ZtsXJxxnDjBobYG8jMTE0RTJuG26h7ETY2t4wns7ORgJWdZYv76C5fIezRR7H188N/+U9YOd3MDGtMSydt6xaS//6b9H37wWC4dWcbG9xGjcLr2WewDwiwqFwKRXlI27mTmHfeRR8djcvgwXg9/TROXYv26xnT0khetw7nXr2wb9GiyL55qZMKASB69mskr1tH0yWLa00kTda5c8Qv+paUf/7Bvk0bmi5aiI2Pj8XGlyYT6bt3k7R6NcLREZc77sC5b99bMspKKTGlZ2Dl5Iiwqvy1jWm7dhE5ZSr2rVph7e6OKTMTU0YG+qgopE6HTSNf3O65B6fefUCaMGVlIXXZZIaEkLR6NVKnw3XoULynTsk3xVaUHv3166Tt3En67t0YEhKx8fTA2sMTaw8PrN3csHJxxtrVFSsXF6TRiDE+HkNcPIb4OOz8muDx5BO1dhZfHPrrsVz/4ANS//kHuxYt8H3nbZy6F3ivthh1ViGY0tO58vAjGFNTCFizBhsvr0qSrnwYU1KIX7QIhMCmQUNsGtRH2NiQuGIF6Tt3YeXsjMfjj+E1dSrWLi5VLW6VkLhqFUkrV2Flb49wcsTK0Qnbhg1wvXs4jp07FaqoDPHxJPy4jMSff8aUkUHjzz7TzGOKEiOlJOv0GVK3biFtx050Z88CYOPri52fH8akRAyJSdrs0lh4Yr+cUGinHj1o9Oknt/iMaiOm7GwSfviB7IsX0UdfQx8Tg/7aNYSVFd7Tp+E1adIttv6Kos4qBICs8+cJe+RR7AICcLt3JI6dO+PQocMtNrnqhDSZiJw2jfTde7ToGv3NvDPWHh54jh+HxxNPlCqSR5EfY0oKkVOmknnyJH7//aLUzvi6hjQayQg+QurmzaRu3Yrh2jWwssKpa1dcBg3EecAA7Fu1usUHJE0mTBkZms/I/AKw9vbGxssLK0dHkv5YQ8y772Jlb4/vhx/gOmhQFZ1hxWLS6Yh67nnSd+/GppEvtg19sfX1xbZRI9wffKDcJt/SUJRCQEpZphfQBNgOnAVOAzPN7Z7AZiDU/O6RZ5/XgYvAeeDuPO3dgJPmbfMxK6qiXt26dZMlJXn9ehk6bJg806at9uoYKMMnTpK6K1cK7J916bJM/OMPacrOLvExTCZTifsWRex//yvPtGkrE37+WZqMRqm/cUNmnDolU/fskcaMDIscQ6FhSE2Vlx9+RJ7pGChTtm8v3b6JiTL9yFFpSE4uUd/UXbtl/I/LZFZoaBmlLR0mvV5mnj0rDampZR/DZJIZx4/LmPfflxfu6C/PtGkrzwZ1khHTZ8jE336X+oQEi8iademyvHT/aHmmTVsZ+78vLTJmdcKYmSnDJz2t/a5//bWqxZFAsCzkvlrmGYIQwhfwlVIeFUK4AkeA0cAEIEFK+aEQ4jWzQpgthGgP/AL0BBoBW4DWUkqjEOIQMBM4AKwH5kspNxR1/JLOEPJiiI8n8/hxMo8eJXHlKqReT4PZs3F/9BGEEJgyMoj7ZiHxS5aAXo9927b4zp2LY2DHQseU2dlc//gTklavxrFzZ1wHD8Z18F3YNmqElBJjUhL6qKta1EBQYJFP9qlbtxI14zncHnwA3/feq1ML66oKY0oKERMnobtwAd/35yGNRrJOniLz5En00dHYNWuGfetW2LdqhY2nF5nHjpF+6BC6c+e0lcdCYNciQJt5tmuH1OsxpaRiTE3FGB9H5unT6MMjbjmmQ1AQ7mNGU++ee7B2c7PIeUgp0V0IJX3/PjIOHCTj8GFM6elYOTvj/tBDeIwdi51f4VFZUkqyw8LIOnmSrPPn0Z2/QNa5cxjj4hC2tjgPHIDbPffgMmjQLY58S2HS6Yie/RqpmzfTcvs2bOvXjnBxU2YmkdOnk3HgIL7vzcX9wRIkJaxgKsVkJIRYC3xpfg2SUl4zK40dUso2QojXAaSUH5j7bwTeBsKA7VLKtub2x837TynqeGVRCHnRx8Rw7f/eIH3fPu2ffeRIYr/4AkP0Ndzuvx/nfn2J/eRTDPHxeI4fj8/zz+X7IehjYrg6cxaZx4/jOnQIustXyL50CQBbPz+MiYmY0tNv7mBtrU2xBw7AuX9/7AMCtIVXgO7yZcIefgS7gACa/bQMK3v7Mp+bonQYk5IInzgp1xYunJxw7NABWz8/ssPD0YWGYkpN1bbZ2eHYpQtOvXri0Lo1WRcukBkSQubxE5iSk3PHtHJ1xdrNDYd2bXEIDMIxKAhbv8akbtlC8u9/oLtwAWFvj/f06Xg9PSlflBZoN+miHgqklGSdOk3qpo2kbNyEPkJTPHb+/jj17oVj586k791HyoYNYDLhOnQoznf0M5srGmJTvz5Z586Rtm07adu3kx0erp2jrS12LVvi0Lo1Tj174jp0SKWYKHWXL3P5npHUf+UVvJ6eVOHHq0ikwUBG8BHivvySjCNH8P3gfdxHj65qsYBKUAhCCH9gF9ARiJBSuufZliil9BBCfAkckFL+ZG7/HtiAphA+lFIOMbf3B2ZLKe8t4DiTgckATZs27RZu/gcuK9JkInH5z8R++ilSp8O+VSsavjUn18tvTEkh9j+fkfTrr9j4+ODct2/uaj9DzDWu/utlpE6H7/vzqDd8OKDF9Kdt20bmiZPY+Phg69cYOz8/rJycSD9wkLSdO9GdP68JYG2NbePG2DVrRvaVK5gyMmj+22psfVWqgsrGmJJC+v4D2DX3x75Fi1uiXqSUGK5fx3DjBvatWxeorKXJhOFGHFaODlg5OxcZNSOlJOvMGeIXLiJ10yYcOgXR6IMPsQ/Q6hHoLl8hYelSkv/6C+8pU/CeMjnfGLorV4ia8ZyWq8rGBufevXEdNhSXgQPzOWf1MTEkLl9O4q8rMaWk5BtL2Nri1Ls3LncOwrlHD+z8/XMfVCqbsEcf034H69bWuBmyNBpJ3bKV1C1bSNu1C1NyMsLeHt/35uI2alRVi5dLhSoEIYQLsBOYJ6X8XQiRVIhC+ArYf5tCWA9EAB/cphBelVIW+Q2Wd4aQF93lK2SeOI7byJEF/hAyDh8m4ccfyThyFGNCQm67XcsW+M2fX+qYdn1MDBkHD6K7coXs8HCyw8MxpafT6L331ArcOkbK+vXEvPMuJp0Or2eeIev0adK2b0fY2WHfujVZp07hPWMG3s/NyL1BZp0/T8Skp0FK6v/rJVwHDy7Rgjup16O/Hovhegz6azEYrsdg69cE5379qk3K+MQVK4h5+x38V6/GsWOHqhanxGQcPkzMvPfRnTuHtbs7LoMG4XLXnbj064eVc/X4bnMoSiHkn6eWbmBb4DdguZTyd3PzdSGEbx6TUay5PQrNEZ2DHxBtbvcroL3SsA9onvt0VhBOPXrg1KOHZme9EkbGkWCMSUl4PvFEmS62bcOGdSbPkqJo6t1zD47duxPz5hzivvwSaw8PvGfMwOOJx7F2d+fam3OI++orpMGAz6yZZB0/TsTkKVg5OdF08felehgRtrbY+TUu0pdQ1dQbMYLr739A8po11U4hmHQ6Mo+FYOXkiLWnFzaeHhiTk4n95BNS1m/AxteXxp/9B9dhwwo0AdYEyiy10B5XvgfOSik/y7NpHTAe+ND8vjZP+89CiM/QnMqtgENmp3KqEKI3cBAYB/yvrHJVJEKIYpWHQlFabOvXx++bBeguXMCuWbNbQqJ935uLsLEhfuFC9JGRpO7YgY23N00XL67WN/ayYu3mhsvgu0j56y8avPpKpcTlF0d2ZCSJK1aQ/NvvGJOS8m0X9vZ4z5iB1zNPY+XoWPkCWpDyqLF+wFjgpBAixNz2f2iKYKUQ4mk0c9DDAFLK00KIlcAZwADMkFLmrFqZBiwFHNH8CkVGGCkUtQ0hBA5t2uRvt7Ki4TtvI2xtSVy+HPtWLWny/fe1JgqnINzHjCF1wz+k7txJvaFDq0yO7IgIYubNI33XbrCywnXIENxG3w9CYIxPwJAQj8zMwu2BB2qNcq71C9MUitqAlJK0nTtx6tLFYqGq1RVpMHDxzrtwCAykyddf5bZnR0aSefQoto0bY9ukKTb1fbRw8aws9Fevaumhr17FEHMdfUwMhpgYDPHxSJ0OU7YOma3Hys4O1xHDcX/gARzati1UhsyQECKnz0AajXg+9RTujzxca1ZSV5gPQaFQVA5CiFq7ivd2hI0N9e4bRcIPP2KIj8e6Xj3ilyzVfCm6mxXlhIMDVi4uufUzcrG1xbZ+fWx8G2LfqhVWDg4Ic9ZbQ2wsSb+sIPHHZdi3b4f76DG43n33LWnyUzZvJvrlV7CpX58mixZi37zumIjVDEGhUFQ7dKGhXB51H+6PPkrm8ePozp3DdehQvKZOwZiQSHZkBPqISIxpqdg1boytXxNs/Rpj27gxNt7eRSZdNCQmkvL3epJ//12r4yEEjl26UO/uYZiys7nx2ec4BgXht+BrbDw9K/GsK4c6nctIoVDUTK489DBZp05h4+NDgzlvVog/QXfxIimbNpG6cVPu+iDXoUNo9Mkn1TbfWXlRCkGhUNQ4MoKDSd+3D8+JE7F2da3w42WHhZEdEYFzv361Oh238iEoFIoah1P37hVeGyAvdv7+lZp1tDpS+dVNFAqFQlEtUQpBoVAoFIBSCAqFQqEwoxSCQqFQKAClEBQKhUJhRikEhUKhUABKISgUCoXCjFIICoVCoQBq8EplIUQqcL4Uu7gBycX2qrz+3kBcsb3Kd4zqdg5KfsvvU93Ooa7JDzXvHJpJKX0K3CKlrJEvILiU/RdVs/6lkr82nIOSv/afQ12Tv7acQ86rLpmM/qxm/ctCTT8HJX/F7FOR49e1a1Cnf8c12WQULAtJ0FQTqOnyQ80/h5ouP9T8c6jp8kPtOIccavIMYVFVC1BOarr8UPPPoabLDzX/HGq6/FA7zgGowTMEhUKhUFiWmjxDUCgUCoUFUQpBoVAoFEA1UghCiCZCiO1CiLNCiNNCiJnmdk8hxGYhRKj53cPc7mXunyaE+PK2sXYIIc4LIULMr/oFHbMay28nhFgkhLgghDgnhHiwouW35DkIIVzzfPchQog4IcQXNUV+87bHhRAnhRAnhBD/CCG8K1r+CjiHR83ynxZCfFxN5R8qhDhi/q6PCCHuyjNWN3P7RSHEfCGEqIHnME8IESmESKsM2ctNWeNVLf0CfIGu5s+uwAWgPfAx8Jq5/TXgI/NnZ+AOYCrw5W1j7QC612D53wHeM3+2Arxr2jncNu4RYEBNkR+tkmBszvdu3v/tmnQNAC8gAvAx//0DMLgayt8FaGT+3BG4mmesQ0AfQAAbgBHV9BoUdQ69zeOlVYbs5T73qhagiIuyFhiKthrZN8+FOn9bvwm334yoAoVgYfkjAeeafA3ybGtlPh9RU+QHbIEbQDPzzegbYHJNugZAD2BLnr/HAl9XV/nN7QKIB+zNfc7l2fY4sLA6X4Pbz+G29hqhEKqNySgvQgh/NK17EGggpbwGYH4vqflnidlc8WZlTTVzKI/8Qgh388e5QoijQohVQogGFShuYXL4U/5rANoP+Vdp/lVUFuWRX0qpB6YBJ4FotKfD7ytS3oIo5zW4CLQVQvgLIWyA0UCTipM2P2WQ/0HgmJRSBzQGovJsizK3VSrlPIcaR7VTCEIIF+A3YJaUMqWMwzwppQwE+ptfYy0lX3FYQH4bwA/YK6XsCuwHPrWgiMVioWuQw2PAL+WXquSUV34hhC2aQugCNAJOAK9bVMjiZSjXOUgpE9HO4VdgNxAGGCwpY1GUVn4hRAfgI2BKTlMB3Sr7oaK851DjqFYKwfxD/A1YLqX83dx8XQjha97ui2bbLRIp5VXzeyrwM9CzYiS+FQvJHw9kAH+Y/14FdK0AcQvEUtfA3LcTYCOlPFIhwhZ8TEvI3xlASnnJPLNZCfStGInzY8HfwZ9Syl5Syj5o5o7QipI5L6WVXwjhh/b/Pk5KecncHIX2YJSDH9psrVKw0DnUOKqNQjCbdb4HzkopP8uzaR0w3vx5PJo9r6hxbHIiQswX9V7glOUlzndci8hvvgH9CQwyNw0GzlhU2EKw1Dnk4XEqcXZgQfmvAu2FEDkZIYcCZy0pa2FY8hoIc3SdORpmOvCdZaUt8Jilkt9sIv0beF1KuTens9kkkyqE6G0ecxwl/78rF5Y6hxpJVTsxcl5okRISbXoeYn7dgxYtsRXt6WYr4JlnnzAgAUhDe6JojxZ1ccQ8zmngv4B1TZHf3N4M2GUeayvQtCZdgzzbLgNta9r/kLl9KpoSOIGmoL1q4Dn8gvYwcQZ4rDrKD/wbSM/TNwSob97WHe1h7hLwJZUUmGDhc/jYfE1M5ve3K+v3UJaXSl2hUCgUCqAamYwUCoVCUbUohaBQKBQKQCkEhUKhUJhRCkGhUCgUgFIICoVCoTCjFIJCUUaEEG8LIV4uYvtoIUT7ypRJoSgPSiEoFBXHaLS1MQpFjUCtQ1AoSoEQ4g20VbORaBlRjwDJwGTADi2p3Fi09Bd/mbcloyU9A/gK8EFLT/KslPJcJYqvUBSJUggKRQkRQnQDlgK90JIQHkVLjb1EShlv7vMecF1K+T8hxFLgLynlavO2rcBUKWWoEKIX8IGU8q78R1IoqgabqhZAoahB9Af+kFJmAAgh1pnbO5oVgTvgAmy8fUdz5sy+wKo82djtK1pghaI0KIWgUJSOgqbUS4HRUsrjQogJ3ExMmBcrIElK2bnCJFMoyolyKisUJWcXMEYI4SiEcAVGmdtdgWvm7LpP5umfat6G1PLpXxFCPAxaRk1zenCFotqgfAgKRSnI41QOR8teeQYt0+Wr5raTgKuUcoIQoh/wLaADHkLLeLkArfyiLbBCSvlupZ+EQlEISiEoFAqFAlAmI4VCoVCYUQpBoVAoFIBSCAqFQqEwoxSCQqFQKAClEBQKhUJhRikEhUKhUABKISgUCoXCzP8DfPg0QYrQ2ykAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "for i,j in etf_ts.groupby('Asset_Class')['total_mkt_val_net_USD_millions']:\n", " j.resample('M').mean().plot(label=i)\n", " plt.legend()" ] }, { "cell_type": "code", "execution_count": 26, "id": "b34f3643", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEGCAYAAABlxeIAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABW8UlEQVR4nO3dd3hUVfrA8e+Z9F5JAkkg9IQSehXpVaQoNlQERewFXXtZdV3X+tOVVRREBAUVREUUUAFpAgIJLY0OaaT3nszM+f1xJxgghJDMZFLO53nmSbhzy3sTMu89XUgpURRFURSdtQNQFEVRGgeVEBRFURRAJQRFURTFRCUERVEUBVAJQVEURTGxtXYAdeXr6ytDQkKsHYaiKEqTEhkZmSmlbFXde002IYSEhBAREWHtMBRFUZoUIUT85d5TVUaKoigKoBKCoiiKYqISgqIoigI04TaE6lRUVJCUlERpaam1Q2n2HB0dCQoKws7OztqhKIpiJs0qISQlJeHm5kZISAhCCGuH02xJKcnKyiIpKYn27dtbOxxFUczkilVGQoilQoh0IUR0lW3eQohNQogTpq9eVd57XghxUghxTAgxocr2fkKIKNN7C4TpE1sI4SCEWGXavlcIEVLXmyktLcXHx0clAwsTQuDj46NKYorSzNSmDWEZMPGibc8BW6SUnYEtpn8jhOgG3AZ0Nx2zUAhhYzrmE+A+oLPpVXnOuUCOlLIT8AHwdl1vxhRDfQ5Xakn9nBWl+bliQpBS7gCyL9o8DVhu+n45ML3K9m+llGVSyjPASWCgEKI14C6l3CO1+ba/vOiYynOtAcYI9WmjKM3e7pOZrIlMorBMb+1QFJO69jLyl1KmAJi++pm2BwKJVfZLMm0LNH1/8fYLjpFS6oE8wKe6iwoh7hNCRAghIjIyMuoYumWdPXuWHj16mP28ISEhZGZmmv28itLQErOLmfdlBLcv2ctT3x1m8H+28PLaaI6lFlg7tBbP3I3K1T3Zyxq213TMpRulXAwsBujfv79a2UdRmpDCMj2Ld5zm0+2nsNUJnpnYlYEh3ny9L4FVEYl89Vc8k8Nb89HMPqpK0krqmhDShBCtpZQppuqgdNP2JCC4yn5BwDnT9qBqtlc9JkkIYQt4cGkVVZOi1+uZPXs2Bw8epEuXLnz55Zfs2bOHp556Cr1ez4ABA/jkk09wcHAgJCSE2bNn8/PPP1NRUcF3331HaGgoWVlZzJw5k4yMDAYOHIha2U5pao6lFvDLkXMcTS3gWGoBiTnFSAlTerXhhetCae3hBED/EG9entyNj7eeZMmfZ5gS3oaJPQKsHH3LVNeEsA6YDbxl+vpTle1fCyHeB9qgNR7vk1IahBAFQojBwF7gLuB/F51rD3AT8Ic0w6ffaz/HEHsuv76nuUC3Nu68MqX7Ffc7duwYn3/+Oddccw333HMP77//PosWLWLLli106dKFu+66i08++YT58+cD4Ovry4EDB1i4cCHvvfceS5Ys4bXXXmPYsGH885//ZP369SxevNis96Iolvbij1EcSMihva8LPQLdmdE3iGGdfenXzuuSfb1c7HluUijbjmfwzq9HGRPmh52NGjfb0GrT7fQbtA/rrkKIJCHEXLREME4IcQIYZ/o3UsoYYDUQC/wKPCylNJhO9SCwBK2h+RSw0bT9c8BHCHESeBJTj6WmLDg4mGuuuQaAO++8ky1bttC+fXu6dOkCwOzZs9mxY8f5/W+88UYA+vXrx9mzZwHYsWMHd955JwCTJ0/Gy+vSPyJFaawqDEaikvOYM7Q9W/4xkoV39OPxsZ2rTQaVbG10PDcxlNOZRXy7P/Gy+ymWc8USgpRy5mXeGnOZ/d8A3qhmewRwSWurlLIUuPlKcVyt2jzJW8rV1n86ODgAYGNjg17/d48LVY+qNFXH0woo0xvpFexxVceNCfNjYHtvPtx8nBv6BOLq0KzGzjZ6qkxmAQkJCezZsweAb775hrFjx3L27FlOnjwJwFdffcWIESNqPMfw4cNZuXIlABs3biQnJ8eyQSuKGR1JygMgPMjzqo4TQvDCdWFkFpazePspC0TWdBiNks2xaby/6TiPfH2ASR/upPs/f+WWRXv44UASJeWGC/YvrTAQnZxHXklFna+p0q8FhIWFsXz5cu6//346d+7Mhx9+yODBg7n55pvPNyo/8MADNZ7jlVdeYebMmfTt25cRI0bQtm3bBopeUervSFIu7o62hPg4X/WxvYM9uT68NZ/tPMMdg9vh7+5ogQjrJzm3hE0xqRxJzmNKeBtGdm1l1hJ9XEo+L6+NJiI+B52AIC9nOrZyoW9bT/48mcmTqw/zyroYpvZqA2gJ+GhqPhUGibO9DTMHtmXusPa08XS6quuKptp7pX///vLiBXLi4uIICwuzUkQtj/p5K5dz3Yc78XG156u5g+p0fEJWMWPe38aNfYJ4+6ZwM0dXNyfSCtgQlcrvsanEmDqsuNjbUFRuIDzIg8fHdGZ0qF+9EkNhmZ7/bjrOF7vP4u5oy/OTwpjWpw0Otjbn9zEaJXvPZLNqfwIbolNxsNHRM8iD8CBPwlq7se1YBusOn0MAU3u14dExnWnv63L+eCFEpJSyf3XXVyUERVHMqrTCwLG0Ah4I7VDnc7T1cWb2kBA+33WGG/sGMqhDtWNVzS4tvxS9UWIjBDod5JdUsDEqlV+OpHAsrQAhoF9bL56fFMq4bv4Eezvzw4Ek/vfHSeYuj6BnoAdPjuty1SWGvOIKvt6XwNJdZ8gsLOO2AW15ZkJXvFzsL9lXpxMM6ejDkI4+vK03YKfTodP9fa1pvQP5x/guLP3zLN/uT2BDdAovXBfGrMHtrhiTKiEodaZ+3kp1IuNzmPHJbhbN6seE7nUfT1BUpmfShzsB2Pj4tbhYsIE5r6SCF3+M4pcjKdW+37+dF9eHt+a6nq3xq6YKq8Jg5McDyfxv6wkSs0vo29aTp8Z3ZWgn32rPpzcYKa4wkJZXysq9CayOSKS43MCwTr78Y3wX+rQ1T6/C1LxSnvn+CDuOZzC8SyvevSmcAA8nVUJQFKVhHE7MBaDXVTYoX8zFwZb3bu7FrYv38NbGo7w+3fxTwgBEnM3m8W8PkZpfykMjO9LOxxmDEQxSYm8juLZzqyvWxdvZ6LhlQDDT+wTyXWQi/9tyktuX7GVAiBdezvbkFJeTXVRObnEFhWV6yvTGKscKpvYKZO6w9nRr427WewvwcGT53QNYsTeB/6yPY/wHO2rcXyUERVHM6khSLn5uDgR41L8xeGB7b+4e2p6lu84wsUcA11zmibsuKgxGPt56kgVbThDk5cyaB4bU+8nc3lbHHYPaMaNvECv3JvD13ngKSvV4OdsTGuCOh7Mdbo62uNjb4mxvg6uDLaNC/SzacC6EYNbgdgzr5MsTqw5xpIZ9VUJQFMWsjiTlXXV305o8PaEr246l88yaI/w6/1rcHOu3Sl9phYHvIpP4dNspknNLuLFPIK9N617v81blaGfD3GHtmTus8Swg1d7XhTUPDMHukcvvo8YhKIpiNnklFZzOLKJX0NUNSKuJk70N797ci5S8Et5YH1fn85RWGFiy8zTD39nKy2uj8XN34Is5A3j/1t5mTQaNme0VpgNRCaGFGTlyJJWN8ddddx25ubnk5uaycOFCK0emNAfRydqAtF7BnmY9b792Xtx7bQe+3Z94/hpXI6+4grs+38e/18fRsZUrX987iB8eHMqoUL8rH9yCqITQgm3YsAFPT0+VEBSzOZyUC0C4GUsIlR4Z3QlPZzve+e3YVR13LreEmxft5lBiLgtm9uGb+wYztJOvmhqmGiohWMCXX35JeHg4vXr1YtasWcTHxzNmzBjCw8MZM2YMCQkJAMyZM4cHH3yQUaNG0aFDB7Zv384999xDWFgYc+bMOX8+V1dXnn32Wfr168fYsWPZt28fI0eOpEOHDqxbtw7Q1pO+++676dmzJ3369GHr1q0AlJSUcNtttxEeHs6tt95KSUnJ+fNWLrrz3HPPcerUKXr37s3TTz/NrFmz+Omnn87vd8cdd5y/jqLU5EhiHu18nPF0vrT/fH25O9rx0MiO7Diewe5TtVss6lhqATcu3E1KbinL7hlwfmSvUr3m26i88TlIjTLvOQN6wqS3atwlJiaGN954g127duHr60t2djazZ8/mrrvuYvbs2SxdupTHHnuMtWvXApCTk8Mff/zBunXrmDJlCrt27WLJkiUMGDCAQ4cO0bt3b4qKihg5ciRvv/02N9xwAy+99BKbNm0iNjaW2bNnM3XqVD7++GMAoqKiOHr0KOPHj+f48eN88sknODs7c+TIEY4cOULfvn0vifmtt94iOjqaQ4cOAbB9+3Y++OADpk2bRl5eHrt372b58uWXHKcoFzuSlEu/EG+Lnf+uISF8sessb/96jLUP+dT4lB+dnMfMz/7Cyc6G1Q8MIay1ebt0NkeqhGBmf/zxBzfddBO+vlr3OG9vb/bs2cPtt98OwKxZs/jzzz/P7z9lyhSEEPTs2RN/f3969uyJTqeje/fu56fCtre3Z+LEiQD07NmTESNGYGdnR8+ePc/v8+effzJr1iwAQkNDadeuHcePH79gGu3w8HDCw688DcCIESM4efIk6enpfPPNN8yYMQNb2+b77KCYR0ZBGefySs3aoHwxRzsb5o/tzOHEXH6LSbvsflJKXlobjZOdDT88NFQlg1pqvn/lV3iStxQp5ZWHh1d5v3Lqa51Od/77yn9XToVtZ2d3/piq+1Xdp6YR53WpK501axYrV67k22+/ZenSpVd9vNLyHDnffuBp0evM6BvEoh2nee/3Y4wN86u258zG6FQOJebyzk3hBHld/QR7LZUqIZjZmDFjWL16NVlZWQBkZ2czdOhQvv32WwBWrlzJsGHDzH7dqtNlHz9+nISEBLp27XrB9ujoaI4cuXRYipubGwUFFy5wPmfOHP773/8C0L279daWUJqOw4m56AT0CLTs07itjY6nx3flZHohPxxMvuT9cr2Rd349Sld/N2b0DarmDMrlqIRgZt27d+fFF19kxIgR9OrViyeffJIFCxbwxRdfEB4ezldffcWHH35o9us+9NBDGAwGevbsya233sqyZctwcHDgwQcfpLCwkPDwcN555x0GDhx4ybE+Pj5cc8019OjRg6effhoAf39/wsLCuPvuu80eq9I8HUnOo7OfG872lq94mNgjgF5BHrz32zHis4oueO+bfQmczSrmuUmh2OhUT6KroSa3U6pVXFxMz549OXDgAB4e1dcJq5+3UtWANzYzvHMr/u+WXg1yvZhzedy5ZC82OsGyuwfSI9CDgtIKRry7ja7+bnw9b5DqWlqNmqa/ViUE5RKbN28mNDSURx999LLJQFGqSi8oJaOgzOyTs9WkexsP1jw4FAdbG25dtIc/T2SyeMdpsovKef66UJUM6qD5NiordTZ27NjzYyUUpTbiUrQ2qG4N3JunYytXvn9wKLOX7uPuZfvQCcHUXm0s3rDdXKkSgqIo9RZrWkGsoRMCaFM8rzbNVCqENhmeUjeqhKAoSr3FpuQT6OmEh7N1JonzcLLj63sHkVNcQSs3hysfoFRLlRAURam32HN5Ddp+UB1bG51KBvWkEoKiKPVSXK7ndGaRVaqLFPNSCaGROnfuHDfddBMAhw4dYsOGDVaOSFGqdyy1ACmxeglBqT+VEBqpNm3asGbNGkAlBKVxi02xXoOyYl4qIVjAihUrGDhwIL179+b+++/HYDDwxRdf0KVLF0aMGMG8efN45BFtHbs5c+ac/+AHbaprgLNnz9KjRw/Ky8v55z//yapVq+jduzerVq2ic+fOZGRkAGA0GunUqROZmbWbDlhRzC0uJR83R1uCvGpeiF5p/JptL6O3973N0eyjZj1nqHcozw58tsZ94uLiWLVqFbt27cLOzo6HHnqIFStW8MorrxAZGYmHhwejRo2iT58+tbqmvb09//rXv4iIiOCjjz4C4OjRo6xcuZL58+ezefNmevXqdX52VUVpaLHn8glr7a4GgjUDzTYhWMuWLVuIjIxkwIABgLZAze7duxk5ciStWrUC4NZbb+X48eN1vsY999zDtGnTmD9/PkuXLlXzDSlWYzBKjqYWcEv/YGuHophBs00IV3qStxQpJbNnz+bNN988v23t2rX8+OOP1e5va2uL0Wg8f2x5efkVrxEcHIy/vz9//PEHe/fuPT+bqaI0tPisIorLDapBuZlQbQhmNmbMGNasWUN6ejqgTX/dp08ftm3bRlZWFhUVFXz33Xfn9w8JCSEyMhKAn376iYqKikvOWd301Pfeey933nknt9xyCzY2Nha8I0W5PNWg3LyohGBm3bp149///jfjx48nPDyccePGkZKSwquvvsqQIUMYO3bsBctYzps3j+3btzNw4ED27t2Li4vLJeccNWoUsbGx5xuVAaZOnUphYaGqLlKsKvZcPrY6QWd/V2uHopiBmv7aCpYtW3ZBI3FdRERE8MQTT7Bz504zRnZ1msrPW7GcOV/sIzWvlF/nD7d2KEotqemvm5m33nqLGTNmXNBOoSjWEHsuX7UfNCMqIVjBnDlz6lU6eO6554iPj7fIUpyKUlsZBWWkF5Sp9oNmRCUERVHqJK6yQVmVEJoNlRAURakT1cOo+VEJQVGUOok9p62B4Olsb+1QFDOpV0IQQjwhhIgRQkQLIb4RQjgKIbyFEJuEECdMX72q7P+8EOKkEOKYEGJCle39hBBRpvcWCDUGXlEavdiUfMJau1k7DMWM6pwQhBCBwGNAfyllD8AGuA14DtgipewMbDH9GyFEN9P73YGJwEIhROWIqk+A+4DOptfEusalKIrllVYYOJ1RSJiqLmpW6ltlZAs4CSFsAWfgHDANWG56fzkw3fT9NOBbKWWZlPIMcBIYKIRoDbhLKfdIbVDEl1WOaXFCQkLMNnPpsmXLOHfunNn2U5RKJ9MLMUoIDVAJoTmpc0KQUiYD7wEJQAqQJ6X8HfCXUqaY9kkB/EyHBAKJVU6RZNoWaPr+4u2XEELcJ4SIEEJEVE7/3JhJKc/PU2QNKiEollLZoKyqjJqXOk9uZ2obmAa0B3KB74QQd9Z0SDXbZA3bL90o5WJgMWgjlWuKL/U//6EszrzTXzuEhRLwwgs17nP27FkmTZrEqFGj2LNnD9OnT+eXX36hrKyMG264gddeew2A6dOnk5iYSGlpKY8//jj33XdfrWJYsWIFCxYsoLy8nEGDBrFw4UIA5s6dS0REBEII7rnnHoKDg4mIiOCOO+7AycmJPXv28O677/Lzzz9TUlLC0KFDWbRoEd9///0l+8XGxvLkk09SWFiIr68vy5Yto3Xr1vX74SnNytGUAhztdLTzuXSqFaXpqk+V0VjgjJQyQ0pZAfwADAXSTNVAmL6mm/ZPAqrOkRuEVsWUZPr+4u1N1rFjx7jrrrt4++23SU5OZt++fRw6dIjIyEh27NgBwNKlS4mMjCQiIoIFCxaQlZV1xfNWXWvh0KFD2NjYsHLlSg4dOkRycjLR0dFERUVx9913c9NNN9G/f//z7zs5OfHII4+wf/9+oqOjKSkp4ZdffrlkP1tbWx599FHWrFlDZGQk99xzDy+++KKlf2RKExOXkk/XAHdsdKr/R3NSn+mvE4DBQghnoAQYA0QARcBs4C3T159M+68DvhZCvA+0QWs83ielNAghCoQQg4G9wF3A/+oRF8AVn+QtqV27dgwePJinnnqK33///fxiOIWFhZw4cYLhw4ezYMGC81NiJyYmcuLECXx8fGo8b3VrLfj5+TFlyhROnz7No48+yuTJkxk/fny1x2/dupV33nmH4uJisrOz6d69O1OmTLlgn2PHjhEdHc24ceMAMBgMqnSgXEBKydHUfCZ0D7B2KIqZ1TkhSCn3CiHWAAcAPXAQrTrHFVgthJiLljRuNu0fI4RYDcSa9n9YSmkwne5BYBngBGw0vZqsyhlLpZQ8//zz3H///Re8v23bNjZv3syePXtwdnZm5MiRlJaWXvG81a21UOnw4cP89ttvfPzxx6xevZqlS5de8H5paSkPPfQQERERBAcH8+qrr1Z7TSkl3bt3Z8+ePVdzy0oLkl5QRk5xheph1AzVq5eRlPIVKWWolLKHlHKWqQdRlpRyjJSys+lrdpX935BSdpRSdpVSbqyyPcJ0jo5SykdkU52C9SITJkxg6dKlFBYWApCcnEx6ejp5eXl4eXnh7OzM0aNH+euvv2p1vurWWoiPjyczMxOj0ciMGTN4/fXXOXDgAHDhOgqVH/6+vr4UFhZesI5z1f26du1KRkbG+YRQUVFBTEyMGX4aSnNR2aAcGqAalJubZrtiWmMwfvx44uLiGDJkCACurq6sWLGCiRMn8umnnxIeHk7Xrl0ZPHhwrc5Xda0Fo9GInZ0dH3/8MU5OTtx9993nezRVliDmzJnDAw88cL6xeN68efTs2ZOQkJDz1U7V7bdmzRoee+wx8vLy0Ov1zJ8/n+7du5v5p6M0VUdTtIcH1eW0+VHrISh1pn7eLdNj3xwkMj6HXc+NtnYoSh2o9RAURTGbo6n5qrqomVJVRo1QVlYWY8aMuWT7li1brtgTSVEsqbTCwKmMIsZ3Uz2MmqNmlxCklDT1ufF8fHw4dOiQtcOoUVOtalTq52R6IQajJFSNUG6WmlWVkaOjI1lZWerDysKklGRlZeHo6GjtUJQGdjRVa1BWXU6bp2ZVQggKCiIpKYmmMM9RU+fo6EhQUNCVd1SalbiUfBztdISoKSuapWaVEOzs7Gjfvr21w1CUZutoaj5d/d3UlBXNVLOqMlIUxXKklMSlFKjxB82YSgiKotRKRkEZ2UXlqkG5GVMJQVGUWolTDcrNnkoIiqLUSlzlojiqyqjZUglBUZRaOZqSTxsPRzyc7awdimIhKiEoilIrsSn5hKrqomZNJQRFUa6ouFzPyfRCerRRCaE5UwlBUZQrikvJxyihZ5CntUNRLEglBEVRrigqKQ+AnoEeVo5EsSSVEBRFuaIjyXm0cnPA393B2qEoFqQSgqIoVxSdnEfPQI8mP5OwUjOVEBRFqdH5BmVVXdTsqYSgKEqNYs9pDcrhKiE0eyohKIpSo6hkU4NykEoIzZ1KCIqi1CjqfIOyWhCpuVMJQVGUGkUl5anqohZCJQRFUS6rqEzPqQzVoNxSqISgKMplxVaOUFYJoUVQCUFRlMs6P0JZNSi3CCohKIpyWdHJefipBuUWQyUERVEu64hphLLSMqiEoChKtSoblFV1UcuhEoKiKNWKTclHqgblFkUlBEVRqnVETXnd4qiEoChKtaKT8/B3d8BPNSi3GLbWDkBRlMZDSklUch7f7k9kY3QKwzu3snZISgNSCUFRWrAKg5GE7GJOZxRxIr2Anw+nEJeSj6Odjsk92zB/bGdrh6g0IJUQFKUFSswu5qnvDhMZn4PeKM9v797Gnden92Ba7za4O9pZMULFGlRCUJQWZuvRdOavOoRRSuYN70CnVq50aOVCh1aueDipJNCSqYSgKC2EwSj5cPNxFvxxkm6t3fn0zn609XG2dlhKI6ISgqK0APmlFTy88gA7T2RyS/8g/jWtB452NtYOS2lk6tXtVAjhKYRYI4Q4KoSIE0IMEUJ4CyE2CSFOmL56Vdn/eSHESSHEMSHEhCrb+wkhokzvLRBqJW9FMStnOxtsdIK3Z/TknZt6qWRQnfQ4+OE+iPsZDHprR2MVQkp55b0ud7AQy4GdUsolQgh7wBl4AciWUr4lhHgO8JJSPiuE6AZ8AwwE2gCbgS5SSoMQYh/wOPAXsAFYIKXcWNO1+/fvLyMiIuocu6K0NFJK1LPWZRRlwWcjITdB+7d7EPS/G/rOBtfm1fVWCBEppexf3Xt1LiEIIdyB4cDnAFLKcillLjANWG7abTkw3fT9NOBbKWWZlPIMcBIYKIRoDbhLKfdILTt9WeUYRVHMRCWDyzBUwHezoSAN7vkdbl0BPh3hj9fhvz3g6HprR9hg6lNl1AHIAL4QQhwUQiwRQrgA/lLKFADTVz/T/oFAYpXjk0zbAk3fX7z9EkKI+4QQEUKIiIyMjHqEriiKYvLrc3B2J0xdAG0HQdgUmL0OHt4H/t1h1SyI/t7aUTaI+iQEW6Av8ImUsg9QBDxXw/7VPZ7IGrZfulHKxVLK/lLK/q1aNa9inKIoVhDxBexfAkMfhV63Xfheq64way0ED4Lv74WDK60SYkOqT0JIApKklHtN/16DliDSTNVAmL6mV9k/uMrxQcA50/agarYriqJYTvIB2PAUdBoLY1+rfh9Hd7hzDbQfDj89pCWPZqzOCUFKmQokCiG6mjaNAWKBdcBs07bZwE+m79cBtwkhHIQQ7YHOwD5TtVKBEGKwqXfRXVWOURRFsYyt/wFHT5jxOehq6HVl7wIzV0GXibD+H7D7owYLsaHVdxzCo8BKUw+j08DdaElmtRBiLpAA3AwgpYwRQqxGSxp64GEppcF0ngeBZYATsNH0UhRFsYyUI3ByE4x+GZw8r7y/nSPc8hX8cC/8/iLoS2H4UxYPs6HVKyFIKQ8B1XVfGnOZ/d8A3qhmewTQoz6xKIqi1NqfH4C9Gwy4t/bH2NrDjKVg86DWA0lfBqNegGbUe0uNVFYUpWXJOgWxa7WG5NqUDqqysYUbPgVbB9jxDuhLYNzrzSYptIyEkB4HqdEQfrO1I1EUxdp2fQg6Oxj8cN2O19nAlAVg6wi7/wfeHaD/PeaN0Upaxoppez7S6v7WPwX6cmtHoyiKteSnwOFvoM8d4OZf9/PodHDdu9B+BPz+8t8jnJu4lpEQrv8vDHkE9n8GX0yCvGRrR6QoijXs+QiMehj6WP3PJQRMM/U4Wvco1GMaoMaiZSQEGzuY8AbcvBwyjsKia+H0dmtHpShKQyrO1gai9ZgB3u3Nc07PtjD+dTi9DSKXmeecVtQyEkKl7tPhvm3g7Avf3qGqjxSlJTm0EiqK4Jr55j1vv7tNVUcvNfmqo5aVEAB8O8Oo56G8ANKirB2NoigNJfp7aNMHAszcw10ImPo/7fsmXnXU8hICQNBA7WvifuvGoShKw8g+DecOQvcbLXN+r3Yw7l9a1dGBLy1zjQbQMhOCRyC4B0Li3ivvqyhK0xfzo/a1+w2Wu0b/e6DdMNj0sjaVdhPUMhMCQPBASGqhJQQp4chqiFkLhWoacaUFiP5RqxnwDL7yvnUlBEz5ECpKYeMzlruOBbXchBA0EPISIb8FTqz610L4YZ62KMh7neCjAfDzfG0Ep6I0N5kntPZCS5YOKvl2ghFPayOhjzW9KdlabkIIHqR9Tdxn3TgaWtwv8NuLEDYV5m7Wpv31CoEjq+Cb26C82NoRKop5Rf8ACK2XYUMY+jj4ddNmRi3Nb5hrmknLTQgBPbWh5y0pISQf0Bb6COwHNy6G4AEwbD7c8R3M/AYyj8PmV6wdpaKYV8wP0HYIuLdpmOvZ2mu9jvLPaZPgNSEtNyHY2kPr3pDUQhJCbqJWAnBtpX342zld+H6HkTD4Idi3GE5utkqIimJ2abHaYNQeFupddDlB/WHQ/bDvM0iOrPfpygxlxGTFsO7UOg6lH8JgNFz5oDpoGZPbXU7wQNj7qdYIZOdo7Wgsp7wIvr5Vu8+71oGrX/X7jXkFTm2FtQ/DQ3vA2bth41QUc4v5EYQOuk1r+GuPfkmrit3xnvYQdhUMRgP7Uvex8cxGojKjOJN3BoP8Owl4O3ozLHAYI4JG0Mb1wpKPjbDBTmeHnY0dtjrb8+czSMMVE4lKCLsXQMphbXHt5khK+OUJSI+FO78Hv9DL72vnCDM+g8Wj4OfH4ZYvm820vkoLJKVWXRQy7PIPQZbk4AYD74ftb2klFf9uVzzkdO5p1p5ay/rT60kvTsfNzo0+/n0YFTyKUO9QOnp25HjOcbYlbmNb4jbWnVpn1pBbdkKoHKCWtK/5JoQDy7WnlFEvQqdq1y26UEBP7clm8ytw+FvoPdPyMSqKJaRGQdZJbWJLaxl0vzZF9q4P4cZFl90tvTidDw98yLpT67ARNlwbeC3PDniWEcEjcLBxuGDfjp4dmdR+EnqjnujMaPLL/264llKil3oqjBVUGCrQG/UA2OpssRE26HQ6JjHpsnG07ITg5g+e7UwD1B61djTml3IYNjwDHUfDtVex3N/QR7Uuc789ry1A7trKcjEqiqXE/AjCRutRZy3O3tBvjlY1PeoFbURzFaX6UpbHLOfz6M/RG/Xc3eNuZnebjY+TzxVPbauzpbdfb7OG23IblSsFD9KmsGjC849UqzQPVs8GZx+48TNt/vba0tnA1AVQVgi/vWC5GBXFUqTUEkL74eBy5Q9XixrysNaOsft/F2yOSI1g2tppfHToI4YFDuOn6T/xZL8na5UMLEUlhOCBUJiqDVJrLqSEnx7RZl68+Qtw8b36c7TqCtc+CVGr4eQW88eoKJaUegRyzjTc2IOaeARCr1vh4FdQmI7eqGfhoYXM/X0utjpblk5Yyvsj3yfYzYKjqGtJJYSgAdrX5jQe4exOiFuntQW0HVz38wx7Enw6aY3SasCa0pTErNWqi0KnWDsSzTXzQV9Gyp//x9zf5vLJ4U+4vsP1rJ6ymgEBA2p3jtQoWDhUG0uUedIiYaqE4N8D7JybV0L487/g4qeNK6gPO0dtbpbceK2nhKI0BVJqU0e0v9b61UUm2a4+fNR5ADNS1nM0O443r32TN4a9gYudS+1OEPcLfD4BitLh6Hr4eACsfQiyz5g1zpbdqAxgY6uN3G0uM5+mHIFTW2DMP80ztiJkGPS5E3Z/BD1v1nohKUpjlhqlTXdtjmUy6ympIInlMctZe3ItpYZSRpeU8A+jP239a1lylxL+fB+2vK6t5TDzG6094s//wv4lWg/CbtOh/93Q7pp6dxNXJQTQhrWnRkFOvLUjqb9dH4K9G/Sfa75zjntd6y2x7lEw6M13XkWxhNi1pt5F1qsuSitK47U9r3H9j9ez5sQaJrWfxE/Tf+LDEf9H25Ro+Gw0pB+t+SRZp+D7ubDlX9pI67s3gFuANqZi4n/g8cMwYB6c2ATLJmuTVO7+CApS6xy3kE20d03//v1lRESEeU6WlwwLekOv2/5e+agpyjkLC/rCkIdg/L/Ne+7o72HNPdp5hzbDLrpK8yAl/K8feATBbPMO2qqN3NJcPo/+nG+OfoNBGri5y83c0+MeAlwC/t4pKVKbRkZfBrcs07qFVzIatRL+3kVwchPobGHEczD8qcs//ZcXQ+xPEPnF3zUdrXtDl4nQZTy07nNBL0MhRKSUsn91p1IJodL6p7Qf6KOR2uyfTdGGp7VFxOcfMf9EXlLCNzO1FaEe2g3eHcx7fkUxh9Qo+HQYXP+BtmBNA/or5S+e3PokhRWFTOk4hQd7PUiQW1D1O+cmwNe3QUYcuAZo1UBCB/oSKMoAV38t/n5ztFJBbWUc09oYjv+mDbiVRnDwgKB+WgeaoIGILuNUQrii/HPwYW8IvxmmfWy+8zaUokz4oAf0nGG5+POS4eNBENhHmxNJTWuhNDZbXtfq3P9xvEEHVO5I2sETW5+gnUc73rn2HTp5dbryQaX5WqxFmdoDlzRq2zuN0QbT2drXL6iiLK20Eb8bkiIgPQakEfFa/mUTgmpUruTeRmuY2fcZXPuPpvcEvG8x6Eu1udgtxSMQxr0G65+Egyug7yzLXUtRrlZl76KQYQ2aDLbEb+GpHU/R2bMzi8ctxtPRs3YHOrrD2FctF5iLD4Tfor0Aygq0KfBfG3nZQ1SjclXDngAbO9jxf9aO5OqUF2kJIXQytOpi2Wv1M/Vm+O3FejVeKYrZpcVocxd1m95gl9x4ZiP/2P4Puvl0Y8mEJbVPBtbg4AYdRtS4i0oIVbkFaPV2h79pWstJRv8AJTnaEHlL0+lgygKtNPLldG3aD0VpDA6u0OrhG6B3UU5pDm/89QbP7XyO3n69WTxuMe727ha/rqWphHCxa+aDjb02h3lTEbEUWoVq3Wcbgm8nuO1rKMuHz8dpDfJNbKlApXEwWxtmXrL2d9DrdotOdV1hrGBF7Aom/ziZ745/xy1dbmHhmIW1H2DWyKk2hIu5+cOAudpC9MOfAp+O1o6oZimH4dwBmPROwzbydh4LD++FP/6tdZE7+ou2CImhAgxl2td2Q6Hv7Ebf+FxmKCMqI4oz+Wdwt3fHy8ELL0cvPB08cbFzwcnWCWGGeyjVlxKVGcWBtAMcSD/AsexjdPTsyICAAQwIGEBP357Y29SzIbGRMxgNHMo4xOb4zWxJ2EJ+eT59/PowIGAA/f37E+YThp3O7upPvOMdrVF2xDPmDxowSiOb4jfx0cGPOJt/liGth/DMgGdq13jchKheRtUpTIf/hmsfcDXMYd4o/DxfW7fgH0fBydM6MSRFwoantPpbGzuwcQAkFKRA5/EwbWGjm0I7qSCJtSfXEpEWQVRGFOXG8svuqxM6nG2d8XL0YnjQcCaGTCS8VTg6UXMBW0pJfH48O5N3sjNpJxFpEVQYKxAIOnl1ItQrlBO5JziWfQyJxNHGkdFtR3Nj5xsZEDDgiudvSrJLs1kWs4x1J9eRVZqFvc6eoW2G0sq5FZFpkZzOOw1AR4+OfHXdV7jZu9X+5FmntEFZA+bCde+aNe7KRPDp4U85mXuSDh4deLLfkwwPGm6WhwRrUOMQ6uL3l2DPx/DwPvDtbLnr1EdZAfxfqJa4pi+0djQXklLrsfX7S1pviumfQOdx1o6KwvJCPov6jK9iv8IgDYR5h9Hfvz/9/PvR1bsrRRVF5JTmkFOWQ25pLkX6IooqiiiuKCapIInd53ZTbizH39mf0W1H08mzE4GugQS5BeHp4MnJ3JPEZMYQmx3L4fTDJBUmAdDBowPDAocxMGAgvf164+HgcT6mvLI8ItIi2JW8i1/P/EpBRQGBroFM7zSdWd1mNenqiNzSXJbFLOPro19TZihjdPBoJoRM4Nqgay+4r6ySLHYk7eC1Pa8xKngU7498v/YfuN/Pg7iftZG7bv5midsojWxJ2MInhz/hRM4J2nu058FeDzK+3XhsdDZmuYa1qIRQF0WZWikh9DqYscRy16mPiKXaTKRzN0NwLWdMbGhpsdrsjOkx2twyY1+7urUZzERv1PPTyZ9YcHAB2aXZTO04lUf7PHrhCNJaKCwvZFvSNn47+xt7zu2hzFBW7X5+zn509+nO0DZDGRY47PIDlC5Sqi9lS8IWfjzxI3tT9xLmHcbCsQvxdarDFOZ1JKWkzFBGQXkBHg4eta7GklKSVpzGydyTnMo9xYmcE2yK30SJvoSJ7SfyQK8H6OBRc3fu5THLeS/iPZ7q/xSzu8++8kXTYuGToXDNYzDuX7WKsyYXJ4IQ9xAe7PUgE0ImNPlEUEklhLra9Io2N9DDe7X1ARoTKWHRtSCBB3Y27nr6ilJtoZ2Iz6H7DXDDIrB1uPJx9SSlJCYrhvWn17PxzEaySrPo49eHZwY8Qw/fHvU+v1EaySjOIKkwiaSCJLJLs+no2ZFuPt3M8gH+Z/KfPLntSbwdvfl07KeEeITU63ynck9xKvcU+eX52qssn9yy3PMlopzSHPLL8ykoL6DCWAGAg40Dffz6MKj1IAYEDMBG2BCXHUdcVhzHso+RUZJBqb6UUkMpJfqSC67n7ejNoIBB3Bd+X63r2qWUPLHtCbYlbmPphKX09e9b8wHf3gFndmilA2fvq/p5VBgqOJh+kJSiFNKK00grSuNA+gFO5p4kxD2EB3o9wMSQic0mEVRSCaGuirLgw3DoMgFuWmrZa12tpEhYMhom/x8MuNfa0VyZlNqKUZtehpBr4dYVFmvzSC1KZd2pdfx86mfO5p/FTmfH8KDhTOs4jZHBI5tU3W90ZjQPb3kYozTy8ZiPCW8VftXnqDBW8MmhT1gStQTJ33/vtsIWT0dPPB088Xb0xtNB+97N3g1Xe1dc7VyJz49nb+peTuScuOCcbnZuhPqE0tqlNU62TjjZOuFo64iPow8dPTvSybMTXo5edbrngvICbvvlNkr0JayesvryyTU5UpskbuQLMPLZWp+/sLyQNcfX8FXsV6SXpJ/f7uXgRbBbMDPDZjIpZFKzSwSVVEKoj82vwZ8fwEN7wC/M8terrbUPa0sE/uOoVkffVBxZrc3j7tsF7lxjtjmXygxlbE3YytqTa9l9bjcSSX///lzf4XrGtht7QZ19U5OQn8D9m+4nsySTFwa9wPRO02ud1BLzE3l257NEZUYxo/MMZobOxMPBA3d796vqPZVVkkVEWgQCQZhPGEGuQRZNrMeyj3HHhjsIbxXOorGLsLO5qOeR0ah1ec45C48drNXfQEF5AUuilrD62GoKKwoZFDCI28Nup5NnJ/yc/XC0NcN08U2ARROCEMIGiACSpZTXCyG8gVVACHAWuEVKmWPa93lgLmAAHpNS/mba3g9YBjgBG4DH5RUCa7CEUJyttSV0Hgs3L7P89WqjOBve76YNSZ+6wNrRXL1TW2HVLC0Z3L8d7JzqdBopJYczDrPu1Dp+PfsrBeUFtHZpzbRO05jacWqjWJLQXDJLMnlq+1NEpkUyIGAA/xz8z8tWIVUYK4jPi2d/2n4+PPAhOqHj1SGvMj5kfMMGXU/rTq3jxT9fZEqHKbwx7I0LE9D+JbD+H1r1Y6/brniu7NJs7t90P8dzjjOu3Tju7n433X27WzD6xqumhGCOcQiPA3FAZYp+DtgipXxLCPGc6d/PCiG6AbcB3YE2wGYhRBcppQH4BLgP+AstIUwENpohtvpz9obBD8COd7WpLVr3snZE8Ncn2qyIA++zdiR103EU3PolfHWD1k5z3TtXdfjpvNP8euZXfjn9C4kFiTjZOjG27VimdJzCoNaDmlV3zUq+Tr4snbCUH078wPsR7zNj3QzuDb+Xzp6dSStOI7UoldSiVE7lneJM3hn0Rm3dir5+fXnr2rdo7drayndw9aZ2nEpyYTILDy0kwCWAx/qaFrwpSNVK7u1HQPitVzxPWlEa8zbNI6UwhYVjFnJN4DUWjrzpqldCEEIEAZOBN4AnTZunASNN3y8HtgHPmrZ/K6UsA84IIU4CA4UQZwF3KeUe0zm/BKbTWBICaPP/7/8cfn8Z7vrJug24xdmw91NtNsSA+jeMWk3H0TDoQdj7iTZne6exNe4enx/PpvhN/HrmV47lHEMgGBgwkAd6PcDYtmNxtnNuoMCtRyd03NTlJkYEjeDt/W+z8NDfXY3tdfb4u/jT3qM91wZeS2evznT27Exnr85NOkE+EP4AaUVpfBb1GQEuAdzS9Rb49TltLYHrP7ji32JiQSLzfp9Hblkun4z9hP4B1T4YKyb1LSH8F3gGqDqKxF9KmQIgpUwRQlSOIw9EKwFUSjJtqzB9f/H2Swgh7kMrSdC2bdt6hn4VHD1g5HOw8Rk4udm6/en/+kSbMmJE7RvRGq2xr8DprVqbwoN7Llj/tsJYQWRaJDuSdrAjaQfx+dpqdr1a9eK5gc8xvt14Wjk3rsFuDaWVcyveG/Ee9/a8F6M0EuASgJeDV5NqLK8tIQQvDX6J9OJ03tj7Bn45yYyM+RFGvXTFWQRO555m3u/zKDOWsWT8ErP0LGvu6pwQhBDXA+lSykghxMjaHFLNNlnD9ks3SrkYWAxaG0LtIjWTfndrT+a/vwwdRmlrMTe04mwtIXSb1rRLB5XsnODGz7SeIr88jrz5S6KzYvj59M9sPLOR3LJc7HX2DGg9gNtDb2dk8EjauJp54Z8mLNQ71NohNAhbnS3vjXiPe36dwxNHl/JE647MGvpYtR8clY5lH+O+TfchEHwx4Qs6ezXSwaWNTH0+1a4BpgohrgMcAXchxAogTQjR2lQ6aA1U9utKAqq28gUB50zbg6rZ3rjY2mtzl6++Cw6thH61GDRjbn8thPKC5lE6qNQ6nMRrH2PD4c/4ZfUozpZlY6+zZ3Tb0UxqP4nBrQe3iOogpWbOtk4sMvryz+Ji3nVxZu+OJ3n9mtfxdrx07EFURhT3b74fFzsXloxfQjv3dlaIuGkyS7dTUwnhKVMvo3eBrCqNyt5SymeEEN2Br4GBaI3KW4DOUkqDEGI/8CiwF61R+X9Syg01XbPBehlVJSUsnQA58fDYAbBvwCkFKns7dRoNt3zZcNe1kOzSbDae2ciG0xs4knkEgH5lFUwd9BTjwm69urlslOZvz0L47Xnk0Mf5tm0Y7+5/Fy8HL14c/CK9/XqfrzKLTIvk4S0P4+XgxecTPlclympYupfRxd4CVgsh5gIJwM0AUsoYIcRqIBbQAw+behgBPMjf3U430pgalKsSAsa9DkvHw+6PrmowTL2dLx0813DXtIDUolSWxyxnzfE1lBpKCfUO5cl+TzLJqzsBy6bD4Z8hfK61w1Qak2MbtZHuYVMQY19lpk5HH78+PL39aR7fqq0Q6GrnSrBbMGfyztDGtQ2fjf8MP2fLTYPdXKmBaXWxahac3AL3bgb/bpa/3vnSwRi4Zbnlr2cByYXJfB71OWtPrsUojVzf4Xpmd599Yd3u/s+15TmtsEC60kilHIGlE7WVAOdsAPu/qw9L9CXsT91PQn4CCQXay9HGkZcHv4yPk08NJ23ZGrqE0PxNfBOWjIUVN8Lc38HTwj2e9n1mKh1YZq53S8oozmDRkUV8f+J7BIIbOt3APT3vIdC1mo5k/e+BuHXw20tat1SvkAaPV2lE8pLh61u1KU5mfntBMgBwsnVieNBw68TWTDXdDsrW5BEEd34PFcXa4KqiTMtdq6zQ1Fd/Evg3nZGVuaW5vB/5Ptf9cB3fH/+eGzvdyMYbN/LykJerTwagVclN/Z+2DOJPj2jTEygtj75Mm/dq4RCti/Xtq7TlbRWLUwmhrvy7w+2rIS8JVt6krU1gCQeWa+slX/vklfdtBAxGA6uOrmLyj5NZFr2Mce3Gse6Gdbw85GX8XWoxV71nW5jwBpzdCbs+AKPhysdYWmm+Nt1G5DI4dxAMemtH1DxJCbHr4ONB2joawQNh3h8Q0NPakbUYqg2hvo79Ct/eDu2vhdu+uaRYWy/6MviwN3h3gLvXm++8FnIo/RD/2fsf4rLjGBgwkGcHPksXry5XfyIptaqCE7+BeyD0vQv6zAKPy5QszE1fpiWA479C4j5Ij+WCoTH2btqHVfvhMHBew/Y2a45yEyBqDUR9p/2sW4XBhH9fcfS6UjdqttOLVM4FX9tFS67o0NfaaNvAvlpdp7kW+T7wJax7VKueasR/HGWGMt7Z9w6rj6/Gz8mPpwc8zYSQCfUbOWuogGMbtKfyU39o1Uhth2ijU73ag3d78O4IPp3Mk4T1ZXB6uzaD7NH1UJYHDu4QNEB7BQ/QrnvuIMTv1l4ZceDTGWZ8Bm361D+GlkJKyDgGp7ZoJYJE0wQGwYOgz53Q63brDPxsIVRCMInJimH1sdVsOL2BUkMp49uN57G+j5ln4ErcL9rKYK6t4PbvwK+eo0iNBm2dWHsXuH9Ho10AJ6UwhSe2PUFMVgx3dbuLh3o/ZP4lH7PPaMnx7J+QcwaKMi583yNYW+bUuyN4Bmv/9myrvVxaXf5nV5wNJzZpiefkFq3h3sEDwq7XFvJpP0IbkHg5p7fBjw9CUTqMfklbEa6ZzqFfb2UF2s/45Cat9JWfrG336wY9ZkDPm1QnggbS4hPC5vjNLI1eSlRmFE62TlzX/jq8Hb1ZEbeCckM5MzrPYG7PuQS4BNRvIrDkA1pVh74Mbv0KOoyo+7lifoTv5sDNy6H79Lqfx4L2puzl6e1PU2Gs4D/D/sOotqMa5sJlBVqSyD4FmSch8zhknYCs09qTfVX2rn+XKJy9oTADClOhIA0KzoE0gmsAdJ0IXa/TpiWpKQlcrDgbfn5c6x1l4YV/mpzCdIj9SUu4Z/8EQ7k2L1iHkVovso6jLd9DT7lEi08ICw8t5Nezv3Jr11uZ0nEK7vbaTN2ZJZksOryINcfXoJd6dEKHu707ng6e2spJoTMZFjjs6qo+chNg5S3aB9SgB7Suoo5XuTiLlLBouNaL6eF9je6ps6C8gBVxK/j08KeEuIfw31H/pb1He2uHpSnNg9xEyEvURpTnnIHs01oCKckGFz9tIXbXAO2JtPN4rbqnPus8S6lNZ/Lz49BpHNz2tVXWjW40jEaI/AI2v6r1EvLuqK1N3mWSVi2kqoOsqsUnhHJDOXY6u8t+sCfmJ7IjeQc5pTnkluWSW5bLofRDpBWn0dWrK3N7zmV8u/G1X1KvNA9+exEOrtCqLMa+Cr1m1v5DYuubsP0tmPaxVqfaSCTmJ7IibgVrT66lWF/M+Hbj+dc1/zJ/FVFTtXcxbHwaRr3YJMeMmEXGcfj5MUjYozW6T3yrSXWXbglafEKoiwpDBevPrGdp9FLO5J2hnXs7Xhz0IkPaDKn9SZIPwMZnIWkftOmrdR3tel3NT/zb34Wt/4bed2p98q38pJldms32xO1sit/En8l/YqOzYWLIRO7sdifdfdQf+gWkhB8fgCOrtC7JXZrWCmX19ten2prZds4w4T/Q+/ZG2/bVkqmEUA9GaWRrwlY+OPAB8fnxTO80naf6P1X7NXqNRohaDX+8AXkJ4NEWBszVulI6XzRT487/gy3/0koT0z62SlVRQXkBcVlxRGdFszNpJwfSD2CURtq4tGFyh8ncFnqbmiOmJuXF2lxXuQkwb+sV5+xvNvZ9Bhue0h54pnxovp52itmphGAGpfpSFh1ZxBfRX+Dh4MEzA55hQsgEbHW1rA816OH4Rti7SBt0ZWMPAeFa/XWbPlqd97Y3oectcMOnFksGRmnkRM4JDmccJqMkg8LyQq0bbnk+p3NPk1CQcH7fTp6dGNN2DGPajiHUO7RZLsBiETlnYdEIbQzFvZvNOzalMYpao/Ww6zpJm4nXxs7aESk1UAnBjI5lH+Ofu/9JbFYs3o7eTGo/ies7XE93n+61/8BMi4HD32pVSimHoLxQ295jBtyw2KyNbgXlBcRmxRKVGcXB9IMcTD9IQfnfo6pd7VxxtXfF1c6VEPcQuvl0o5tPN8J8wqqda16ppZObYcUMGPKINvK6uTr+O3w7UxsjcscasHO0dkTKFaiEYGZ6o57tSdtZf3o92xO3U24sp61bW4YHDeeawGvo798fR9ta/mEYjVqPpIIUaDesXslASsmZvDNEpkdyMO0gUZlRnM0/e/79EPcQ+vn3o59/P/r49aGNa5smvd5uo/fzfG3qkXs3Q2A/a0djfvF74Kvp0CoUZv8Mju7WjkipBZUQLCi/PJ/N8Zv5/ezv7E/dT7mxHAcbB3q36o2/iz+eDp54OXrh4+hDkFsQ7dzb0cqpldmqXwxGA7vO7WLtybVEpEaQU5YDgI+jD+Gtwunh24PuPt3p7tMdT0dPs1xTqaXSPG1eHmcfuG9b86pKyUuGT4dp93bPr+Dia+2IlFpSCaGBlOhLiEyLZFfyLg6mHyS7NJuc0hxKDaUX7Odk60SIewiTO0xmeqfptW+griKtKI0fTv7ADyd+ILUoFW9Hb4YFDjtfAmjr1lbV+TcGRzdoVSqjX4LhT1s7GvMw6GHZZEiL1hKdr1qvuClRCcHKSvQlZJZkkliQeH4xj6iMKA5lHMLBxoFJ7Sdxc5ebCfMJw053+afIlMIUtiRsYVP8Jg6mH0QiGdJ6CDd3vZmRQSOxa05PoM3Jd3O0+ZEe2KUt9NLUbX4V/vwAZnyuTTmhNCkqITRSx7KPsfrYan4+/TMl+hJshM35aqVA10AqjBUUlhdSUFFAZnEmx3KOAdDZqzNj245lSscpBLsFW/kulCsqTNfmpfIL01b9asqjmE9s0qZ77zdH616qNDkqITRyheWFbEvaxunc08Tnx5NQkEByQTL2Nva42bvhaueKu4M7AwIGMLbtWEI8QqwdsnK1Dq6Enx6CCW/CkIesHU3dVLYbuAfCvZvAzsnaESl1oJbQbORc7V25vsP11g5DsaTet2sT4G1+FTqO0koLTUlJLqy6U5ug7uZlKhk0U0247KooTUjl8qAObvDDPNCXWzui2ivOhi+nQWoU3PgZ+HaydkSKhaiEoCgNxdUPpi7QPli3vWntaGqnKBOWT4H0OLhtpTZrqdJsqYSgKA0pdLK2HOiu/2oDuxqzglSte2nWKbj9W+gywdoRKRam2hAUpaFNfFObz+rH++D+nZZZUMdo0Jb5TI+D3HhtfqW8RG294j53aKPiL9fbqTAdIpbC/iXaZH13roGQYeaPUWl0VEJQlIbm4KbNWbXsOq065s4ftKVXzSE1SpsnK2qNtjIcgK0TeLUDt9ba6mVHvtVWKut9B/j30NarFjqQBm2N45gftMbjTuNg9ItqvegWRCUERbGGtoNg5rewahYsnQB3ra37cpIGPcSu1aqhUqNAZ6utBBd+qzbpnKvf3+sSlBdrg+QOrYBtbwEXdTu3d9XGGAy8XzUet0BqHIKiWFPCX/D1LWDnArN+BL/Q2h+rL4PD38Cf/9WWCm0VCgPuhe43govPlY8vSIWiDG1daaNBW+DHt7OapK6ZU+MQFKWxajtYG7284kb4YqK2/Gav27RqpcspK4TIZbDnYyg4p1XpjF9pWo3vKvqJuAVoL0UxaRElBCklhtxcbL28LByVotRR9hn4fi4kR4K9G/SeCf3nanX/AAgoK4D9n2mLLJXmQsi1MOwJ6DhaLVWp1FqLLyGkv/U2hdu3E7J6FTbuqjgMYCwuBiHQOakRp42Cd3u4d4uWEPZ9ppUA9i2uft+uk7VEEDygQUNUmr8WUUIojoggfs7duFwzlOCFCxE2Db9WcWNRGhtL9pdfkb9+PbKiAuHsjK2XFzY+PrgMGoTnrbdgHxRk7TCVwgytobisAJBa/b7QactUNrVpL5RGRU1uB+R88w2pr/0Lnwfux2/+fMsF1ghJo5HCP/4ge9lyiiMiEM7OeEybil3rNhiystDnZKNPTaM4IgKkxGXYMLxuuxXX4cMRdo1jSm0ptQ9F0ZRnClUUC5NSIktKMBQUYMjLw5ifjz4rG31WJobMTPQZmbT59+stu8oIwPO22yiNjSXr00U4hobhPrH5j7qURiMFW7aQ+dHHlB07hl1gIH7PPIPnTTOqrTqrSE0ld8335H73HUkPP4LO2RnngQNxGToEl6FDse/Y0aKL7uhzcqhISKA8IYHys/FUJCVRkZpKRWoK+tQ00OlwDA3FsVs37dWzBw6dOqkkobRohtxcCv/cReH27RT9+SeGnJzqdxQCG++a10lvMSUEAGN5OQmz7qL0xAlCvvkGx67NYLGSakgpKdy6lYz/fURZXBz2ISH4PvwQ7tddV6vqMqnXU7hjJ4U7d1C0ezcV8QkA2AUH4z75OjwmT8ah86WrZFU23utTUqhITUWflYUhNxdjXh763FwMObnnSySGrGytHcP05H8JIbD198cuIADb1gHYBbRG6vWUxsVSFhunHQvoPDxw7tMH5/79cOrbD8fu3dA5ONTvB6gojZTU6yk7dYrSmFhKY2IojY6mJCoKjEZsvLxwHX4t9h07YePujo2HOzp3d2x9fLD18cHGywtha6uqjKqqSEvn7E03Ieztaff1Suz8/S0QnfUUHzhA+rvvUXLwIHbt2tLqoYdwnzwZYVv3wmB5UjJFu3dR8OtvFP31FxiNOHTpgl3bYIz5BRgKCrSiaWYmsqzskuOFvT02np7YeHlh4+2FrbcPNt7e6JydQSdMpQ6Bzs0N+3btsG/XFrvgYHT29tXGIw0GyuPjKTl0mOLICEoiIimPj9fetLPDMSwMp169cOrVC+e+fbBr06bO964o1iYNBor37iXv518o2LQJY2EhAMLZGcewMJwHDsBtxAgce/as1QOfSggXKYmKImHO3dj6+dHuqy+x9W36C4SXnTpF+vsfULhlC7Z+fvg++gieN9xQr0RQHX1mJvm//kb+rxsx5hegc3fDxs0dnZsrtj6+2LUOwDYgALvWrbH19cXG0xPh6Gjx9Z31mZkUHzxI6ZEjlBw6TEl0NLKkBADbgACc+/bBITQMnZMTwsEenYMDNt7eOA8YgM7R0aKxKUpdGHJzyVqyhLyf1qHPyEDn4oLb+PG4DB2KY/du2LdrV6cOMiohVKM4IoKEe+dh37YtbZcva7JjFGR5OZmffkrmosXoHB3xmTcP79l3tfjupFKvp/TYMUoOHKTk4AGKDxxEn5p6yX7CyQnXYdfgOmYMriNGNNn/B42d1OupSE3DkJmBIT8fQ14+hvw8dI5OOPbojkPHjmZ/eGmqpF5PzqpVZC74H4aCAlxHjcJjyvW4jhxplocXlRAuo2j3bhIfeBCHzp1pu+wLbNxqGB3aCJXExJDy/AuUHT+Ox7Rp+D37DLZXaDRqyYxFRRjLy5Hl5ciyMsoTEync8gcFW7agT0sDW1tchg7BY/JkXMeMxcbVxdohNzlSSiqSz5mS8AHKT56iIjmZirQ0MBgue5xwcsIxLAy3MWPwvntOi+0oULR7N2lvvknZiZM4Dx6M//PPm72tUyWEGhRs20bSo4/h2LkzrZ6Yj8s11zT6/4z6nByyv/ySrM+WYOvlRcBrr+E2epS1w2qypJSURsdQ8Ptv5K/fQMW5cwgHB1xHj8Lzhhu0/xMteOzKlRjy8yncuZPCbdsp3rsXfXo6ADoXFxy6dsUuKBC7wEDsAwOx9fPDxl1r7LRxd8dQUHC+YbTk4CFKo6JwnzKFNm/8G3GZNqTmqPToUdL/732Kdu7ELigIv2efwW3sWItUtVokIQghgoEvgQDACCyWUn4ohPAGVgEhwFngFilljumY54G5gAF4TEr5m2l7P2AZ4ARsAB6XVwjMnJPbFWzZQuqrr6HPyMC+Qwe877oLj2lTG1W1izQaKf7rL3LXrKFg02ZkRQXuU6cQ8MIL2Hh6Wju8ZkMajZQcOkz+L7+Qv3EjhpwcbAMC8LhhOp433IBdcLDF20OagvL4eAr+2Erh1q0UR0aCwYCNlxcuQ4fi1LcPzn374tCly1UlUiklWYs/I+ODD3AZOoTABQuwcXW14F1YX3lSMhkLPiT/51/Qubvje999eN15h0V7ylkqIbQGWkspDwgh3IBIYDowB8iWUr4lhHgO8JJSPiuE6AZ8AwwE2gCbgS5SSoMQYh/wOPAXWkJYIKXcWNP1zT3bqSwvJ/+338hetpzSmBh0zs449e+Hy6BBOA8chGO3sAZ9StRnZVEaG0tp3FFK42IpOXQYfUoKOg8PPKZNxXPGTc2222xjIcvLKfhjK7nff0/Rn3+ClNj4+OAYFoZjWBgOnTuB0CH1ejDokQYjwtZG69pnZwc6HYbcPAw52eizczDm56PzcNd6Wfl4Y+vri2PXrti2bt3ok4w+J4eyo0cp2rWLgj+2Un76NAAOnTvjOmoUriNH4tQr3Cx/I7k/riXlpZdw6NKFtosXYdvKTGtFNCL6zEwyP11EzqpVCBsbvGfNwmfevQ0ytU6DVBkJIX4CPjK9RkopU0xJY5uUsqupdICU8k3T/r8Br6KVIrZKKUNN22eajr+/putZavprKSUlkZHk/fILxXv3UX7mDAA6Nzec+/fHZfAgnAcPxqFTJ/SZWVQkJVKemIghOwfbVr7n+87beHpqffJNowP1mRlaP/zsbAy5ORiKirAPCsahU0fsO3TELsCfkuhoivftp3jvXsrPnj0fk11QEI5hobhNmIjbuLGqn70VVKSkULDlD1OSjqPsxAnQ62t9vM7VFZ27G8b8gvPdBivZ+Pjg1KMHjj16YBcUhJ2/H7b+/tj6B5ilHcNYXk7x/v0U7d6NITcXjBKMRqQ0XrIcgtAJsLVF2NohbG2pSEmhNC4OfUqKtoOtLS4DB+A6chSuo0dZbJqTwp07SXp8PjYeHgS++w7O/av9/GpyDPn5ZC1dSvaXXyHLyvC88UZ8H3m4Qbu/WzwhCCFCgB1ADyBBSulZ5b0cKaWXEOIj4C8p5QrT9s+BjWgJ4S0p5VjT9muBZ6WU11dznfuA+wDatm3bL76y77kFVaSlU7x/P8V7/6Jo7z4qErRBWuh0YDRe9fl0Hh7YenoinJyoSEg4P8Dq/PsuLjj374/zwIE49uyBY2iompCvETKWl1ORlAQIhJ2t1kNGZ6OVFCoqkHo90mDAxsMTGy/PC8ZUGMvKMGRlUZGWpiWYqGhKoqMoP3X6kkF6zkMG43X77biNGlWrXjjSYKAiJYXys/GUnz5F0Z6/KNq7F1lcrI0H8fY2jf3QaTOkXtxeZjBosZvuwdbXVysRddNKRY49ezZY54uSmBiSn3iSiqQkfO6bR6uHH240U6lcLX1ODjkrVpK9YgXGvDzcr5uE76OP4tC+fYPHYtGEIIRwBbYDb0gpfxBC5F4mIXwM7LkoIWwAEoA3L0oIz0gpp9R0XWstkFNx7hxFe/dRfvo0tq0DsA8Oxi4oCFsfH/SZWejTUrXudbm52Hh5Yuvjq5UcfHy0PvlV/kNLKdGnplJ26jQV55LPV0Wo7nctk7G0FH1aGhVpaejT0ik/c5rcH9eiT0nBtnVrvG69BcewMGw8PNC5e6BzcaEiIV5LKrGxlMbGUX72LLKi4vw57QIDcR0xHJfhw3EZNKhRtYvVhqGwiLQ3/0Pe9z/gGB5O4LvvYN+u3ZUPbCQq0tLIXvoFOd99hywuxnX0aFo98jCO3bpZLSaLJQQhhB3wC/CblPJ907ZjNOEqI0VpTKReT+G2bWSvXEnxnr8uu5+tnx+O3bppVZAhIdi3a4ddu3bYtmrV6NsnaiP/199IeeUVqKig9X/ewH3iRGuHdFn6zEwKtvxBwe+/U7R3L0iJ++Tr8Ln3Xhy7WL/dz1KNygJYjtaAPL/K9neBrCqNyt5SymeEEN2Br/m7UXkL0NnUqLwfeBTYi1Zq+J+UckNN11cJQWlptJJDGoa8PK2xuiAf+8BAHLt1a5YNrxerSEkh+YknKTl0CO/Zs/F76h+NpgqpciLJnK9WaLMGG43YtW2L+/hxeN52W6OaUt5SCWEYsBOIQut2CvAC2of6aqAtWnXQzVLKbNMxLwL3AHpgfmVPIiFEf/7udroReLQhu50qitI0yPJy0t59j5yvvsKpb18CP3jfqvORyYoK8n5ZT9aSJZSfOoVdUBAeU6fiNmG81u22EZbO1MA0RVGalbz160l5+Z/o7OzwfehBPGfOvOxkiOYkpaQiPp5i05QohTv/RJ+aikPXrvjMm4f7xAmNvg1QJQRFUZqdslOnSHvjDYp278EuMJBW8x/HffJkDKYxPCUxMVoje0kpxrJSZGmZtkqgvb32crBH5+yMfXBb7Nu3xz4kBLvANsjSUm2ak6IiDLm5lJ89S9mZM5SfOUvZiRMYsrMB0Lm749y3L5633YrriBGNsjRQHZUQFEVptgp37SL9//6Pstg4dC4uGIuKtDeEwK51a3QuzggHR4SjA8LOTutSW6bNaWUsKKAiJaX6NTmq0Hl44BASgn3HjuenVbfv2LHRT3NTnZoSQuMu2yiKolyB6zXX4DJkCPnrN1C8by8OnTrh2L07DqFhtRrYZywroyIhgbKzZ9GnpCKcHLFxcUHn4oLOzR37kHba4jJNpARQH6qEoCiK0oLUVEJoeuUdRVEUxSJUQlAURVEAlRAURVEUE5UQFEVRFEAlBEVRFMVEJQRFURQFUAlBURRFMVEJQVEURQGa8MA0IUQBcOwqDvEA8hrR/r5A5lXsX5drNLZ7UPGb/5jGdg8tLX5oevfQTkpZ/XzpUsom+QIirnL/xY1s/6uKvzncg4q/+d9DS4u/udxD5aslVRn93Mj2r4umfg8qfsscY8nzt7TfQYv+O27KVUYR8jLzcTQFTT1+aPr30NTjh6Z/D009fmge91CpKZcQFls7gHpq6vFD07+Hph4/NP17aOrxQ/O4B6AJlxAURVEU82rKJQRFURTFjFRCUBRFUYBGlBCEEMFCiK1CiDghRIwQ4nHTdm8hxCYhxAnTVy/Tdh/T/oVCiI8uOtc2IcQxIcQh08uvicVvL4RYLIQ4LoQ4KoSYYen4zXkPQgi3Kj/7Q0KITCHEf5tK/Kb3ZgohooQQR4QQvwohfC0dvwXu4VZT/DFCiHcaafzjhBCRpp91pBBidJVz9TNtPymEWCAaaMkyM9/DG0KIRCFEYUPEXm917a9q7hfQGuhr+t4NOA50A94BnjNtfw542/S9CzAMeAD46KJzbQP6N+H4XwP+bfpeB/g2tXu46LyRwPCmEj/a0rLplT930/GvNqXfAeADJACtTP9eDoxphPH3AdqYvu8BJFc51z5gCCCAjcCkRvo7qOkeBpvOV9gQsdf73q0dQA2/lJ+AcWijkVtX+UUdu2i/ORd/GGGFhGDm+BMBl6b8O6jyXmfT/YimEj9gB2QA7UwfRp8C9zWl3wEwANhc5d+zgIWNNX7TdgFkAQ6mfY5WeW8msKgx/w4uvoeLtjeJhNBoqoyqEkKEoGXdvYC/lDIFwPS1ttU/X5iqK15uqKJmpfrEL4TwNH37uhDigBDiOyGEvwXDvVwcIdT/dwDaH/IqafqraCj1iV9KWQE8CEQB59CeDj+3ZLzVqefv4CQQKoQIEULYAtOBYMtFe6k6xD8DOCilLAMCgaQq7yWZtjWoet5Dk9PoEoIQwhX4Hpgvpcyv42nukFL2BK41vWaZK74rMUP8tkAQsEtK2RfYA7xnxhCvyEy/g0q3Ad/UP6raq2/8Qgg7tITQB2gDHAGeN2uQV46hXvcgpcxBu4dVwE7gLKA3Z4w1udr4hRDdgbeB+ys3VbNbQz9U1PcempxGlRBMf4jfAyullD+YNqcJIVqb3m+NVrdbIyllsulrAfA1MNAyEV/ITPFnAcXAj6Z/fwf0tUC41TLX78C0by/AVkoZaZFgq7+mOeLvDSClPGUq2awGhlom4kuZ8e/gZynlICnlELTqjhOWirmqq41fCBGE9v/9LinlKdPmJLQHo0pBaKW1BmGme2hyGk1CMFXrfA7ESSnfr/LWOmC26fvZaPV5NZ3HtrJHiOmXej0Qbf6IL7muWeI3fQD9DIw0bRoDxJo12Msw1z1UMZMGLB2YMf5koJsQonJGyHFAnDljvRxz/g6EqXedqTfMQ8AS80Zb7TWvKn5TFel64Hkp5a7KnU1VMgVCiMGmc95F7f/f1Yu57qFJsnYjRuULraeERCueHzK9rkPrLbEF7elmC+Bd5ZizQDZQiPZE0Q2t10Wk6TwxwIeATVOJ37S9HbDDdK4tQNum9Duo8t5pILSp/R8ybX8ALQkcQUvQPk3wHr5Be5iIBW5rjPEDLwFFVfY9BPiZ3uuP9jB3CviIBuqYYOZ7eMf0OzGavr7aUH8PdXmpqSsURVEUoBFVGSmKoijWpRKCoiiKAqiEoCiKopiohKAoiqIAKiEoiqIoJiohKEodCSFeFUI8VcP704UQ3RoyJkWpD5UQFMVypqONjVGUJkGNQ1CUqyCEeBFt1Gwi2oyokUAecB9gjzap3Cy06S9+Mb2XhzbpGcDHQCu06UnmSSmPNmD4ilIjlRAUpZaEEP2AZcAgtEkID6BNjf2FlDLLtM+/gTQp5f+EEMuAX6SUa0zvbQEekFKeEEIMAt6UUo6+9EqKYh221g5AUZqQa4EfpZTFAEKIdabtPUyJwBNwBX67+EDTzJlDge+qzMbuYOmAFeVqqISgKFenuiL1MmC6lPKwEGIOf09MWJUOyJVS9rZYZIpST6pRWVFqbwdwgxDCSQjhBkwxbXcDUkyz695RZf8C03tIbT79M0KIm0GbUdM0PbiiNBqqDUFRrkKVRuV4tNkrY9FmunzGtC0KcJNSzhFCXAN8BpQBN6HNePkJ2vKLdsC3Usp/NfhNKMplqISgKIqiAKrKSFEURTFRCUFRFEUBVEJQFEVRTFRCUBRFUQCVEBRFURQTlRAURVEUQCUERVEUxeT/ATfwb9hA6YyyAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "for i,j in etf_ts.groupby('Asset_Class')['total_mkt_val_net_USD_millions']:\n", " j.resample('M').mean().rolling(4).mean().plot(label=i)\n", " plt.legend()" ] }, { "cell_type": "markdown", "id": "061718a4", "metadata": {}, "source": [ "Having `DateTime` data type makes plotting time series rather accurate. " ] }, { "cell_type": "code", "execution_count": 27, "id": "fb0a2da1", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEGCAYAAABlxeIAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAnuklEQVR4nO3de3xV5Z3v8c9PYkGrVuXisYQaRrEICFIyVkfHl5W2YnWq0/GCxxa89NCx2trOOTOFduaI08Fjq+OtVadUFGxRS9VWBC8girdBMGAM10iASCJIwiWQBHL/nT/Wk3Qn2TuXnZ2dBL/v12u/9trPep61fnvttddvrfWsvba5OyIiIkf0dAAiItI7KCGIiAighCAiIoESgoiIAEoIIiISZPR0AMkaNGiQZ2Vl9XQYIiJ9yurVq3e7++B44/psQsjKyiInJ6enwxAR6VPM7KNE43TKSEREACUEEREJlBBERATow30IIp9WtbW1FBcXU1VV1dOhSC82YMAAMjMzOfLIIzvcRglBpI8pLi7m2GOPJSsrCzPr6XCkF3J39uzZQ3FxMcOHD+9wO50yEuljqqqqGDhwoJKBJGRmDBw4sNNHkUoIIn2QkoG0J5l1RAlBJEU2fXKAnMK9PR2GSNLUhyCSIpPufwuAwrsu7eFIRJKjIwQR6RXKysp4+OGHm14vX76cyy67LG7dCy+8sNvuVNAyju4yc+ZM7rnnnmZlWVlZ7N69G4BZs2YxevRoxo4dy1lnncXKlSuB6L1/8YtfZOzYsYwcOZJbb72VsrKylMSkhCAivUK6NsQQXYXT0NCQ0jjq6+u7GlaTFStWsGjRItasWUNeXh6vvvoqw4YNaxo/f/588vLyyMvLo3///lx++eUpma9OGYn0YXe8sJ4NOw6kdJqjPn8ct//d6DbrFBYWMmnSJM4//3zeffddxo0bxw033MDtt99OSUkJ8+fP57TTTuPGG29k69atHH300cyePZuxY8cyc+ZMtm/fztatW9m+fTs/+tGP+OEPf8j06dPZsmULZ511Fl/72te49NJLqaio4Morr2TdunVMmDCB3//+9806S+fMmcO6deu47777APjtb3/Lxo0buffee+PGfMkll/CVr3yFFStW8Oc//5kFCxawYMECqqur+fu//3vuuOOOuHHcc889LFq0CIBbb72V7Oxsrr/+erKysrjxxhtZsmQJt956K9OnT2fq1Km88MIL1NbW8sc//pGRI0d2+jPYuXMngwYNon///gAMGjQobr3PfOYz/PKXv+S0007jgw8+YNy4cZ2eVywdIYhIUgoKCrjtttvIy8tj06ZNPPnkk7z99tvcc8893Hnnndx+++2MHz+evLw87rzzTqZMmdLUdtOmTbzyyiusWrWKO+64g9raWu666y5OPfVUcnNzufvuuwF4//33uf/++9mwYQNbt27lnXfeaRbD5MmTWbhwIbW1tQA8/vjj3HDDDQljzs/PZ8qUKbz//vvk5+ezefNmVq1aRW5uLqtXr+bNN9+MG0dbBgwYwNtvv83kyZOBaOO9Zs0abr755lanhDrq61//OkVFRZx++ul8//vf54033khYt1+/fowbN45NmzYlNa9YOkIQ6cPa25PvTsOHD+fMM88EYPTo0UycOBEz48wzz6SwsJCPPvqIZ599FoCLLrqIPXv2sH//fgAuvfRS+vfvT//+/RkyZAi7du2KO4+zzz6bzMxMAM466ywKCws5//zzm8Z/9rOf5aKLLmLRokWcccYZ1NbWNsUUzymnnMI555wDwJIlS1iyZAnjx48HoKKigs2bN/OFL3yhU8vhmmuuafb6W9/6FgATJkzgueeeS9gu0WWhZsYxxxzD6tWreeutt3j99de55ppruOuuu7j++uvjtnH3TsWciBKCiCSl8XQGwBFHHNH0+ogjjqCuro6MjNabl8aNYGzbfv36UVdX1+48EtX77ne/y5133snIkSPbPDqAKIE0cndmzJjB9773vWZ1CgsLm73OyMho1t/Q8sdesdOMjbmt9wUwcOBAdu7c2aysvLyc448/vqn9hRdeyIUXXsiZZ57JvHnz4iaE+vp61q5dyxlnnJFwXh2lU0Yi0i0uuOAC5s+fD0RXDA0aNIjjjjsuYf1jjz2W8vLyTs/ny1/+MkVFRTz55JNce+21HW538cUX89hjj1FRUQHAxx9/TElJSas4TjnlFDZs2EB1dTX79+9n2bJlnY4xngsuuICFCxc2zeu5555j3Lhx9OvXr+l0VqPc3FxOOeWUVtOora1lxowZDBs2jLFjx3Y5Jh0hiEi3mDlzJjfccANjx47l6KOPZt68eW3WHzhwIOeddx5jxozhkksu4dJLO/57jquvvprc3FxOOOGEDrf5+te/zsaNGzn33HMBOOaYY/j973/Pqaee2iyOu+++m6uvvpqxY8cyYsSIplNMXTV27FhuvfVWzj//fMyMIUOG8OijjwLR6asf/OAHlJWVkZGRwWmnncbs2bOb2l533XX079+f6upqvvrVr/L888+nJCZr79yTmT0GXAaUuPuYFuP+D3A3MNjdd4eyGcBNQD3wQ3d/JZRPAOYCRwEvAre5u5tZf+AJYAKwB7jG3QvbCzw7O9v1j2nSm2RNXwx0/w/TNm7cmJLTA4eTyy67jB//+MdMnDixp0PpVeKtK2a22t2z49XvyCmjucCkloVmNgz4GrA9pmwUMBkYHdo8bGb9wuhHgGnAiPBonOZNwD53Pw24D/hFB2ISEaGsrIzTTz+do446SskgBdo9ZeTub5pZVpxR9wH/AsQeq1wOPO3u1cA2MysAzjazQuA4d18BYGZPAFcAL4U2M0P7Z4Bfm5l5qrrNReSwdfzxx/Phhx82K9uzZ0/c5LBs2TIGDhyYrtCaPP744zzwwAPNys477zweeuihtMfSnqT6EMzsm8DH7v5Bi0unhgLvxrwuDmW1YbhleWObIgB3rzOz/cBAYHec+U4jOsro9KVhIocTd9cdTxMYOHAgubm5PR1GkxtuuKHdq5+6QzL71J2+ysjMjgZ+BvzfeKPjlHkb5W21aV3oPtvds909e/DgwR0JV+SwM2DAAPbs2ZOya8/l8NP4BzkDBgzoVLtkjhBOBYYDjUcHmcAaMzubaM9/WEzdTGBHKM+MU05Mm2IzywA+B+gewiIJZGZmUlxcTGlpaU+HIr1Y419odkanE4K7rwWGNL4O/QPZ7r7bzBYCT5rZvcDniTqPV7l7vZmVm9k5wEpgCvCrMImFwFRgBXAl8Jr6D0QSO/LIIzv1t4giHdXuKSMze4poY/1FMys2s5sS1XX39cACYAPwMnCLuzfeAvBm4FGgANhC1KEMMAcYGDqg/wmYnuR7ERGRLujIVUZt/vTP3bNavJ4FzIpTLwcYE6e8CriqvThERKR76dYVIiICKCGIiEighCAiIoASgoiIBEoIIiICKCGIiEighCAiIoASgoiIBEoIIiICKCGIiEighCAiIoASgoiIBEoIIiICKCGIiEighCAiIoASgoiIBEoIIiICdOwvNB8zsxIzWxdTdreZbTKzPDP7k5kdHzNuhpkVmFm+mV0cUz7BzNaGcQ+amYXy/mb2h1C+0syyUvsWRUSkIzpyhDAXmNSibCkwxt3HAh8CMwDMbBQwGRgd2jxsZv1Cm0eAacCI8Gic5k3APnc/DbgP+EWyb0ZERJLXbkJw9zeBvS3Klrh7XXj5LpAZhi8Hnnb3anffBhQAZ5vZycBx7r7C3R14Argips28MPwMMLHx6EFERNInFX0INwIvheGhQFHMuOJQNjQMtyxv1iYkmf3AwBTEJSIindClhGBmPwPqgPmNRXGqeRvlbbWJN79pZpZjZjmlpaWdDVdERNqQdEIws6nAZcB14TQQRHv+w2KqZQI7QnlmnPJmbcwsA/gcLU5RNXL32e6e7e7ZgwcPTjZ0ERGJI6mEYGaTgJ8A33T3gzGjFgKTw5VDw4k6j1e5+06g3MzOCf0DU4DnY9pMDcNXAq/FJBgREUmTjPYqmNlTwIXAIDMrBm4nuqqoP7A09P++6+7/6O7rzWwBsIHoVNIt7l4fJnUz0RVLRxH1OTT2O8wBfmdmBURHBpNT89ZERKQz2k0I7n5tnOI5bdSfBcyKU54DjIlTXgVc1V4cIiLSvfRLZRERAZQQREQkUEIQERFACUFERAIlBBERAZQQREQkUEIQERFACUFERAIlBBERAZQQREQkUEIQERFACUFERAIlBBERAZQQREQkUEIQERFACUFERAIlBBERAZQQREQkaDchmNljZlZiZutiyk40s6Vmtjk8nxAzboaZFZhZvpldHFM+wczWhnEPWvgzZjPrb2Z/COUrzSwrxe9RREQ6oCNHCHOBSS3KpgPL3H0EsCy8xsxGAZOB0aHNw2bWL7R5BJgGjAiPxmneBOxz99OA+4BfJPtmREQkee0mBHd/E9jbovhyYF4YngdcEVP+tLtXu/s2oAA428xOBo5z9xXu7sATLdo0TusZYGLj0YOIiKRPsn0IJ7n7ToDwPCSUDwWKYuoVh7KhYbhlebM27l4H7AcGxpupmU0zsxwzyyktLU0ydBERiSfVncrx9uy9jfK22rQudJ/t7tnunj148OAkQxQRkXiSTQi7wmkgwnNJKC8GhsXUywR2hPLMOOXN2phZBvA5Wp+iEhGRbpZsQlgITA3DU4HnY8onhyuHhhN1Hq8Kp5XKzeyc0D8wpUWbxmldCbwW+hlERCSNMtqrYGZPARcCg8ysGLgduAtYYGY3AduBqwDcfb2ZLQA2AHXALe5eHyZ1M9EVS0cBL4UHwBzgd2ZWQHRkMDkl70xERDql3YTg7tcmGDUxQf1ZwKw45TnAmDjlVYSEIiIiPUe/VBYREUAJQUREAiUEEREBlBBERCRQQhAREUAJQUREAiUEEREBlBBERCRQQhAREUAJQUREAiUEEREBlBBERCRQQhAREUAJQUREAiUEEREBlBBERCRQQhAREaCLCcHMfmxm681snZk9ZWYDzOxEM1tqZpvD8wkx9WeYWYGZ5ZvZxTHlE8xsbRj3YPjfZRERSaOkE4KZDQV+CGS7+xigH9H/IU8Hlrn7CGBZeI2ZjQrjRwOTgIfNrF+Y3CPANGBEeExKNi4REUlOV08ZZQBHmVkGcDSwA7gcmBfGzwOuCMOXA0+7e7W7bwMKgLPN7GTgOHdf4e4OPBHTRkRE0iTphODuHwP3ANuBncB+d18CnOTuO0OdncCQ0GQoUBQzieJQNjQMtyxvxcymmVmOmeWUlpYmG7qIiMTRlVNGJxDt9Q8HPg981sy+3VaTOGXeRnnrQvfZ7p7t7tmDBw/ubMgiItKGrpwy+iqwzd1L3b0WeA74G2BXOA1EeC4J9YuBYTHtM4lOMRWH4ZblIiKSRl1JCNuBc8zs6HBV0ERgI7AQmBrqTAWeD8MLgclm1t/MhhN1Hq8Kp5XKzeycMJ0pMW1ERCRNMpJt6O4rzewZYA1QB7wPzAaOARaY2U1ESeOqUH+9mS0ANoT6t7h7fZjczcBc4CjgpfAQEZE0SjohALj77cDtLYqriY4W4tWfBcyKU54DjOlKLCIi0jX6pbKIiABKCCIiEighiIgIoIQgIiKBEoKIiABKCCIiEighiIgIoIQgIiKBEoKIiABKCCIiEighiIgIoIQgIiKBEoKIiABKCCIiEighiIgIoIQgIiKBEoKIiABdTAhmdryZPWNmm8xso5mda2YnmtlSM9scnk+IqT/DzArMLN/MLo4pn2Bma8O4B8N/K4uISBp19QjhAeBldx8JjAM2AtOBZe4+AlgWXmNmo4DJwGhgEvCwmfUL03kEmAaMCI9JXYxLREQ6KemEYGbHARcAcwDcvcbdy4DLgXmh2jzgijB8OfC0u1e7+zagADjbzE4GjnP3Fe7uwBMxbUREJE26coTwV0Ap8LiZvW9mj5rZZ4GT3H0nQHgeEuoPBYpi2heHsqFhuGW5iIikUVcSQgbwJeARdx8PVBJODyUQr1/A2yhvPQGzaWaWY2Y5paWlnY1XRETa0JWEUAwUu/vK8PoZogSxK5wGIjyXxNQfFtM+E9gRyjPjlLfi7rPdPdvdswcPHtyF0EVEpKWkE4K7fwIUmdkXQ9FEYAOwEJgayqYCz4fhhcBkM+tvZsOJOo9XhdNK5WZ2Tri6aEpMGxERSZOMLrb/ATDfzD4DbAVuIEoyC8zsJmA7cBWAu683swVESaMOuMXd68N0bgbmAkcBL4WHiIikUZcSgrvnAtlxRk1MUH8WMCtOeQ4wpiuxiIhI1+iXyiIiAighiIhIoIQgIiKAEoKIiARKCCIiAighpI27s/9QbU+HISKSkBJCmvzhvSLG3bGEgpLyng5FRCQuJYQ0eT0/uoNHQUlFD0ciIhKfEoKIiABKCCIiEighiIgIoISQdh73nx5ERHqeEkKaWNz/ARIR6T2UEEREBFBCEBGRQAkhzdSFICK9lRJCmpi6EESkl1NCEBERIAUJwcz6mdn7ZrYovD7RzJaa2ebwfEJM3RlmVmBm+WZ2cUz5BDNbG8Y9aKb9aRGRdEvFEcJtwMaY19OBZe4+AlgWXmNmo4DJwGhgEvCwmfULbR4BpgEjwmNSCuISEZFO6FJCMLNM4FLg0Zjiy4F5YXgecEVM+dPuXu3u24AC4GwzOxk4zt1XuLsDT8S0Oezoh2ki0lt19QjhfuBfgIaYspPcfSdAeB4SyocCRTH1ikPZ0DDcsrwVM5tmZjlmllNaWtrF0NNLJ8FEpLdLOiGY2WVAibuv7miTOGXeRnnrQvfZ7p7t7tmDBw/u4GxFRKQjMrrQ9jzgm2b2DWAAcJyZ/R7YZWYnu/vOcDqoJNQvBobFtM8EdoTyzDjlIiKSRkkfIbj7DHfPdPcsos7i19z928BCYGqoNhV4PgwvBCabWX8zG07UebwqnFYqN7NzwtVFU2LaHHZcP00TkV6qK0cIidwFLDCzm4DtwFUA7r7ezBYAG4A64BZ3rw9tbgbmAkcBL4XHYUU3txOR3i4lCcHdlwPLw/AeYGKCerOAWXHKc4AxqYhFRESSo18qi4gIoIQgIiKBEkKa6YdpItJbKSGki/qURaSXU0IQERFACUFERAIlhDRTF4KI9FZKCGmiLgQR6e2UEEREBFBCEBGRQAlBRESAT3lCqKqtp7quvv2KKeT6ZZqItOPVDbtYnLcz7fP9VCeEkf/2Mhfd80Za5mX6yzQR6aDvPpHDLU+uSft8P9UJAeDjskM9HYKISK/wqU8IIiISUUIQERFACSFt1IMgIr1d0gnBzIaZ2etmttHM1pvZbaH8RDNbamabw/MJMW1mmFmBmeWb2cUx5RPMbG0Y96CpB1ZEJO26coRQB/xvdz8DOAe4xcxGAdOBZe4+AlgWXhPGTQZGA5OAh82sX5jWI8A0YER4TOpCXCKfWvsqa9J+KbUcPpJOCO6+093XhOFyYCMwFLgcmBeqzQOuCMOXA0+7e7W7bwMKgLPN7GTgOHdf4dFF+k/EtBGRThj/86XcOPe9ng5D+qiU9CGYWRYwHlgJnOTuOyFKGsCQUG0oUBTTrDiUDQ3DLcvjzWeameWYWU5paWkqQk87/S5Nuts7BXt6OgTpo7qcEMzsGOBZ4EfufqCtqnHKvI3y1oXus909292zBw8e3Plge5B6RUSkt+tSQjCzI4mSwXx3fy4U7wqngQjPJaG8GBgW0zwT2BHKM+OUi4hIGnXlKiMD5gAb3f3emFELgalheCrwfEz5ZDPrb2bDiTqPV4XTSuVmdk6Y5pSYNiIikiYZXWh7HvAdYK2Z5YaynwJ3AQvM7CZgO3AVgLuvN7MFwAaiK5RucffGyyFuBuYCRwEvhcdhyfWfaSLSSyWdENz9bRL/3mpigjazgFlxynOAMcnG0heoC0FEejv9UllERAAlBBERCZQQRLqoqla/DJbDgxJCmumHaYeXLaUVjPy3l3l2dXH7lUV6OSWENNH9+g5PH35SDsDSDbt6OBKRrlNCEEkBXU4shwMlBJEu0IGfHE6UENJMfQiHJ32ucjhQQkgT7UgervTJyuFDCUFERAAlBOlFHnh1M9OeyOnpMJKiM0ZyOOjKze1EUuq+Vz/s6RA6TZ3KiW365AAHa+r50hdOaL+y9Ao6Qkgz7UkennpDp3JO4d6eDqGZSfe/xbce/u+eDqNd7s6Dyzazfc/Bng6lxykhpIv2JA9LveljXfjBp+d/pcqravnnP35ARXVdl6e1Y38V9y79kBvmrkpBZH2bEoIkrbqunrnvbKO+oRfsHve4nl8GR3yKzl89snwLf1xdzLz/LuzytDwc3h2q0T2plBAkaQ+/voWZL2xI+3185ry9jfxwy4ie1ltuSbK7opq5Kdg49hW19Q0AZBzRfPkfqKrlJ8/kUdmJI4fGz7DnU3rPU0JIkyXro3vdeG842dzCvsoa/nNJPnsra1i1Lf55aHdvdSSw/1AtAJU1XTts78jdQvdV1vDQ6wUcqKrl54s2cNmv3urSPFMt9mOtqWtI+/zvXLwxLfNZnl/Cc2tSswOw60AV+yprkmpbWx8t8CP7Nd+EPfRaAX/IKWL+yo86PK3GnNLdX836Buc7c1by7tY9SbWvqq3njQ9LUxxVc70mIZjZJDPLN7MCM5ve0/E0WpBTRPZ/LKW8qpas6Yt5ce3OVnXG3bGESx+Mv4Ha9MkB6hu8U+c6/3NJPovzWs8nkeX5JbzXhQ7FO15Yz69eK+BLP1/K1b9ZEXcDffcr+Zz60xebbewak5sBdfUNvLR2Z6cT3tZwt9Bfv7a5zXrffSKHu1/J5+r/WgH8ZYNAmPfuiupOzTdV4h0fNKRwy1JZXUd1XevPo6HBm31O1R1MQr94eRN5xWVJx3P94+/xTws+6FSbrOmLWf3RvmZlBSXlfPnOZYz/+VIO1dRz65NreD734w5P8/2iMgCOzGi+CTsUlsln+nV802bhU4z3uVXV1vPI8i3U1cdfvqs/2tvq86lvcPYfrG1Vd3dFNW9t3s0Pnnq/w7E98OpmsqYvprqunjteWM/Ux1axceeBDrfvrF6REMysH/AQcAkwCrjWzEb1bFSRn/1pLbsrathaWglEG+t1H+9vVmf/oVrW72j9IeUWlTHp/rf47Vtbm8parnJz3t7G6/klTa/f+LCUX71WwC1PrmlWr3FPav/BWg5UNV/Zrn/8Pa4KG8qOcPdmG+4/5zbvjKytb6C6rp6rf7OCwt2V/G5FIQ8v3wJE51mXbdzF8vwSSsNG2MyY9eJGbp6/hpfXfdLhOADWhmV5z5K/XHIaLyE1blA2xTlV9B+LN5L9H6/yyf6qZuVFew+ypbSCraUVHYrlodcLyJq+mMmzV3T4ip26cNRUH7M8O9KnkjV9MdOfzWtV/nzux3yyv4qNOw9w3aPvMvr2V/jiv77cqt7N81cz8t9epq6+gS/9fCmLW+yoPPR6Qas2a7bv45HlW/jmr9/hq/e+0VQnp3AvUx5blXCjB9E6/mjMetyekvLmn0VsPPct/ZCv3vtm0+vbF65jUd5Obns6t1Vif2rVdgpKypsdoZaWV/NBSAif6feXlLyvsqbpqHXAkf3ixlVaXs2f3o+OcIr2HuQnz+Q1rW+7K6ppaHBKyqu466VNNDQ497ySzy9e3sRTq7Y3TeNgTR31DU7h7kr+4ZEV/K8nVlNdV980nSmPrWTcvy/hUE09eytr2L7nIFnTFzN/5famGGLVNzjXPfoub21uvfffeCl2eVUdT60qAuDAodbJJlWsN5zCMLNzgZnufnF4PQPA3f9fojbZ2dmek9P5HzG5O8NnvJhsqE2OG5BBZU29OlT7mAcmn0VVbT0/eXZtT4cikrSCWZeQ0YmjoFhmttrds+ON6xVHCMBQoCjmdXEoS7lUJAOAA1V1SgZ90G1P5yoZSJ932s9e6pbp9paEEO9UbKutrZlNM7McM8spLU2uc+WZfzw3qXYiIr3FS7f9bfdMuPF8ck8+gHOBV2JezwBmtNVmwoQJ3lUv5u3wnMI9Xnawxgt3V3SozaGaOr9/6YdeVVvXVNbQ0JCw/vY9le7uXl5V63X1iesV7a30zbsO+Etrd/j+QzW+paTc3d2fXPmR5xTu9Yvve8PLq2p9084DXhDGxc6/vo1px/Ps6iL/ZP8hd3evratvM7aCknLfU1HtDQ0NXri7os332xUvr9vpB6v/slyra+ub5nWops7LKmvc3T2vqMwrq2ub6hXurvD7l37oeUVlzaaXU7jXy6tqvaMO1dS1OX71R3u9qrauzWWVSF19g9/98qamz2nRBzv8vW17Wn12y/NLfG9FtVfV1vmct7a2+qxXbt3jO8oO+q4D0WdXVVvn9fUNnldU5rnb9/mqbdH4TTsPNI1vVF1b32z5NqqsrvUPivY1K2toaOjS51xdW++vbdrlW0srmmKM9dHuSv9od2Wzspq6en9l3c5W8928q9w37zrgpeVVzcrjrfN19e3H3Ti+oaHByw7WNGtbuLvCDxyKyvZWVHvu9n1eVlnjZQejx46yg75x5/6m5Zjoe73gve1eVlnjtXX1bcbS6MNPDvi+yupW5WWVNc2+A42xdQWQ4wm2q72lDyED+BCYCHwMvAf8T3dfn6hNsn0IIiKfZm31IfSKm9u5e52Z3Qq8AvQDHmsrGYiISOr1ioQA4O4vAqnp8RURkU7rLZ3KIiLSw5QQREQEUEIQEZFACUFERAAlBBERCZQQREQE6CU3t0uGmZUCHb/peXODgN0pDCdd+mLcfTFm6JtxK+b06YtxN8Z8irsPjlehzyaErjCznES/1OvN+mLcfTFm6JtxK+b06YtxdyRmnTISERFACUFERIJPa0KY3dMBJKkvxt0XY4a+GbdiTp++GHe7MX8q+xBERKS1T+sRgoiItKCEICIikUT/nJPOBzAMeB3YCKwHbgvlJwJLgc3h+YRQ/jVgNbA2PF8UM60JobwAeJBwWizOPGcR/Y9zRYvy/sAfQvuVQFaC9qcCu4Aa4CBwR0zMu4F6oDQm5oHhPVYAv46ZzrFAbsxjN3B/J2O+AFgD1AFXtrGc+wMLQ7yHiP6UqHFZLwNqgcoWyzpu3GHcNUBe+Mx+2cZ8E34mwNXAhjCNJ7tzWYdxy4H8mOU9pDMxA18I034/vPdvpHBZp2K9ThT3P4XlnBfmf0oalvW1IZY84GVgUCdj7uh6ncqY07VOJ9zOhGVVBixKNP/ueqR1Zm0s3JOBL4XhY8OXZxTwS2B6KJ8O/CIMjwc+H4bHAB/HTGsV0V9yGvAScEmCeZ4T5tty4/p94L/C8GTgDwnaTweeCcPXA+UxMf8W+DuiBNcY82eB84F/bLkStpjuauCCTsacBYwFnmjni/P9UOdL4b09G7OsnwbmAotaLOu4cYcv1XZgcHg9D5iYYL5xPxNgBNGGtfGLmmjjnLJlTZQQsjuwTiaKeTZwcxgeBRSmcFmnYr1OFPdXgKPD8M1083pN9F8rJYQkENrP7GTMWXRsvU5VzOlcpxNuZ4j+OfLv+LQmhDgL63mivaV84ORQdjKQH6euAXuIMu7JwKaYcdcCv2lnXi03rq8A58as1LuJszcWp151bMzAhUR7f/kt2l1PgoQQVqaiePNrK+aY8rntfHHivbfYZf0too1Uq2XdMm7gr4FXY15/B3g4zjwTfibhC/vdDqwPKVvWdCAhtBPzb4CfhOFzgf9O9bJOdr3uRL3xwDvduayBI4n2yk8J7+W/gGnJxEzn1+tkY+7JdbrZdibEnPaE0Ov6EMwsi2iFXQmc5O47AcLzkDhN/gF4392rgaFAccy44lDWGUOJNsq4ex2wn2jPIWE9IJOoP2ZzbMxEK2a8mBO5lmhPwTsZc0e1fG+VRIe+K4GTgL1hXKJlHasAGGlmWeE/sa8gOvUXb56JPpPTgdPN7B0ze9fMJrUXN6lZ1o+bWa6Z/ZuZWSdjngl828yKif7h7wftxZzksk5mve5ovZuI9mrbjJsuLGt3ryU6ElkL7CDaY5/ThZjbkqr1o0fW6Xa2M2nVqxKCmR1DdGj9I3c/0IH6o4FfAN9rLIpTrbMb145Ow0IMjTHvITpU7YrJwFNdnEZbmt5biPt/AD/tyLJuyd33EU49AG8BhUTnehPOM7Z5eM4gOiq6kCgZPmpmxyeaRoqW9XXufibwt+HxnU7GfC0w190zgW8AvzOzeN+jpJd1F9brduuZ2beBbODuRLOPiTnpZW1mRxKtH+OBzxOdl5+RTMwdmV2YZ5di7ol1OsE0ekyvSQhhBXoWmO/uz4XiXWZ2chh/MtE5ycb6mcCfgCnuviUUFxPtITTKBHaYWb+wR5hrZv/eTijFhL2CsJfwOWCvmc1qnEZMvawQ81NEK8Le2JiJDvdL6AAzGwdkuPvq8LozMSeaZryYh4Vl/RxRx+bvwrhdRJ1wrZZ1Iu7+grt/2d3PJTo83xwn7rifSUw8z7t7rbtvC9MY0Z3L2t0/Ds/lwJPA2Z2M+SZgQZjGCmAAMChVy7qL63VbcWNmXwV+BnwzHHkkWkey6PqyPissoy3hiHcB8DedjTmebl4/0rlOt9rOtBdfd+sVCSEcts8BNrr7vTGjFgJTw/BUonOwhIy7GJjh7u80Vg6Hh+Vmdk6Y5hSiD6fe3c8Kj//bTjix87wSeM0jP2ucRky9OUSdVcWN9Vq0z2yMuQOuJebooJMxx5Ug5qkh7jrgxZjTUwuBxsPbpmXdFjMbEp5PIOoke7Rl3Ik+kzCJPxN1dmJmg4gOt7d217I2s4wwn8YdkMuAdZ2MeTtRpx9mdgZRQihNxbLu6nrdVtxmNp6o/+Ob7l4SM+3uWq8/BkaZWeNdNb9G9P3uzLKOqzu/i2lep1ttZ9qLr9t5N3ZQdPRB1OPvRIeVueHxDaJzasuIzgcuA04M9f+V6JxsLi0uHyQ6HF4HbAF+TeLL835JtPI0hOeZoXwA8Eei84mrgL9K0P6iEHN1iGVDTMxlRBuBeqIvxsWhTSHRXkBFmOeomOltBUa2s5wSxfzX4XUl0eHy+gTtBwCvhbgPhpgbl/UKosv2GoAqYjrxEsVNlMA2hMfkNuKO+5kQHTbfG9qvTTSNVC1roqtLVvOXywofAPp1MuZRwDvAB2HZfT1Vy5rUrNeJ4n6V6MikcboLu3u9JrqKZ2NY3i8AAzsZc0fX61TGnK51OuF2huh0VSnR5crFjTGn46FbV4iICNBLThmJiEjPU0IQERFACUFERAIlBBERAZQQREQkUEIQScDM3Mx+F/M6w8xKzWxRktM73sy+H/P6wmSnJdIdlBBEEqsExpjZUeH114iuZU/W8UQ/dhLplZQQRNr2EnBpGG72a3IzO9HM/mxmeRbdyGxsKJ9pZo+Z2XIz22pmPwxN7gJODbcwaLyX0DFm9oyZbTKz+eGXryI9QglBpG1PA5PNbADRvflXxoy7g+iOpGOBnxLdt7/RSOBi4Gzg9nCrjOnAFo9uYfDPod544EdEv4D+K+C8bnwvIm1SQhBpg7vnEd047Vqi213HOp9wwzp3fw0YaGafC+MWu3u1u+8muqnaSQlmscrdi929geiWElkpfQMinZDR0wGI9AELgXuIbmkce8/6tm5hXB1TVk/i71pH64l0Ox0hiLTvMeDf3X1ti/I3gesgumII2O1t/99BOdFfxIr0StobEWmHuxcT3Rm1pZlE/76WR3RH06lx6sROZ49F/6S1jqizenGqYxXpCt3tVEREAJ0yEhGRQAlBREQAJQQREQmUEEREBFBCEBGRQAlBREQAJQQREQn+P2kklzoZ9yefAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "etf.plot(x='Month',y='monthly_return_USD')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 28, "id": "f6ccd0ac", "metadata": { "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAsfElEQVR4nO3deXxV1bn/8c/DIINDVUCvBZv4E6wKgl74UazWOrSK1Yq2DvTXFhx66fVqa2/vbQN2cGhRq9SpTsURFaWoKDSIMogilsEAYZ7ClIQpIZAQEsjE8/tjL+IBTiBzTuT7fr3O6+yz9lrnPGfaz15r73OWuTsiIiItmjoAERFJDEoIIiICKCGIiEighCAiIoASgoiIBEoIIiICQKumDqC2Onbs6MnJyU0dhohIszJv3rxt7t4p3rpmmxCSk5NJS0tr6jBERJoVM9tQ1ToNGYmICKCEICIigRKCiIgAzfgYgsiRqqysjOzsbPbs2dPUoUgCa9u2LV26dKF169bVbqOEINLMZGdnc+yxx5KcnIyZNXU4koDcnby8PLKzsznttNOq3U5DRlJjq7cWsmzTzqYO44i1Z88eOnTooGQgVTIzOnToUONepHoIUmPffWwGAOsfuqqJIzlyKRnI4dTmM6IegoiIAEoIIpIg8vPzeeaZZypvf/zxx1x99dVx61588cUN9sPUA+NoKPfeey8jRozYryw5OZlt27YBMHz4cLp3707Pnj0599xzmTNnDhA9969//ev07NmTM888kzvvvJP8/Px6iUkJQUQSQmNtiCE66Lp37956jaOioqKuYVWaNWsWqampzJ8/n0WLFjF16lROPfXUyvWjR49m0aJFLFq0iDZt2jBgwIB6eVwdQxBpxu7759J6P8B/9leP457vdz9knfXr19O/f38uvPBCZs+eTa9evbjlllu45557yMnJYfTo0XTt2pVbb72VtWvX0r59e0aOHEnPnj259957yczMZO3atWRmZvKrX/2KX/7ylwwdOpQ1a9Zw7rnn8t3vfperrrqKXbt2cf3117NkyRJ69+7N66+/vt/Y+IsvvsiSJUt47LHHAHj++edZvnw5jz76aNyYr7zySi655BJmzZrFe++9x9ixYxk7diwlJSVcd9113HfffXHjGDFiBKmpqQDceeed9OnTh5tvvpnk5GRuvfVWJk+ezJ133snQoUMZPHgw//znPykrK+Ott97izDPPrPF7sHnzZjp27EibNm0A6NixY9x6Rx11FA8//DBdu3Zl4cKF9OrVq8aPFUs9BBGplYyMDO666y4WLVrEihUreOONN5g5cyYjRozggQce4J577uG8885j0aJFPPDAAwwaNKiy7YoVK/jwww+ZO3cu9913H2VlZTz00EOcfvrppKen88gjjwCwYMECHn/8cZYtW8batWv57LPP9oth4MCBTJgwgbKyMgBefvllbrnllipjXrlyJYMGDWLBggWsXLmS1atXM3fuXNLT05k3bx4zZsyIG8ehtG3blpkzZzJw4EAg2njPnz+f22+//aAhoeq6/PLLycrK4owzzuC//uu/+OSTT6qs27JlS3r16sWKFStq9Vix1EMQacYOtyffkE477TTOOeccALp3785ll12GmXHOOeewfv16NmzYwDvvvAPApZdeSl5eHgUFBQBcddVVtGnThjZt2nDSSSexdevWuI/Rt29funTpAsC5557L+vXrufDCCyvXH3300Vx66aWkpqZy1llnUVZWVhlTPElJSfTr1w+AyZMnM3nyZM477zwAdu3axerVq/na175Wo9fhpptu2u/2D37wAwB69+7NuHHjqmxX1VlAZsYxxxzDvHnz+PTTT5k+fTo33XQTDz30EDfffHPcNu5eo5irooQgIrWybzgDoEWLFpW3W7RoQXl5Oa1aHbx52bcRjG3bsmVLysvLD/sYVdX72c9+xgMPPMCZZ555yN4BRAlkH3dn2LBh/PznP9+vzvr16/e73apVq/2ONxx4bn/sfcbGfKjnBdChQwc2b968X1lhYSHHH398ZfuLL76Yiy++mHPOOYdRo0bFTQgVFRUsXryYs846q8rHqq7DDhmZ2UtmlmNmS+Ks+18zczPrGFM2zMwyzGylmV0RU97bzBaHdU9a+GSYWRsz+0con2NmyXV+ViLS5C666CJGjx4NRGcMdezYkeOOO67K+sceeyyFhYU1fpxvfOMbZGVl8cYbb/CjH/2o2u2uuOIKXnrpJXbt2gXAxo0bycnJOSiOpKQkli1bRklJCQUFBUybNq3GMcZz0UUXMWHChMrHGjduHL169aJly5aVw1n7pKenk5SUdNB9lJWVMWzYME499VR69uxZ55iq00N4BXgKeDW20MxOBb4LZMaUnQ0MBLoDXwWmmtkZ7l4BPAsMAWYD7wP9gUnAbcAOd+9qZgOBvwD798FEpNm59957ueWWW+jZsyft27dn1KhRh6zfoUMHLrjgAnr06MGVV17JVVdV/4ePN954I+np6ZxwwgnVbnP55ZezfPlyzj//fACOOeYYXn/9dU4//fT94njkkUe48cYb6dmzJ926dascYqqrnj17cuedd3LhhRdiZpx00km88MILQDR89Ytf/IL8/HxatWpF165dGTlyZGXbH//4x7Rp04aSkhK+853vMH78+HqJCXc/7AVIBpYcUPY20AtYD3QMZcOAYTF1PgTOB04BVsSU/wj4e2ydsNwK2AbY4WLq3bu3S9NISkn1pJTUpg7jiLVs2bKmDiHhXHXVVT516tSmDiPhxPusAGlexXa1VmcZmdk1wEZ3X3jAqs5AVszt7FDWOSwfWL5fG3cvBwqADlU87hAzSzOztNzc3NqELiJfIvn5+Zxxxhm0a9eOyy67rKnDafZqfFDZzNoDvwMuj7c6TpkfovxQbQ4udB8JjATo06dP/RxWF5Fm6/jjj2fVqlX7leXl5cVNDtOmTaNDh7j7mg3q5Zdf5oknntiv7IILLuDpp59u9FgOpzZnGZ0OnAYsDMeFuwDzzawv0Z7/qTF1uwCbQnmXOOXEtMk2s1bAV4DttYhL5Ijh7vqDuyp06NCB9PT0pg6j0i233HLYs58agtfiVNQaDxm5+2J3P8ndk909mWiD/u/uvgWYAAwMZw6dBnQD5rr7ZqDQzPqFs4sGAfuOgkwABofl64GPvDbPROQI0bZtW/Ly8urt3HP58vEwH0Lbtm1r1O6wPQQzexO4GOhoZtnAPe7+YhVBLDWzscAyoBy4w6MzjABuJzpjqR3R2UWTQvmLwGtmlkHUMxhYo2cgcoTp0qUL2dnZ6DiaHMq+GdNq4rAJwd0PeWJv6CXE3h4ODI9TLw3oEad8D3DD4eIQkUjr1q1rNAuWSHXpv4xERARQQhARkUAJQUREACUEEREJlBBERARQQhARkUAJQUREACUEEREJlBBERARQQhARkUAJQUREACUEEREJlBBERARQQhARkUAJQUREgGokBDN7ycxyzGxJTNkjZrbCzBaZ2btmdnzMumFmlmFmK83sipjy3ma2OKx7MsycRphd7R+hfI6ZJdfvUxQRkeqoTg/hFaD/AWVTgB7u3hNYBQwDMLOziWY86x7aPGNmLUObZ4EhRNNqdou5z9uAHe7eFXgM+Ettn4yIiNTeYROCu8/ggEnv3X2yu5eHm7OBffO0DQDGuHuJu68DMoC+ZnYKcJy7zwrzJb8KXBvTZlRYfhu4bF/vQUREGk99HEO4lS/mR+4MZMWsyw5lncPygeX7tQlJpgDoEO+BzGyImaWZWZrmkxURqV91Sghm9jugHBi9ryhONT9E+aHaHFzoPtLd+7h7n06dOtU0XBEROYRaJwQzGwxcDfw4DANBtOd/aky1LsCmUN4lTvl+bcysFfAVDhiiEhGRhlerhGBm/YEU4Bp3L45ZNQEYGM4cOo3o4PFcd98MFJpZv3B8YBAwPqbN4LB8PfBRTIIREZFG0upwFczsTeBioKOZZQP3EJ1V1AaYEo7/znb3/3T3pWY2FlhGNJR0h7tXhLu6neiMpXZExxz2HXd4EXjNzDKIegYD6+epiYhITRw2Ibj7j+IUv3iI+sOB4XHK04Aeccr3ADccLg4REWlY+qWyiIgASggiIhIoIYiICKCEICIigRKCiIgASggiIhIoIYiICKCEICIigRKCiIgASggiIhIoIYiICKCEICIigRKCiIgASggiIhIcNiGY2UtmlmNmS2LKTjSzKWa2OlyfELNumJllmNlKM7sipry3mS0O654ME+UQJtP5RyifY2bJ9fwcRUSkGqrTQ3gF6H9A2VBgmrt3A6aF25jZ2UQT3HQPbZ4xs5ahzbPAEKJZ1LrF3OdtwA537wo8Bvyltk9GRERq77AJwd1ncPAcxwOAUWF5FHBtTPkYdy9x93VABtDXzE4BjnP3WWF6zFcPaLPvvt4GLtvXexARkcZT22MIJ4d5kgnXJ4XyzkBWTL3sUNY5LB9Yvl8bdy8HCoAOtYxLRERqqb4PKsfbs/dDlB+qzcF3bjbEzNLMLC03N7eWIYqISDy1TQhbwzAQ4TonlGcDp8bU6wJsCuVd4pTv18bMWgFf4eAhKgDcfaS793H3Pp06dapl6CIiEk9tE8IEYHBYHgyMjykfGM4cOo3o4PHcMKxUaGb9wvGBQQe02Xdf1wMfheMMIiLSiFodroKZvQlcDHQ0s2zgHuAhYKyZ3QZkAjcAuPtSMxsLLAPKgTvcvSLc1e1EZyy1AyaFC8CLwGtmlkHUMxhYL89MRERq5LAJwd1/VMWqy6qoPxwYHqc8DegRp3wPIaGIiEjT0S+VRUQEUEIQEZFACUFERAAlBBERCZQQREQEUEIQEZFACUFERAAlBBERCZQQREQEUEIQEZFACUFERAAlBBERCZQQREQEUEIQEZFACUFERIA6JgQz+28zW2pmS8zsTTNra2YnmtkUM1sdrk+IqT/MzDLMbKWZXRFT3tvMFod1T4ZZ1UREpBHVOiGYWWfgl0Afd+8BtCSa7WwoMM3duwHTwm3M7OywvjvQH3jGzFqGu3sWGEI05Wa3sF5ERBpRXYeMWgHtzKwV0B7YBAwARoX1o4Brw/IAYIy7l7j7OiAD6GtmpwDHufusMJfyqzFtRESkkdQ6Ibj7RmAE0ZzKm4ECd58MnOzum0OdzcBJoUlnICvmLrJDWeewfGD5QcxsiJmlmVlabm5ubUMXEZE46jJkdALRXv9pwFeBo83sJ4dqEqfMD1F+cKH7SHfv4+59OnXqVNOQRUTkEOoyZPQdYJ2757p7GTAO+CawNQwDEa5zQv1s4NSY9l2Ihpiyw/KB5SIi0ojqkhAygX5m1j6cFXQZsByYAAwOdQYD48PyBGCgmbUxs9OIDh7PDcNKhWbWL9zPoJg2IiLSSFrVtqG7zzGzt4H5QDmwABgJHAOMNbPbiJLGDaH+UjMbCywL9e9w94pwd7cDrwDtgEnhIiIijajWCQHA3e8B7jmguISotxCv/nBgeJzyNKBHXWIREZG60S+VRUQEUEIQEZFACUFERAAlBBERCZQQREQEUEIQEZFACUFERAAlBBERCZQQREQEUEIQEZFACUFERAAlBBERCZQQREQEUEIQEZFACUFERIA6JgQzO97M3jazFWa23MzON7MTzWyKma0O1yfE1B9mZhlmttLMrogp721mi8O6J8PMaSIi0ojq2kN4AvjA3c8EehFNoTkUmObu3YBp4TZmdjYwEOgO9AeeMbOW4X6eBYYQTavZLawXEZFGVOuEYGbHARcBLwK4e6m75wMDgFGh2ijg2rA8ABjj7iXuvg7IAPqa2SnAce4+y90deDWmjYiINJK69BD+D5ALvGxmC8zsBTM7GjjZ3TcDhOuTQv3OQFZM++xQ1jksH1h+EDMbYmZpZpaWm5tbh9BFRORAdUkIrYB/B5519/OAIsLwUBXiHRfwQ5QfXOg+0t37uHufTp061TReERE5hLokhGwg293nhNtvEyWIrWEYiHCdE1P/1Jj2XYBNobxLnHIREWlEtU4I7r4FyDKzr4eiy4BlwARgcCgbDIwPyxOAgWbWxsxOIzp4PDcMKxWaWb9wdtGgmDYiItJIWtWx/S+A0WZ2FLAWuIUoyYw1s9uATOAGAHdfamZjiZJGOXCHu1eE+7kdeAVoB0wKFxERaUR1Sgjung70ibPqsirqDweGxylPA3rUJRYREakb/VJZREQAJQQREQmUEEREBFBCEBGRQAlBjii7SspJHjqRj1fmHL6yyBFGCUGOKOmZ+QA8/+napg1EJAEpIYiICKCEICIigRKCiIgASggiIhIoIYiICKCEICIigRKCiIgASggiIhIoIYiICFAPCcHMWprZAjNLDbdPNLMpZrY6XJ8QU3eYmWWY2UozuyKmvLeZLQ7rngwzp4mISCOqjx7CXcDymNtDgWnu3g2YFm5jZmcDA4HuQH/gGTNrGdo8CwwhmlazW1gvIiKNqE4Jwcy6AFcBL8QUDwBGheVRwLUx5WPcvcTd1wEZQF8zOwU4zt1nubsDr8a0ERGRRlLXHsLjwG+BvTFlJ7v7ZoBwfVIo7wxkxdTLDmWdw/KB5QcxsyFmlmZmabm5uXUMXUREYtU6IZjZ1UCOu8+rbpM4ZX6I8oML3Ue6ex9379OpU6dqPqyIiFRHqzq0vQC4xsy+B7QFjjOz14GtZnaKu28Ow0H7/ng+Gzg1pn0XYFMo7xKnXEREGlGtewjuPszdu7h7MtHB4o/c/SfABGBwqDYYGB+WJwADzayNmZ1GdPB4bhhWKjSzfuHsokExbUREpJHUpYdQlYeAsWZ2G5AJ3ADg7kvNbCywDCgH7nD3itDmduAVoB0wKVxERKQR1UtCcPePgY/Dch5wWRX1hgPD45SnAT3qIxYREakd/VJZREQAJQQREQmUEEREBFBCEBGRQAlBREQAJQQREQmUEEREBFBCEBGRQAlBREQAJQRpRMWl5Vz6148pLd97+Moi0uiUEKTRPD09g7W5Rbw2e0NThyLNzOaC3SQPnchfJ69s6lC+1JQQpNGUV0TTXJRVqIcgNZOZVwzAnLXbmziSLzclBBERAZQQREQkqMsUmqea2XQzW25mS83srlB+oplNMbPV4fqEmDbDzCzDzFaa2RUx5b3NbHFY92SYKEdERBpRXXoI5cD/uPtZQD/gDjM7GxgKTHP3bsC0cJuwbiDQHegPPGNmLcN9PQsMIZpFrVtYLyLSqErL9/LcJ2uaOowmU5cpNDe7+/ywXAgsBzoDA4BRodoo4NqwPAAY4+4l7r4OyAD6hnmXj3P3We7uwKsxbUS+9J6YuprkoRObOgwB7vvnUh6atIJZa/KaOpQmUS/HEMwsGTgPmAOcHOZJJlyfFKp1BrJimmWHss5h+cBykSPCY1NXNXUIEmwvKgVgR3FpE0fSNOqcEMzsGOAd4FfuvvNQVeOU+SHK4z3WEDNLM7O03NzcmgcrIiJVqlNCMLPWRMlgtLuPC8VbwzAQ4TonlGcDp8Y07wJsCuVd4pQfxN1Hunsfd+/TqVOnuoQuIiIHqMtZRga8CCx390djVk0ABoflwcD4mPKBZtbGzE4jOng8NwwrFZpZv3Cfg2LaiIhII2lVh7YXAD8FFptZeii7G3gIGGtmtwGZwA0A7r7UzMYCy4jOULrD3StCu9uBV4B2wKRwERGRRlTrhODuM4k//g9wWRVthgPD45SnAT1qG4uIiNSdfqksIiKAEoKIiARKCCJyxKrY6yQPnciHS7c0dSgJQQlBRI5YG/KKAHho0oomjiQxKCGIiAighCAiIoESgoiIAEoIIiISKCFIvarY6yzOLmjqMESkFpQQpF79YfwSvv/UTNbm7mrqUESkhpQQpF6tyYkSwdadJU0cyZfH4uwCormjmr835mTy1Eer46774/glJA+dSHnF3kaOSvZRQhBJYEs3FfD9p2by0AdfjvPk7353MSMmx58QaNz8jQDsLquIu14anhKCSALblL8H+KLn1VB+/Y90TeNZR8lDJ/LNB6c1dRh1ooTQjJWW7+WHz/6L0nJ1saVuxi3Y2NQhHOSpj1YzZdnWer/fl2au48+py6pV9+npGVzx2AwAthTsIXnoRNZvK6qy/qaCPfUSY1NRQqgnpeV72dPIXd2XPlvHvA07eP7TtQAUlZSzYsuhZjH9Qtb2YiYt3tyQ4TWZ6StzuGTEx9WruyKH5KETm01SXb21kB8++69q1d271ylrhPH48ekb+WhF/A23u7N3b+2Of4yYvIr/eDWtLqHFdX/qMl6Yua5adR/5cCUrtxYC8F56lDTfnJtZ7zElioRJCGbW38xWmlmGmQ1trMfNyNlVuRFdlJ1P8tCJ7C6Nv2G/+JHpVf4J1hm/n8SZf/igWo957dOf1Uv3vKRsb7iO4r3i8Rn0f/zTyvWZecUU7C6L2/ZbD0/n9tHz6xxDU/nbtNWMT4+/V/ufr81j3baiaiXoR6dE49lVJdK09durbPvMxxkszMo/fLD16BdvLmDehh2sO8Re6j69/zyFbr9r+Lmm7hqTzq2vxN9w/3rsQv7P3e9TuCf+57C2PliymUurmfTHp28keejEek+Oz32yhuShE6s84D9s3GJ21uJ5z1mbR9/hU+Ou27mnjOShE/n7J2tqfL/VkRAJwcxaAk8DVwJnAz8ys7Mb4rFKy/eSmVdcefs7j35SuRF9clp09sPMjG0AzNuwnddmb6isuz6vmJ+/Nq9aj5O2fjtbYrqPU5ZtrdxTSj9gI+LulR+qsoq9XDLi48ov0L0TlpI8dCIVoW3vP03hnHs/jPuY2Tt273f7okem0+u+yZW3H5y0vMqNZPLQifslqWuf/oxVYc/omY8zDnn2x/SVOVXuYecWllR5CurM1du4o4qkVFaxl3Pvn0xuYXS20h2j5+8X31+nrOKuMekA7CmrIHnoxMoEceDX88DndihFJeXsKCoF4OXP1nH9c7OYvjKaFvzAPe6HP1jJgKc/q9b9/v2TNUwNwx87ikpJHjqRV2etr1bbWOXhc7Dvvfj7J2v4/XuLgeh1+M1bCys/SzuK998Yzduwg+3huZVX7OXG52ZV+Xno//gMRny4svL2+PSN1e5FFZeWVy7PXRcl1PzigzeMxaXlJA+dSM7Omg+z/Ofr81kbkxR/8Mxn3PzyXCB6n5KHTqzck38ifK83xHzv68Mj4fWpiNMDmrtuO2/OzeTucYvDYxdVu2fx67ELySksYVN+9H3etqukcluStT16Du+lx512vs7qMoVmfeoLZLj7WgAzGwMMIJpus16dd/9kikor+MWlXWnbumVl+fj0jXy+fgcAY+ZmsqO4lN++vQiANq1a7LcX8M68bGatzePtedn84LzOnH96h8p14+Zn07Z1S/4rbOh+c8XXycjZxbsLNnJs21ak9D+zsu6LM9fRrnVL7n43+tA8fH1Pxn6exbptRXzr4enc8/2zeeVf6wF4/tO1HH1US/LCF/r12RsYPSdKVk9+lMGcdV/syY79PIsWLb6YzO6ttCxmr93OO/Oz+fsna/nztV9MTvf67A37PbcxczPJ3F5MelY+lz82gz9cfTYPf7Cysu5RrfZ/zZZsLOD5T6Pu9/DrelTG8fJn61i6qYA/T1xeue6jFdGGdfScDRx9VEv+MH4pAP1mraeswrk/jOv+5YfnkLpoM/nFZfzf4VO575ruTAzDW//4PJOjWn2xHzN6zgbmhfftrjHp7CmrqNxwvTZrAy1jXocXPl1buXH/LCOPF2euY/HG6Ed0M1blsm1XSeWe7mM39eLRcDbMq/9az87dZZUJ6P4B3Smr+OI1G5uWRW5hCY98uJIf9T2Vs045jj+G5zb8uh60btGCB8O/af7ue2fx2Zpoh+OP45fyb8e13e/1LC6tYFjYiNx3TXfmbYie2+y123lt1noywsHlhz9cSc/OX+GvoYfT+fj2/CWcibR2WxHXnvvVyvt9e142rVtaZfyP3dSLpz7KYE1uEWf+4QPuu6b7fu+/GazYUsiKLYUc37416Vn5pC7azF2kc9dl3So3sH8a0H2/jeFzn6xhYVY+k5ZsoeMxbfj1d89gY9iofbBkC1/r0L6y7tx125m0JHpPv/fkTO685HR2lZRX3s8J7Y/a7337LOykzV2/nZEzvtg7fviDFZjB/Mz86L34PIuyvdH7P2zcYlZs3sna3ChxPPXRar56fLvKto9OWcX2omiHY922Il6auY5JS6IRgJEz1u6XQFIXbeKDfes+XcvJx7WtfO73/nMpBbu/SILPfryGKcu2hHab+Va3TFLeid7Ttq1b0KbVF9uHR2/shTv8z1sL6XJCO+64pGvla/b2vGySOrSvfN/uu6Z7ZY+0oLiUhmCJcH6zmV0P9Hf3n4XbPwW+4e53HlBvCDAE4Gtf+1rvDRs2HHRfh/NlPZOib/KJzD3E8IbIl1GrFoYTfy8d4Ng2rSgs+WJj3bql7ZfM60O71i056bg29d4DOZz1D11Vq3ZmNs/d+8RduW+4oikvwA3ACzG3fwr87VBtevfu7bUxcdEmT0pJ9YLdpb67tNzHzc/yJ6eu8oycQn93frYnpaR61vYiz9pe5H+btspvfO5fnplX5Bt3FHtSSqpfMmK6r9+2y9+cs8GTUlL9gyWbPTOvyC/8yzRPSkn1dbm7fNmmAv/eEzM8deEm311a7uu37fKklFRPz9zhW3fu9tdnr/ebX5rj+UWlvqVgt/d7YKoPefVzz8wr8kVZ+Z6Ukuqz1mzzdbm7/I7R8zwpJdVzdu7xrTt3e1JKqielpPqWgt2emVfkSSmpvnFHsbu7Dxu3yJNSUj17R7Fv2Fbk33xwmj/4/nLPzCvyhVk7PCkl1d9ftMm3Fuz2v05e6Ukpqb61YLfn7Nzj1z090+8YPc835RdXxvvKZ+s8v6jUp6/Y6mf+fpKvzd3lm/N3+09emO3ffvgjX721sLLua7PW+9aC3f7R8q2elJLquYV7vGB3qb82a73/9z8W+JaC3ZUxrM3d5Tk79/iMVTk+bNwizy3c4zuKSvyO0fN8zNwNvnFHFEPPez/0dbm7fFvhHn/h07V++aOf+MYdxb42d5ff9spcf/D95b6lYLfnF5X6T16Y7Yuz8z17R7GP+tc6P/P3kyrv95sPTvPef5pc+Z5f/eSnvnRjgecXlfrM1bmelJLqi7LyfUHmDv+PUZ/7xY9M97W5u3zpxgLv/scPfPXWQs/IKfRvPjit8r3YUVTiA56a6c/PWONZ24s8bX2eJ6Wk+kfLt/q2wj0+IX1j5fPO2l7kfYdP8d++tdB3hhiSUlJ90uLNvjg7v/I9Xb210DfuKPYrH5/hg1+a49sK9/jUZVs8KSXV//jeYs/ZuccnLd7sSSmpXlGx10vLK/y//7HABzw103eXlvuyTQWelJLqmXlFnrNzjz/3cYZf/ugnnplX5Bk5hZ6Ukuq/fWuhr83d5dOWR/c7Pn2jbyvc4795K927/e5935Rf7Bt3FHvXuyf6r8Ys8Pzi6DOalJLqYz/P9IqKvX75o59Uvsd5u0r8O3/92H/8/GwvKimr/J6Mm5/lm/N3+2NTos/Zis07fcnG/MrXcMaqHB/6TvR5/dWYBb6tcI8Pn7jMk1JSvbik3POLS33oOwv9jTkbKl+zQS/O8TU5hV64p8zfnZ/tl4yYXvm9Tnl7of/v2HTP2l7kyzdHr8Nnq3Pd3Stfs5KyCnd3H/zSHD//galeVl7h23eVeL8HpvrCrB2+fVeJL8za4d3/+IHv3F3qxSXl/v+en+VJKam+cstO/3BJdD+Ls/N9R1GJ3/bK556Ukup79+51d/chr37uz32c4cUl5V5SVuF9h0/xBZk7fOOOYv/NW+mV24cVm3f6j5+f7SlvL/R1ubt85Zad3nf4FP9gyWbfuKPYX521vrLu6q2FfsfoeX5z+DzsKCrxpJRUn7sur1bbP3d3IM2r2K4mSg/hfOBed78i3B4G4O4PVtWmT58+npZW/2cgiDS2PWUV5BWV0jlmOCOR7d3rlFbs3W/ItbbS1m+nT/KJ9RCVVNeheggJcVAZ+BzoZmanmdlRwEBgQhPHJNIo2rZu2WySAUCLFlYvyQBQMkgwCXFQ2d3LzexO4EOgJfCSuy9t4rBERI4oCZEQANz9feD9po5DRORIlShDRiIi0sSUEEREBFBCEBGRQAlBRESABPmlcm2YWS5Q858qRzoC2+oxnIameBuW4m1Yirdh1TTeJHfvFG9Fs00IdWFmaVX9MCMRKd6GpXgbluJtWPUZr4aMREQEUEIQEZHgSE0II5s6gBpSvA1L8TYsxduw6i3eI/IYgoiIHOxI7SGIiMgBlBBERARQQhBJSGZmh6+VOJpbvM1NY72+X9qEYGbJTR1DTZhZHzM7qanjqC4z+46Z9W7qOKrLzL4Ss9wcNl4J80/E1dS6qQOoKTOrn0kdGkejbKu/dAnBzP7dzKYC9zeHN9zMupvZv4B7gOObOJzDMrPzzGwS8C7QtanjORwz+4aZjQdeMLNbzayNJ/CZFGbWz8xGE31+uyX6Z9jMzjezt4ARZnZ2M4n3fgB3r2jqeA7HzPqa2evAg2Z2jpk16Db7S5MQLPI74E1gjLsP2veGJ/ge4V3Au+7+fXdfBYkZr5m1NLORwPPA34E3gLPCuoT8HJlZT+Bp4G3gLeBSEjiJmVkP4G9AKrAVGAIMCusS8TNxEvAU0Twm24g+y7eGdYkY72BgFPB7M7sxlCVkT8zMWpjZPcALwCSiHuMdQK+GfNyE/CLXRtjraw3MdPcXoHJvtlUi7hGGDeyJgBN9qTCz68ysC9Au3E6YL1VIrh8A33L394B3gEvMrK27723S4KrWG8hw99eAKUBbIHPfykR6fYN+wAp3f5Mo8RYDPzazZHf3BIy3F7DK3V8G/gqMAwaY2RkJGu9Gop2C/kTx7putMdHiJHynsoGb3X00MBxIIppRssE064RgZt82s2/EFD0CdDazEWb2OfAnYJSZXd80Ee4vNt6wgS0GLgIuDd3CnwN/Bh4PdZo0kR34+rr7OHffHb5Ae4FVQPsmC/AAcT4PE4HrzGw4sBjoAjxpZimQeK8v0dzip5rZ6e5eRPQaFwD/AQkR77VmdreZXRWK0oE+MfF+DqQRfY4TKd6rQ9F0YKu7TwY2mNmfQnlC9BLivL5vAgvDMGceUAic0pAxNMuEYGbHmtk4onHsn5vZCQDhQ/kacC7wP+5+NTAD6G9mZyRgvHuAl4mGNT509/7A74AeZnZlosUbhuUsfNFXAJcR7XU36d72IV7fHKK92FbA3e7eD3gFuNDMzk+gePfNNL8GmAu8bGbvAX2IhrpamVnbJgkWMLNOIZ5fA9tDfNe7ey5RT/EXoWo+MBVob2YNuuE6lDjxvmRm14WdsH2f058DvzSzk929rIlCBap8fa9z92J3r3D3EjNrTbRDs7IhY2mWCQEoBT4CfgJsAm7YtyJ0r2509xmhaCrQCdjV2EHGqDJe4BmiIaJOAO6+EZhJtHfYVOLG64GZtXD3bGAOcP2+dU0VLIf+PKwAzgSyQtE8IAcoaeQYY1X1+u5y998CdwKvuPv3gQygZ9h5aCqnA5+5+0Xu/hzwP8B/h3VvAmea2WVhmCMP6EzUs2kq8eL9DYC7l5pZS3dfSpRsHwJoyh0wDhFvjLOIejerwg5F34YIpNkkBDMbFLrYx7t7CdHBlqlEwxZ99vUAwh7s9pim3yUap2/UhFDdeN19F9Ee1mAzO9fMbge+A6xPxHhDMtgbDsatBooaM86axhtMBu4NvZiBQHeiDVeixNs7Nl53XxSO00A05j27sXtgId6Lzaw9URJ9NZS3BJaFC0RDcWOAJ8ysK1Gv0YCjEizexeG2EW0PcPefEX3vdgC9rBFPjqhBvPuGs04Eis3sZuBfwDkN8ZlI6P8yCk/434jOaNlL1KU+GrjL3beFOt2AwcAed/9zKGsBXAg8QXQQMSXsKSZkvKH8JqLhje5EwxtLEzXemKTwGLDL3f/Q0LHWIt4Sd/9TKGtH9AdgJxEdlPuluy87+BGaNN4DPw+9iQ58VgBD3H1NU8cb9qwrzOwnwDXufmNM298CZxD1xv7D3ZcneLxJwGNAB+AOd1+S4PE+CKQQDXk+7u6LGiRId0/IC9AyXJ8BvB6WWxGdlvfOAXWvIxp66Uo0pm1E3bBrmkG8RwOtQ7k1g3jbAkc3k3i7Ae1j6v5bgsfbFWgXyjoA306QeMcdUOdVomFZYl9T4KhmEG+ncH080LcZxHtyuL4AuKmh40yIo+uxQhfpfqClmb0PHEe0l4RHp4j9EthkZt92909C+btmdhbRaZHHAJd6tAfYGHtV9RHvJcByD++84q23eCcBx5jZJR7tsW5J8Hg/CPHu+/x+kojxEg2/rrPoB14/MLP+7p7t7qXNJN7vuXsm0QH85hDvle7+WUPHSggqYS7At4GFwLNEp9rNIDpnOJOYbA7cDkyPuX0D0Vj288BJilfxKt6GiZdoyG0P0XzmjxP2uBVv84/X3RMuIXwL+GnM7WfCi3UzMC+UtSAahxsLnBbT7luKV/Eq3gaNN4loKPZx4N8V75crXvfESwjtgTZ8MZb2Y+DBsJwO/CIs9wHeVLyKV/E2WrxjFO+XO153T6zTTj36IUaJf/GnU98FcsPyLcBZZpZKdO7z/KaIMZbibViKt2HVMN550LQ/QFS8DS/hDipD5bm4DpwMTAjFhcDdQA9gnUc/4EoIirdhKd6GVZN4PezSNiXF23ASqocQYy/RH9VtA3qGLPoHYK+7z0ykL1OgeBuW4m1YirdhNZ94m3rMqqoL0T8/7iX6G4fbmjoexat4FW/iXBRvw1wS9pfKFv0N9E+BRz36qX9CU7wNS/E2LMXbsJpLvAmbEEREpHEl6jEEERFpZEoIIiICKCGIiEighCAiIoASgkitmdm9Zva/h1h/rZmd3ZgxidSFEoJIw7kWUEKQZkOnnYrUgJn9DhhENEdzLtF/0BQAQ4imjcwgOt/8XCA1rCsAfhju4mmi+bOLiWYWa/CZ/ESqSwlBpJrCtJavAN8g+h+w+cBzwMvunhfq/JloMvS/mdkrQKq7vx3WTQP+091Xm9k3iP758tLGfyYi8SXkn9uJJKhvAe+6ezGAme37o7IeIREcTzSj3IcHNjSzY4BvAm/F/KFlm4YOWKQmlBBEaiZel/oV4Fp3X2hmNwMXx6nTAsh393MbLDKROtJBZZHqmwFcZ2btzOxY4Puh/Fhgs5m1JpoEZZ/CsA5330k0T+4NEP3vvZn1arzQRQ5PxxBEaiDmoPIGIBtYRjQf8m9D2WLgWHe/2cwuIJonuQS4nujfLp8FTiH6O+Qx7n5/oz8JkSooIYiICKAhIxERCZQQREQEUEIQEZFACUFERAAlBBERCZQQREQEUEIQEZFACUFERAD4/7Z3FogdqGOIAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "etf.plot(x='date',y='monthly_return_USD')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "d457d40e", "metadata": {}, "source": [ "To plot data that represent multiple categories, `pivot` function can be used to create columns and rows of categories and then plot the values in it." ] }, { "cell_type": "code", "execution_count": 29, "id": "e1581a2d", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
yearprimary_keytotal_mkt_val_net_USD_millions
107622021MUSTGBPUSD1.421359e+06
61822019MUSTGBPUSD1.265621e+06
116482021VTIUSD1.237500e+06
83402020MUSTGBPUSD1.223333e+06
116462021VTICADUSD9.699817e+05
91082020VTIUSD9.065833e+05
68792019VTIUSD8.129167e+05
116192021VOOUSD7.508333e+05
49132018VTIUSD7.085000e+05
91062020VTICADUSD6.664597e+05
68772019VTICADUSD5.998624e+05
34662017VTIUSD5.942500e+05
90822020VOOUSD5.475833e+05
49122018VTICADUSD5.447054e+05
107632021MUSTUSD5.171825e+05
68562019VOOUSD4.821667e+05
83412020MUSTUSD4.740226e+05
61832019MUSTUSD4.695536e+05
34652017VTICADUSD4.490199e+05
21602016VTIUSD4.450833e+05
48972018VOOUSD4.240000e+05
116622021VXUSUSD3.989167e+05
9892015VTIUSD3.976667e+05
91212020VXUSUSD3.958333e+05
68922019VXUSUSD3.849167e+05
\n", "
" ], "text/plain": [ " year primary_key total_mkt_val_net_USD_millions\n", "10762 2021 MUSTGBPUSD 1.421359e+06\n", "6182 2019 MUSTGBPUSD 1.265621e+06\n", "11648 2021 VTIUSD 1.237500e+06\n", "8340 2020 MUSTGBPUSD 1.223333e+06\n", "11646 2021 VTICADUSD 9.699817e+05\n", "9108 2020 VTIUSD 9.065833e+05\n", "6879 2019 VTIUSD 8.129167e+05\n", "11619 2021 VOOUSD 7.508333e+05\n", "4913 2018 VTIUSD 7.085000e+05\n", "9106 2020 VTICADUSD 6.664597e+05\n", "6877 2019 VTICADUSD 5.998624e+05\n", "3466 2017 VTIUSD 5.942500e+05\n", "9082 2020 VOOUSD 5.475833e+05\n", "4912 2018 VTICADUSD 5.447054e+05\n", "10763 2021 MUSTUSD 5.171825e+05\n", "6856 2019 VOOUSD 4.821667e+05\n", "8341 2020 MUSTUSD 4.740226e+05\n", "6183 2019 MUSTUSD 4.695536e+05\n", "3465 2017 VTICADUSD 4.490199e+05\n", "2160 2016 VTIUSD 4.450833e+05\n", "4897 2018 VOOUSD 4.240000e+05\n", "11662 2021 VXUSUSD 3.989167e+05\n", "989 2015 VTIUSD 3.976667e+05\n", "9121 2020 VXUSUSD 3.958333e+05\n", "6892 2019 VXUSUSD 3.849167e+05" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ticker_time_grouped = etf.groupby(['year','primary_key'], \n", " as_index=False)['total_mkt_val_net_USD_millions'].mean()\n", "idx = ticker_time_grouped['total_mkt_val_net_USD_millions'].nlargest(25).index\n", "largest_portfolio = ticker_time_grouped.loc[idx]\n", "largest_portfolio" ] }, { "cell_type": "code", "execution_count": 30, "id": "07ad502f", "metadata": { "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEhCAYAAABvIFsXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAo+klEQVR4nO3de3RU9bn/8fdDQECIUAHRcktUkFtIiAGlogewCiqVi1jAC4IiBxBPD4pF/VUWysJ6q1oVi2gVFCVWadVSBHtQtN4qEJA7Chg1ggoICiL35/fHTNIkTJIhJJmZzee1VlZn7+939nwS7JOdfXm2uTsiIpL4qsU6gIiIVAwVdBGRgFBBFxEJCBV0EZGAUEEXEQkIFXQRkYCIaUE3s6fN7FszWxnl/F+b2WozW2VmL1R2PhGRRGKxvA7dzM4DdgHPunv7Mua2BP4C9HD37WZ2krt/WxU5RUQSQUz30N39HeC7wuvM7DQzm2dmS8zsX2bWOjx0PTDF3beH36tiLiJSSDweQ58G3OjuZwLjgMfD61sBrczsPTP70Mx6xSyhiEgcqh7rAIWZWV3gF8BLZpa/umb4f6sDLYFuQFPgX2bW3t13VHFMEZG4FFcFndBfDDvcPSPCWB7wobvvBz4zs3WECvyiKswnIhK34uqQi7v/QKhYXw5gIenh4VeA7uH1DQkdgtkYi5wiIvEo1pctzgI+AM4wszwzuw64ErjOzD4GVgF9wtPnA9vMbDXwFnCLu2+LRW4RkXgU08sWRUSk4sTVIRcRESk/FXQRkYCI2VUuDRs29JSUlFh9vIhIQlqyZMlWd28UaSxmBT0lJYXFixfH6uNFRBKSmX1e0pgOuYiIBIQKuohIQKigi4gERFzd+r9//37y8vLYs2dPrKNICWrVqkXTpk2pUaNGrKOISDFxVdDz8vJITk4mJSWFQs25JE64O9u2bSMvL4/U1NRYxxGRYuLqkMuePXto0KCBinmcMjMaNGigv6BE4lRcFXRAxTzO6d9HJH7FXUEXEZHyKbOgR/sgZzPrZGYHzWxAxcWLjQkTJvB///d/Mc2Qm5tL+/alPmZVRKpAyq3/KPIVz6I5KTodeAx4tqQJZpYE3EuoxW1CO3jwIHfddVeFb9fdcXeqVdMfRSJSOcqsLpEe5BzBjcBsIK4f3Jybm0vr1q255ppr6NChAwMGDGD37t2kpKRw11130bVrV1566SWGDh3Kyy+/DIRaFNx+++106dKFrKwscnJy6NmzJ6eddhpTp04FYNeuXZx//vlkZmaSlpbGq6++WvB5bdq0YfTo0WRmZjJp0iTGjh1bkOfJJ5/kpptuKjP3xo0b6dixI4sWLWLDhg306tWLM888k3PPPZe1a9eyc+dOUlNT2b9/PwA//PADKSkpBcsicmw46t1FM2sC9AOmRjF3hJktNrPFW7ZsOdqPLpd169YxYsQIli9fzgknnMDjj4eeQV2rVi3effddBg0adNh7mjVrxgcffMC5555bUOw//PBDJkyYUPDev/3tb+Tk5PDWW29x8803k99nft26dQwZMoSlS5cybtw4XnvttYJC+8wzzzBs2LAy81522WU888wzdOrUiREjRvDoo4+yZMkSHnjgAUaPHk1ycjLdunXjH/8I/TmYnZ3NZZddpmvFRY4xFXEd+sPAeHc/WNYVEO4+DZgGkJWVFZMnazRr1oxzzjkHgKuuuopHHnkEgIEDB5b4nksvvRSAtLQ0du3aRXJyMsnJydSqVYsdO3ZQp04dbr/9dt555x2qVavGV199xTfffANAixYtOPvsswGoU6cOPXr0YM6cObRp04b9+/eTlpZW4udu2bKFPn36MHv2bNq1a8euXbt4//33ufzyywvm7N27F4Dhw4dz33330bdvX5555hmefPLJo/gpiUgiqoiCngVkh4t5Q+BiMzvg7q9UwLYrXPFfOvnLderUKfE9NWvWBKBatWoFr/OXDxw4wPPPP8+WLVtYsmQJNWrUICUlpeBa7eLbHT58OHfffTetW7cuc++8Xr16NGvWjPfee4927dpx6NAh6tevz7Jlyw6be84555Cbm8vbb7/NwYMHdUJV5Bh01Idc3D3V3VPcPQV4GRgdr8Uc4IsvvuCDDz4AYNasWXTt2vWot/n9999z0kknUaNGDd566y0+/7zE7pacddZZfPnll7zwwgsMHjy41O0ed9xxvPLKKzz77LO88MILnHDCCaSmpvLSSy8BoROtH3/8ccH8IUOGMHjw4DJ/UYhIMEVz2eJhD3I2s5FmNrLy41W8Nm3aMGPGDDp06MB3333HqFGjjnqbV155JYsXLyYrK4vnn3+e1q1blzr/17/+Neeccw4/+9nPytx2nTp1mDNnDg899BCvvvoqzz//PH/+859JT0+nXbt2BSdg83Ns3769zF8UIhJMMXtIdFZWlhd/wMWaNWto06ZNpX1mbm4uvXv3ZuXKUi+pr3S9e/dm7NixnH/++RW63ZdffplXX32V5557rkK3W1xl/zuJxJPi157n3nNJjJKEmNkSd8+KNBZXzbmCbseOHXTu3Jn09PQKL+Y33ngjr7/+OnPnzq3Q7YpI4jimCnpKSkpM987r16/PJ598UmTdtm3bIhb3BQsW0KBBg6i3/eijjx51PhFJbMdUQY9HDRo0iHjViojIkdJ96CIiAaGCLiISECroIiIBoYJejJlx9dVXFywfOHCARo0a0bt3bwAmTpzIAw88UOQ9KSkpbN26FYDJkyfTrl07OnToQEZGBv/+97/p168fGRkZnH766dSrV4+MjAwyMjJ4//33OXDgALfffjstW7YsWD958uSCbSclJZGRkUF6ejqZmZm8//77QOgSzNq1a5ORkUHbtm0ZOXIkhw4dYuHChQVZ8xVuNjZnzhw6duxIeno6bdu25Yknnij4vpo0aUJGRgYtW7akf//+rF69uoJ/uiJSmeL6pGhF9x6O5vrROnXqsHLlSn766Sdq167NP//5T5o0aRLV9j/44APmzJlDTk4ONWvWZOvWrezbt4+//e1vACxcuJAHHniAOXPmFLzn1ltv5euvv2bFihXUqlWLnTt38oc//KFgvHbt2gUnTefPn89tt93G22+/DcBpp53GsmXLOHDgAD169OCVV17hxBNPLDHf/v37GTFiBB999BFNmzZl79695ObmFoyPHTuWcePGAfDiiy/So0cPVqxYQaNGjaL6/kUktrSHHsFFF11U0Llw1qxZUd95uXnzZho2bFjQ76Vhw4b8/Oc/L3H+7t27efLJJ3n00UepVasWAMnJyUycODHi/B9++CHi3aXVq1fnF7/4BevXry81386dOzlw4EDB5ZA1a9bkjDPOiDh34MCBXHjhhbzwwgulblNE4ocKegSDBg0iOzubPXv2sHz5cs4666yo3nfhhRfy5Zdf0qpVK0aPHl2wJ12S9evX07x5c5KTk0uc89NPP5GRkUHr1q0ZPnw4d9xxx2Fzdu/ezYIFC0rt3Ahw4okncumll9KiRQsGDx7M888/z6FDh0qcn5mZydq1a0vdpojEDxX0CDp06EBubi6zZs3i4osvLjJWUotgM6Nu3bosWbKEadOm0ahRIwYOHMj06dOj/txnnnmGjIwMmjVrxpdffgn855DL2rVrmTdvHkOGDCnotb5hwwYyMjI455xzuOSSS7joootKzQfw1FNPsWDBAjp37swDDzzAtddeW2KeWLWFEJHyietj6LF06aWXMm7cOBYuXMi2bdsK1jdo0IDNmzcXmbtz507q168PhE5iduvWjW7dupGWlsaMGTMYOnRoxM84/fTT+eKLL9i5cyfJyckMGzaMYcOG0b59ew4ePHjY/C5durB161byHw6Sfwy9sAYNGrB9+/Yi67777jsaNmxYsJyWlkZaWhpXX301qampJf7SWbp0KVlZEVtGiEgc0h56Ca699lomTJhw2GGM8847j9dee42dO3cC8Ne//pX09HSSkpJYt24dn376acHcZcuW0aJFixI/4/jjj+e6665jzJgxBf3TDx48yL59+yLOX7t2LQcPHiy1JUDLli3ZtGkTa9asAeDzzz/n448/JiMjg127drFw4cKo8s2ePZs33nhDnRtFEoj20EvQtGlTfvOb3xy2vkOHDowZM4auXbtiZpx00kk89dRTQOjZojfeeCM7duygevXqnH766UybNq3Uz5k8eTJ33HEH7du3Jzk5mdq1a3PNNdcUnEzNP4YOoUMgM2bMICkpqcTt1axZk5kzZzJs2DD27NlDjRo1eOqpp6hXrx47d+7kvvvu47//+7+pXbs2derUKbJ3/tBDDzFz5kx+/PFH2rdvz5tvvqkrXEQSyDHVPlcqhv6dqla8tW891sTbz7+09rk65CIiEhAq6CIiAaGCLiISEDopKiJSiaaMfLPI8g1Te1TaZ2kPXUQkIMrcQzezp4HewLfu3j7C+JXA+PDiLmCUu39coSlFJGHF21UiQRbNHvp0oFcp458B/+XuHYBJQOkXXse5qm6fW/i9QJH2t9988w29e/cuaHWb34Ygv3Vux44dadOmDZ07d2bGjBmV+nMRkfhX5h66u79jZimljL9faPFDoGkF5AqZWK/CNhXa3vdlTqnq9rmlmTBhAhdccEHBDU7Lly8vGDvttNNYunQpABs3bqR///4cOnSIYcOGRbVtEQmeij6Gfh3wekmDZjbCzBab2eL8fiTxqKra50azvaZN//P7sUOHDhHnnXrqqTz44IM88sgj5f4sEUl8FVbQzaw7oYI+vqQ57j7N3bPcPSuebymvqva5Zbnhhhu47rrr6N69O5MnT2bTpk0lzlWrWxGpkIJuZh2Ap4A+7r6trPnxrirb50baXv66nj17snHjRq6//nrWrl1Lx44dKekvG7W6FZGjLuhm1hz4K3C1u39y9JHiQ3773OKHWyK1p43UPvfOO+/kscceY/bs2aV+TvHtFW91e+KJJ3LFFVfw3HPP0alTJ955552I21m6dKn6q4gc48os6GY2C/gAOMPM8szsOjMbaWYjw1MmAA2Ax81smZktLnFjCaQq2ucCdOvWjeeeew4Itc6dOXMm3bt3B+DNN99k9+7dQOiXxoYNG2jevPlh28jNzWXcuHHceOON5f+GRSThRXOVS6lnBN19ODC8whLFiapqn3vHHXcwatQo0tPTcXd69erFVVddBcCSJUsYM2YM1atX59ChQwwfPpxOnTqRm5vLhg0b6NixI3v27CE5OZkbb7xRV7iIHOPUPleOmP6dqlai35hzrOev6Fv/1T5XROQYoIIuIhIQKugiIgGhgi4iEhAq6CIiAaGCLiISECrohXTr1o358+cXWffwww8zevRo3n33XTp37kzr1q1p3br1YdeXT5s2rWCsc+fOvPvuuwVjapErIlUhrh9BlzYjrexJR2DFNStKHR88eDDZ2dn07NmzYF12djb3338/V1xxBa+88gqZmZls3bqVnj170qRJEy655BLmzJnDE088wbvvvkvDhg3Jycmhb9++fPTRR5x88smlfqZa5IpIRdEeeiEDBgxgzpw57N27FwjtJW/atIk33niDoUOHkpmZCYTa4t53333cc889ANx7773cf//9BT1YMjMzueaaa5gyZUqZn6kWuSJSUVTQC2nQoAGdO3dm3rx5QGjvfODAgaxatYozzzyzyNysrCxWrVoFUOZ4adQiV0Qqigp6MfmHXSBU0AcPHoy7l9rmNpLC71GLXBGpCiroxfTt25cFCxaQk5PDTz/9RGZmJu3ataN435klS5bQtm1bANq2bcuSJUuKjOfk5BSMq0WuiFQFFfRi6tatS7du3bj22msLeqHfcMMNTJ8+nWXLlgGwbds2xo8fz29/+1sAfvvb3zJ+/Hi2bQs922PZsmVMnz6d0aNHA2qRKyJVI66vcomVwYMH079//4JDL6eccgozZ87k+uuvZ+fOnbg7//u//8uvfvUrIPQwjK+++opf/OIXmBnJycnMnDmTU045BVCLXBGpGnFd0Mu6zLCy9OvX77Dj1eeddx6LFi0q8T2jRo1i1KhREcfq1avHCy+8EHHslltu4ZZbbjlsfUpKCj/99NMRpBaRY50OuYiIBIQKuohIQKigi4gEhAq6iEhAlFnQzexpM/vWzFaWMG5m9oiZrTez5WaWWfExRUSkLNHsoU8HepUyfhHQMvw1AvjT0ccSEZEjVWZBd/d3gO9KmdIHeNZDPgTqm9kpFRWwKkVqnztp0iTatm1LRkYGJ554IqmpqWRkZPDLX/6S3Nxc2rdvXzD3o48+4rzzzuOMM86gdevWDB8+vOCmIYA+ffrQpUuXItufOHEiTZo0ISMjg5YtW9K/f39Wr15dMK7WuyISrYq4Dr0J8GWh5bzwus1Hu+E1rSv2Nvc2a9eUOh6pfe4//vEPnnjiCc4991yGDh1K7969GTBgABAqnPm++eYbLr/8crKzs+nSpQvuzuzZs9m5cyfHH388O3bsICcnh7p16/LZZ5+Rmppa8N6xY8cybtw4AF588UV69OjBihUraNSoUal51XpXRAqriJOikTpURewiZWYjzGyxmS0uqQFVLJXUPrdr165lvnfKlClcc801BXvgZsaAAQNo3LgxALNnz+ZXv/oVgwYNKrgDNZKBAwdy4YUXlngjUmFqvSsihVVEQc8DmhVabgpE7AHr7tPcPcvds8ra+4yFktrnltZVMd/KlSsPa6Fb2KxZsxg8eDCDBw9m1qxZpW4r2ja5ar0rIoVVREF/DRgSvtrlbOB7dz/qwy2xEql97tH65ptvWL9+PV27dqVVq1ZUr16dlSsjXjQEFG2Tq9a7IhKtaC5bnAV8AJxhZnlmdp2ZjTSzkeEpc4GNwHrgSWB0paWtApHa50ajXbt2h7XQzffiiy+yfft2UlNTSUlJITc3t9TDLoXb5Kr1rohEK5qrXAa7+ynuXsPdm7r7n919qrtPDY+7u9/g7qe5e5q7Ly5rm/EsUvvcaIwZM4YZM2bw73//u2DdzJkz+frrr5k1axbz5s0jNzeX3NxclixZUmJBnz17Nm+88UbBZ6v1rkhiWdO6TZGvqhTX3RZjpXj73Gg0btyY7Oxsxo0bx7fffku1atU477zzyMzM5IsvvuDss88umJuamsoJJ5xQUPwfeughZs6cyY8//kj79u158803C65wUetdEYmWxerYalZWlhd/CtCaNWt0WCAB6N+paqXc+o8iy7n3XBKjJOVzrOUvvlf+ZreiD4u/YWqPo8pjZkvcPSvSmHq5iIgEhAq6iEhAqKCLiASECrqISECooIuIBIQKuohIQKigF3I07XOnT5/OmDFjDtte/qWZTz/9NGlpaXTo0IH27dvz6quvAjB06FBSU1NJT0+nVatWDBkyhK+++qoKvluRxDBl5JtFvqRkcX1jUUX/45V1/efRtM8tTV5eHpMnTyYnJ4d69eqxa9euIj1X7r//fgYMGIC78/DDD9O9e3dWrlzJcccdd+TfpIgcs7SHXsjRtM8tzbfffktycjJ169YFQu0FCvdDz2dmjB07lpNPPpnXX3/9qD5TRI49KuiFHE373NKkp6fTuHFjUlNTGTZsGH//+99Lna9WtyJSHiroxZS3fW5JRd/MSEpKYt68ebz88su0atWKsWPHMnHixBK3pVa3IlIeKujFlLd9bvE2t1C01a2Z0blzZ2677Tays7OZPXt2idtSq1sRKQ8V9GLK2z63U6dOvPfee3z99dcALF68mL1799KsWTM2bdpETk5Owdxly5bRokWLw7bh7jzyyCNs3ryZXr16Hf03IyLHlLi+yiVWyts+949//CMXX3wxhw4dom7dusyaNYtq1aqxf/9+xo0bx6ZNm6hVqxaNGjVi6tSpBe+95ZZbmDRpErt37+bss8/mrbfe0hUuInLE4rqgH22byfLq169fxOPY06dPL7KckpJS5FFyffr0oU+fPoe9r0WLFrz5ZuRLMItvU0SkvHTIRUQkIFTQRUQCQgVdRCQgoiroZtbLzNaZ2XozuzXCeD0z+7uZfWxmq8xMD68UEaliZRZ0M0sCpgAXAW2BwWbWtti0G4DV7p4OdAP+YGa6TENEpApFc5VLZ2C9u28EMLNsoA+wutAcB5ItdLtkXeA74EAFZxWRcije5C5WV49J5YvmkEsT4MtCy3nhdYU9BrQBNgErgN+4+6EKSViFIrXPffjhh7n44otp3749+/btA2DDhg2ceuqp/PDDD+Vum1t4DlCkFe/u3bu58sorSUtLo3379nTt2pVdu3YBkJSUREZGBu3atSM9PZ0HH3yQQ4cS7kctIpUgmj30SE1Kil+k3RNYBvQATgP+aWb/cvcfimzIbAQwAqB58+ZlfvAfBvaOIl70bn5xTqnjkdrnZmdnc//99zNr1iweeOABbr/9dm644QYmT57MCSecUOr2ymqbW5I//vGPNG7cmBUrVgCwbt06atSoAUDt2rVZtmwZEOrieMUVV/D9999z5513lrldEQm2aAp6HtCs0HJTQnvihQ0D7vHQ3TjrzewzoDXwUeFJ7j4NmAaQlZUVdx2oBgwYwO9+9zv27t1LzZo1i7TPTUtLIzMzk+rVq7N///6o2gJEapub/7o0mzdvLtIa4Iwzzog476STTmLatGl06tSJiRMnHnVXSBFJbNEcclkEtDSz1PCJzkHAa8XmfAGcD2BmjYEzgI0VGbQqlNY+t379+owfP57bbruNxx9/PKrtHWnb3HzXXnst9957L126dOF3v/sdn376aYlzTz31VA4dOsS3334b1bZFJLjKLOjufgAYA8wH1gB/cfdVZjbSzEaGp00CfmFmK4AFwHh331pZoStTae1zX3/9dRo3bszq1f85H1zetrmR3pe/LiMjg40bN3LLLbfw3Xff0alTJ9asWVNiZrXbFRGIspeLu88F5hZbN7XQ603AhRUbLTb69u3LTTfddFj73Dlz5vD9998zf/58+vXrR8+ePTn++OOjbpvbuXNnLrjgAoYNG8bEiRMPe1/h90Do8Ez//v3p378/1apVY+7cuRFb6m7cuJGkpCROOumkyvhxiEgC0Z2ixURqn/vTTz9x8803M2XKFNLS0ujTpw+TJ08Gyt82t1u3bsycObNg73rGjBl0794dgPfee6+g2O/bt4/Vq1dHbLe7ZcsWRo4cyZgxY3T8XETiu9tirBRvnztp0iT69u1L27ah+6kmTpxIRkYGQ4cOpWXLluVqmztixAjWrl1Leno6ZkZWVha///3vgdBlkaNGjcLdOXToEJdccgmXXXYZEPrlkpGRwf79+6levTpXX301N910Uwx+SiISb+K6oJd1mWFlKd4+9+677y4ynpyczIYNGwqWy9M297jjjuOxxx6LODZkyBCGDBkScezgwYNl5heRqpM2I63I8l9ilAN0yEVEJDBU0EVEAkIFXUQkIOKuoOua6vimfx+R+BVXBb1WrVps27ZNRSNOuTvbtm2jVq1asY4iIhHE1VUuTZs2JS8vL6oGVhIbtWrVomnTprGOUeXUglYSQVwV9Bo1apCamhrrGCIiCSmuDrmIiEj5qaCLiASECrqISECooIuIBERcnRQVEVnTulib6G5TYhMkAWkPXUQkIFTQRUQCQgVdRCQgVNBFRAJCBV1EJCCiKuhm1svM1pnZejO7tYQ53cxsmZmtMrO3KzamiIiUpczLFs0sCZgCXADkAYvM7DV3X11oTn3gcaCXu39hZnoEvYhIFYtmD70zsN7dN7r7PiAbKP4AzSuAv7r7FwDu/m3FxhQRkbJEU9CbAF8WWs4LryusFfAzM1toZkvMLPITjkVEpNJEc6eoRVhX/AkU1YEzgfOB2sAHZvahu39SZENmI4ARAM2bNz/ytCJSJt1peeyKpqDnAc0KLTcFNkWYs9XdfwR+NLN3gHSgSEF392nANICsrCw9lugYogdEiFS+aA65LAJamlmqmR0HDAJeKzbnVeBcM6tuZscDZwFrKjaqiIiUpsw9dHc/YGZjgPlAEvC0u68ys5Hh8anuvsbM5gHLgUPAU+6+sjKDi4hIUVF1W3T3ucDcYuumFlu+H7i/4qKJiMiR0J2iIiIBoYIuIhIQKugiIgGhJxaJRKBruatO2oy0Ist/iVGOINAeuohIQKigi4gEhAq6iEhA6Bi6iMiRmFiv6HJq/PSl0h66iEhAqKCLiASECrqISECooIuIBIROiookON2YI/lU0EWkasXxVSKJTgVdJNGoIEoJdAxdRCQgVNBFRAJCh1wSRKI9ZFndCkWqnvbQRUQCQgVdRCQgoiroZtbLzNaZ2Xozu7WUeZ3M7KCZDai4iCIiEo0yj6GbWRIwBbgAyAMWmdlr7r46wrx7gfmVEVSkMunmHAmCaPbQOwPr3X2ju+8DsoE+EebdCMwGvq3AfCIiEqVoCnoT4MtCy3nhdQXMrAnQD5hacdFERORIRHPZokVY58WWHwbGu/tBs0jTwxsyGwGMAGjevGrvbku0y/5EJJj+MLB3keWbX5xTYduOpqDnAc0KLTcFNhWbkwVkh4t5Q+BiMzvg7q8UnuTu04BpAFlZWcV/KYiIlKkyC2Kii6agLwJamlkq8BUwCLii8AR3T81/bWbTgTnFi7mIxAcVxOAqs6C7+wEzG0Po6pUk4Gl3X2VmI8PjOm4uIhIHorr1393nAnOLrYtYyN196NHHEhGRI6U7RUVEAkIFXUQkIFTQRUQCQgVdRCQgVNBFRAJCBV1EJCBU0EVEAkIFXUQkIFTQRUQCQgVdRCQgVNBFRAJCBV1EJCBU0EVEAkIFXUQkIFTQRUQCQgVdRCQgVNBFRAJCBV1EJCBU0EVEAkIFXUQkIFTQRUQCIqqCbma9zGydma03s1sjjF9pZsvDX++bWXrFRxURkdKUWdDNLAmYAlwEtAUGm1nbYtM+A/7L3TsAk4BpFR1URERKF80eemdgvbtvdPd9QDbQp/AEd3/f3beHFz8EmlZsTBERKUs0Bb0J8GWh5bzwupJcB7weacDMRpjZYjNbvGXLluhTiohImaIp6BZhnUecaNadUEEfH2nc3ae5e5a7ZzVq1Cj6lCIiUqbqUczJA5oVWm4KbCo+ycw6AE8BF7n7toqJJyIi0YpmD30R0NLMUs3sOGAQ8FrhCWbWHPgrcLW7f1LxMUVEpCxl7qG7+wEzGwPMB5KAp919lZmNDI9PBSYADYDHzQzggLtnVV5sEREpLppDLrj7XGBusXVTC70eDgyv2GgiInIkdKeoiEhAqKCLiASECrqISECooIuIBIQKuohIQKigi4gEhAq6iEhAqKCLiASECrqISECooIuIBIQKuohIQKigi4gEhAq6iEhAqKCLiASECrqISECooIuIBIQKuohIQKigi4gEhAq6iEhAqKCLiAREVAXdzHqZ2TozW29mt0YYNzN7JDy+3MwyKz6qiIiUpsyCbmZJwBTgIqAtMNjM2habdhHQMvw1AvhTBecUEZEyRLOH3hlY7+4b3X0fkA30KTanD/Csh3wI1DezUyo4q4iIlMLcvfQJZgOAXu4+PLx8NXCWu48pNGcOcI+7vxteXgCMd/fFxbY1gtAePMAZwLqK+kYiaAhsrcTtVzblj61Ezp/I2UH5y9LC3RtFGqgexZstwrrivwWimYO7TwOmRfGZR83MFrt7VlV8VmVQ/thK5PyJnB2U/2hEc8glD2hWaLkpsKkcc0REpBJFU9AXAS3NLNXMjgMGAa8Vm/MaMCR8tcvZwPfuvrmCs4qISCnKPOTi7gfMbAwwH0gCnnb3VWY2Mjw+FZgLXAysB3YDwyovctSq5NBOJVL+2Erk/ImcHZS/3Mo8KSoiIolBd4qKiASECrqISECooIuIBIQKuohIQASioJtZw2LLV4WbhY0ws0g3PcUVM+tnZieGXzcys2fNbIWZvWhmTWOdryxm9qCZnRPrHOVhZiea2QQzGx6+7Pb/mdkcM7vfzH4W63zRMLPuZvaYmb1qZrPN7B4zOz3WuaJlZj3N7E9m9lr4e/iTmfWKda6jZWYTqvwzg3CVi5nluHtm+PXvgHOBF4DeQJ67j41lvrKY2Wp3bxt+/SLwIfAS8EvgSne/IJb5ymJmW4DPgUbAi8Asd18a21TRMbO5wArgBKBN+PVfgAuAdHcv3rcorpjZPUBjYAHQF/gM+AQYDdzt7i/FLl3ZzOxhoBXwLKEbFCF0Y+IQ4FN3/02Moh01M/vC3ZtX6WcGpKAvdfeO4dc5wLnu/qOZ1QBy3D0ttglLZ2br3P2M8Osl7n5mobFl7p4Rs3BRyP/5m1lLQjeeDSJ0z8IsQsX9k5gGLEX+zzf8l1yeuzcpPha7dGUzsxX5/32bWXXgbXc/J/zXxb/cvX1sE5bOzD5x91YR1hvwibu3jEGsqJnZDyUNAbXdPZr2KhUmEIdcgNpm1tHMzgSS3P1HAHffDxyMbbSoLDSzu8ysdvh1Xwj9KQ18H9Nk0XEAd//U3Se5ezvg10AtQjedxbNq4eLXDKhrZikAZtYAOC6WwaJ0KP9wHfBzQr9IcfftRO6xFG/2mFnnCOs7AXuqOkw57ABauvsJxb6SgSq/W75Kf3tUos3Ag+HX35nZKe6+Ofx/ygMxzBWtMcD/4z/dJ8ea2Y/A34GrY5YqeocVDndfDiwHbqv6OEfk98Da8OtrgafMzAn1/r8zZqmidzew1MzWAa2BURA6FwN8HMtgURoK/MnMkvnPIZdmwA/hsXj3LNAC+CbC2AtVnCUYh1xKEn44R0133x3rLNEys3pAdXffFuss0TKzuu6+K9Y5yiv834mF21xUBzKArxKlH1F4D/1UQs8t2BHjOOViZicDTQjtHOS5+9cxjpSQAl3QAcystbuvLXtmfFL+2Enk7JBY+c2sRvgQaeF1Dd09Ifqix0v+oBxDL80bsQ5wlJQ/dhI5OyRA/vAll3nAJjN7I/8cRpjyH6FAHEM3s0dKGgLqV2GUclH+2Enk7JD4+YH7gJ7hDq4DgH+a2dXhR1kmwknduMofiIJOqF3vzcDeCGODqzhLeSh/7CRydkj8/Me5+yoAd3/ZzNYAfzWzW4nw1LM4FFf5g1LQFwEr3f394gNmNrHq4xwx5Y+dRM4OiZ9/v5mdnH8SNLynez4wBzgtttGiElf5A3FSNHyWf08iXc1SmPLHTiJnh0Dk/yWwxd0/Lra+PnCDu0+OSbAoxVv+QBR0EREJyFUuZlYv3JBorZltC3+tCa+rH+t8ZVH+2Enk7KD8sRZv+QNR0Ak1U9oOdHP3Bu7eAOgeXhfXzYnClD92Ejk7KH+sxVX+QBxysULNrY5kLF4of+wkcnZQ/liLt/xB2UP/3Mx+a2aN81eYWWMzGw98GcNc0VL+2Enk7KD8sRZX+YNS0AcCDYC3zWy7mX0HLAROJNT1L94pf+wkcnZQ/liLq/yBOOQCob4VhBrjf1i4UZSZ9XL3ebFLFh3lj51Ezg7KH2txld/dE/4L+B9CrWdfAXKBPoXGcmKdT/ljnzGI2ZU/9l/xlj8od4peD5zp7rss1BznZTNLcfc/khj9IJQ/dhI5Oyh/rMVV/qAU9CQP/6nj7rlm1o3QD7YFifEfhfLHTiJnB+WPtbjKH5STol+bWUb+QvgH3BtoCMT180TDlD92Ejk7KH+sxVX+QJwUNbOmwAGP8JQTMzvH3d+LQayoKX/sJHJ2UP5Yi7f8gSjoIiISnEMuIiLHPBV0EZGAUEEXEQkIFXSRo2BmSbHOIJJPBV2OGWY2ycx+U2h5spn9j5ndYmaLzGy5md1ZaPwVM1tiZqvMbESh9bvM7C4z+zfQpYq/DZESqaDLseTPwDUAZlYNGAR8A7QEOgMZwJlmdl54/rXufiaQBfyPmTUIr69D6DmeZ7n7u1WYX6RUQblTVKRM4Tv5tplZR6AxsBToBFwYfg1Ql1CBf4dQEe8XXt8svH4bcBCYXZXZRaKhgi7HmqeAocDJwNPA+cDv3f2JwpPCt3D/Euji7rvNbCFQKzy8x90PVlFekajpkIsca/4G9CK0Zz4//HWtmdUFMLMmZnYSUA/YHi7mrYGzYxVYJFraQ5djirvvM7O3gB3hvew3zKwN8IGZAewCrgLmASPNbDmh9qgfxiqzSLR0678cU8InQ3OAy93901jnEalIOuQixwwzawusBxaomEsQaQ9dRCQgtIcuIhIQKugiIgGhgi4iEhAq6CIiAaGCLiISECroIiIB8f8BuVNJy2QIZEEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "largest_portfolio.pivot('year','primary_key','total_mkt_val_net_USD_millions').plot(kind='bar')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "3f79bf52", "metadata": {}, "source": [ "Since results of `pivot_table`, `resample` and `rolling` are also provides in form of `DataFrame`, all plot functionalities can be applied to them as well. " ] }, { "cell_type": "code", "execution_count": 31, "id": "5113fa4e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
monthly_return_USD
year2015201620172018201920202021
month
1-1.324719-5.4994263.5009374.5226387.520822-0.5220512.975626
25.2977371.0991892.276224-3.7431992.499822-5.8241153.989272
3-0.3363788.3212082.694356-1.0921610.535222-15.0974001.823757
42.1541383.5226591.2505190.7825932.12359911.8527542.965256
50.6442080.5816950.7671691.085952-4.2048404.8139361.503999
\n", "
" ], "text/plain": [ " monthly_return_USD \\\n", "year 2015 2016 2017 2018 2019 2020 \n", "month \n", "1 -1.324719 -5.499426 3.500937 4.522638 7.520822 -0.522051 \n", "2 5.297737 1.099189 2.276224 -3.743199 2.499822 -5.824115 \n", "3 -0.336378 8.321208 2.694356 -1.092161 0.535222 -15.097400 \n", "4 2.154138 3.522659 1.250519 0.782593 2.123599 11.852754 \n", "5 0.644208 0.581695 0.767169 1.085952 -4.204840 4.813936 \n", "\n", " \n", "year 2021 \n", "month \n", "1 2.975626 \n", "2 3.989272 \n", "3 1.823757 \n", "4 2.965256 \n", "5 1.503999 " ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "return_overtime = pd.pivot_table(data=etf, \n", " index=['month'], \n", " columns=['year'],\n", " values=['monthly_return_USD'],\n", " aggfunc=np.mean)\n", "return_overtime.head()" ] }, { "cell_type": "code", "execution_count": 32, "id": "1cc8ecf5", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEGCAYAAACAd+UpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACM/0lEQVR4nOydd1gU19eA39llYem9d0EEBHvvNbbYYomaoqaYZhLTTW+/xCRferMkGhOTmG5ssTfsXRFQQOm912XZNt8fqygKSlnAmHkfeVZmZ+49u+yeOffcUwRRFJGQkJCQuDWRtbUAEhISEhIth6TkJSQkJG5hJCUvISEhcQsjKXkJCQmJWxhJyUtISEjcwpi1tQBX4uLiIgYEBLS1GBISEhL/Ko4fP14giqJrXc/dVEo+ICCAY8eOtbUYEhISEv8qBEFIre85yV0jISEhcQsjKXkJCQmJWxhJyUtISEjcwphEyQuCsEIQhDxBEGKuOPaGIAiZgiCcuvgz1hRzSUhISEg0HFNZ8iuB0XUc/0QUxS4Xf/4x0VwSEhISEg3EJEpeFMUooMgUY0lISEhImI6W9snPFwQh+qI7x7GuEwRBmCcIwjFBEI7l5+e3sDgSEhIS/y1aUskvBoKALkA28FFdJ4miuEwUxR6iKPZwda0zll9CQkKidSlJh9i/21oKk9BiSl4UxVxRFPWiKBqAb4BeLTWXhISEhEmJ+gB+nw2lGW0tSbNpMSUvCILnFb9OBmLqO1dCQkLipiI5yvh4dkPbymECTBVCuRo4CHQQBCFDEIT7gQ8EQTgjCEI0MBR4yhRzSUhISLQoxalQnGL8/9l1bSqKKTBJ7RpRFGfWcXi5KcaWkJCQaFVS9hofwybA2fVQkQc2bm0rUzOQMl4lJCQkriRpD1i5wOAXABHO/btdNpKSl5CQkLiEKBr98YGDwL0jOAVB3L/bZSMpeQkJCYlLFCRCRQ60GwyCAOETjO4b1b8311NS8hISEhKXSN5jfAwcZHwMmwAGHcRvajuZmomk5CUkJCQukRwF9r7gGGj83asr2PsZN2D/pUhKXkJCQgLAYDC6ZgIHGV01YHwMGw8XdkJ1edvK10QkJS8hISEBkBsDVcWXXTWXCBsP+mpI2NI2cjUTSclLSEhIwOUs14CBtY/79gYb939tYpSk5CUkJCTAuOnqHAz23rWPy2QQejskbgONqm1kawaSkpeQkJDQayH1wLWumkuETwCtCi7saF25TICk5CUkJCSyToKmAgIH1/28/wCwdPpXJkZJSl5CQkLiUnz81f74S8jNIHQsJGwGXXXryWUCJCUvISEhkRwF7pFg7Vz/OWETobrMWNvmX4Sk5CUkJP7baNWQdrh+f/wl2g0GC7t/XZSNpOQlaqGpUrF58aeU5ee1tSgSEq1DxhFjHPyNlLyZBYSMhnMbQa9rHdlMgKTkJWqReS6O2N3b2bFicVuLIiHROiRHgSAH/343PjdsPFQVQer+lpfLREhKXqIWRVnGnpZJJ45y4fiRNpZGQqIVSNpjrFGjtLvxucEjQGH1r3LZSEpeohZFWRlYWFvj5OXD7u+/QafRtLVIEhItR3U5ZB43+tsbgrmVUdGf3WCsdfMvQFLyErUoysrAyduXoXMfoiQ3m+Mb/25rkSQkWo7UgyDqb+yPv5Lwicaa8xn/jpWupOQlalGclYmTlw8BnbrSvlc/Dq35lbKC/LYWS0KiZUjeA3JzY32ahtL+NuM1/5LEKEnJS9SgrqygsqQYJy8fAIbc+wAYRPb8uKKNJZOQaCGSo4wKXmFZ63BazGk2ffUxWk0diU9KOwgaZqwxL4qtJGjTkZS8RA3FWZkANUreztWNXpOnkXBwL2kxp9tSNAkJ06Mqgpwzdbpq9v/6I3FRO9n13dK6rw2bAKVpxnIINzmSkpeo4VJkjZO3T82xnuOnYO/mzs7vlqLX/XtigyUkbkjKPkC8RskX52SRlXAWBw9PzuzcSuyeOoqSdRhjDLv8F3SMkpS8RA1FWRnI5HLs3TxqjpmZmzNk9jwKM9I4tWVjG0onIWFikqNAYQ1e3WodPrt3FwgCU1/+Hz7hEWxf/jUF6am1r7VygsCBxlDKm9xlYxIlLwjCCkEQ8gRBiLnimJMgCNsEQUi8+OhoirkkWo7irEzs3T2Rm5nVOh7UvRcBXbpz4PefqCwpbiPpJCRMTPIe8O8LZuY1h0RRJG7vLvw6RmLv5s64J57HXGnJ+o8XoVFX1b4+bAIUnoe8s60seOMwlSW/Ehh91bGFwA5RFNsDOy7+LnETU5SVgZOX9zXHBUFg6Ox56DQa9v68svUFk5AwNWXZUJBwTWnhrPizlObmED5oOAA2jk6Me+J5irOz2LbsS8QrrfbQ2wHhpk+MMomSF0UxCii66vBE4PuL//8emGSKuSRaBoNeT3F2Vs2m69U4eXnT/fZJxO7ZQVbCzW25SEjckJS9xser/PFxUTsxM7egfa++Ncf8IjrRb/pdnNu/h+jtmy+fbOsOfn1v+lDKlvTJu4uimA1w8dGtrpMEQZgnCMIxQRCO5edL8dhtRWl+Lga9rl4lD9DnjjuxcXRix4olGAz6VpROQsLEJO8BpQN4RNYc0mk0xB/aS/tefTG3tKp1eu9J0wjo0p1dK5eSm3T+8hPhEyAvFgovtJLgjafNN15FUVwmimIPURR7uLq6trU4/1mKMo2RNY7XUfLmSksG33M/eckXiNm5rbVEk5AwPclREDAAZPKaQ0knjlBdWUn4oGHXnC7IZIx57Gks7R1Y/8ki1JUVxifCxhsf49a2htRNoiWVfK4gCJ4AFx+l2rU3McWXwifr8MlfSYd+g/AJj2Dv6u+pKi9rDdEkJExLcQqUpF3jj4/buwtrRyf8IjvXeZmVnT3jF7xAeWEBWxZ/avTP2/uAd/eb2i/fkkp+HTD74v9nAzfvrU6CoqwMLG3tsLS9fiU+QRAYNuchqlWV7P/1x1aSTkLChCRHGR+v8MerykpJPnmMsAFDkF1h3V+NV0gYg+6ay/mjhy7XdQqbYEyKKklrQaGbjqlCKFcDB4EOgiBkCIJwP/AeMFIQhERg5MXfJW5SjIXJ6nfVXImrfyBdbhtH9PbN5CbfvL5ICYk6SY4Cazdw7VBzKP5AFAa9nvCBQ294ebexEwnu2Ze9P68kM/7sZZfN2Q0tJXGzMFV0zUxRFD1FUVSIougjiuJyURQLRVEcLopi+4uPV0ffSNxEFF0sTNZQ+k2/C6WtLTtXLKkdViYhcTMjikYlHzgIBKHmcFzUTlz9A3H1D7zhEIIgMOqRJ7F1cWXDZ++jUriAe8RN67Jp841XibanqqKcqrLS6266Xo3S2oaBs2aTlXDWmCEoIfFvID8eKnJr1Y8vzEwn50Jig6z4SyitbRi/YCFVZaVs+vIjxNDxkHYIynNbQupmISl5iSs2XRuu5AEiBo/AIziEqJ++o1qlagnRJCRMSx3++LN7dyEIMkIHDGnUUO7tghk6ex4pp09wON0aEOHczVfLRlLyEjXhkzeKrLkaQSZj+NyHqSwt4eCfq1tCNAkJ05K8Bxz8wDEAANFgIG7vLvw7dcHG0anRw3UaMZqwAUM48M820uQdb8rEKEnJS1wsTGZWqzBZQ/EIDiFiyEhOblpHYUZ6C0gnIWEiDHpj5ckrrPiMszGUF+TXGRvfEARBYMSDj+Ho5c3GC25UJB42ljC+iZCU/L+B0kxQt1xMelFWJo6eXsjk9YeOXY+Bs2ajUCrZuXKptAkrcfOScwbUJbXi4+P27kKhtCS4Z58mD2uutGTC0y+i0QtszAzBEHdzuWwkJX+zoyqCJf3h2+FQ1TIVIIuyMnD0bJyr5kqs7OzpP/1u0s6cIvHIARNKJiFhQi754wMGAqCtVpNwaB8hvfujsFA2a2hnHz9GPjCfDJU9+/9e01xJTYqk5G92dr1rtOKLkuGXu0FXRzuyZqDX6SjNzW5wjHx9dB45Fhe/AHb/8C3aarWJpJOQMCHJUeASAnaeAFw4dhhNVRXhgxoeVXM9wgcPJzLEiSOJOpIO7TbJmKZAUvI3M7mxcGw59HwAJn0Nqftg7XyTNikozcvBoNc3OrLmamRyOcPnPkx5QT5H1v5hIukkJEyETgOpB2q7aqJ2Yuvsim945HUubBxD58zD1aKCTYs/pyz/5qjkIin5mxVRhM0LQWkPQxZCp+kw7BU485vRujcRRVf1dW0OPuERhPYfzNF1f1KSm9Ps8SQkTEbWCdBW1my6VpYUk3L6JGEDBiPITKcGFYH9GN+hEINOw4ZP30ev05ps7KZyyyj5qgpNW4tgWs5tNC4vh75sbDUGMPBZ6Ho3RH0AJ1aZZJqiTGNEjGMjwyfrY9Ddc5HJ5Oz+4RuTjCchYRKSowDBWHkSOLd/D6JoaHJUTb3IZDh2GcUor/Nkn49nz48rTDt+U0RqawFMQfb5En54+SApZwraWhTToKuGrS+Daxh0n3v5uCDA7Z9Cu6GwYQFc2NnsqYqyMrCyd0BpbdPssQBsnVzoM2UGF44dJvnkMZOMKSHRbJKjjLXjLxpMsVE7cW8XjLOPn+nnCp9AiHU23XpHcHLTehIO7TP9HI3gllDyLn62OLpbsXV5LIVZFW0tTvM59LWxHOqY90Beu98qcgVM/x5cOsBvs41++2ZQnJXZ7E3Xq+k+biKOnt7s+n4ZOm3bL1cl/uNoqyD9cI2rJj8thfyUJNNb8Zfw6wdWzgzyycMzuANblnxGcXZmy8zVAG4JJa8wlzP2kUgUFnL++Tr63+26Kc+BqA+hwzhoN6Tuc5T2cNdvYG4NP0039qtsIkVZGTh5mlbJy80UDJszj+LsrMvlWCUk2or0w6DX1Gy6xkXtRJDJCO036AYXNhG5GYSOQ35+K7c//hQyuRnrP3kPrca0kXEN5ZZQ8gA2jkrGPtyJyhINm5fGoNcZ2lqkprHjLeMH8ra3r3+evQ/M+s2Y3PHzNKgub/RUqrJS1BXlJrfkAQK6dCeoRx8O/fUL5YW3iBtN4t9JchQIcvDvi8Gg59y+3QR26Y6VvUPLzRk2ETTl2JXGMOaxp8lPTWbXd0tbbr7rcMsoeQD3QDuG3RtKVmIJUavj/33Zl5nH4dRP0OdRcA668fmenWDaSsiNgz/uA72uUdMVNbEwWUMZOvsBRIPhpth8kvgPkxxl7N5kYUtaTDQVxUWEDxresnMGDgILezi7jnbdetJr0jTO7NxK7J4dLTtvHdxSSh4gpJcH3cf4E7c/m+idGW0tTsMRRdi0EGzcYdCzDb+u/UgY9yEkboVNzzUqhr4hfV2bg72bB70mTiX+QBTpsdEtMoeExHVRl0HmiZrSwmejdmJhZU1Q914tO6+ZOXQYDfH/gF5L/+l34xMewfblX1OQntqyc1/FLafkAXqPb0e7Lq7s/yORtNjCthanYZz5AzKOwPDXwMK2cdf2uA/6L4BjK+DA5w2+rDg7E7lCgV0LNlDvOXEqdq5u7PxuKQa9vsXmkZCok9QDIOohcBAadRUJRw4Q0ncAZubmLT932ARjKZKUfcjkcsY98TzmSkvWf7wIjbqq5ee/yC2p5AWZwPA5YTh527Dl21iKcyrbWqTro6mEba+BZxfoPKtpYwx/HTpONo4T81eDLinKTMfRw+u6PS2bi8LcgiH3PkBBeiqntm5ssXkkJOokOQrkFuDTi/NHDqKrrm5Uc5BmETwcFNY1HaNsHJ0Y98TzFGdnsW3Zl63mTr4llTyAudKMcY92Qm4msPGraNSVN3Eo375PoTwLxnwATc2+k8lg0hLw7QNrHjZ2qbkBxdmNa/nXVIJ79sW/U1cO/PYTqtKSFp9P4tajVKXl8dUnScpvZIh0chT49QaFktiondi7uePdIbxlhLwahaXRnXp2g7HMMeAX0Yl+02Zxbv8eordvahUxblklD2DrpGTMw50oL1azeVkMev1NGHFTkmZ0sUROM34Ym4NCCTN+NkberJ4JhfU32dZptZTk5rRIZM3VCILA0Dnz0Far2bv6+xafT+LW4+cjaaw/ncXLa2IabgFXFkLuGQgcRHlRAWkxpwkbONSkZQxuSPgEqMwzhnFepPfk6QR07saulcvITTrf4iLc0koewDPInqF3h5IZX8y+XxPbWpxr2fYaIMCIN0wznrUz3PW7MTv2xylQWXf4YmluNqLB0GKbrlfj7O1Lt7ETidm1jezE+FaZU+LWQKc3sOpgCnZKMw4mFbI+uoF5ISl7jY+Bgzm7dzeIYuu5ai7R/jaju+iKjlGCTMaY+c9gae/A+k8Woa5s2QTOW17JA4T28aTrbX7ERGVyZvdNFHGTsh9i18CAp4zWt6lwDoKZv0BZltGi1167ydPS4ZN10XfKDKwdndixYgmi4SZcVUnclGw/m0tWqZoPpnYiwtuOdzbGUVHdgHDh5Cgwt0H07EJc1E4823doVt+EJmFha/TNn11fK/LNys6e2598gfLCArYs/pS0sjRKq0tbRIT/hJIH6DMpiIBOLuz9LZH0szdBey6DHja/APa+0O9x04/v2wvuWGaM2FnzMFylVGvCJ1vxQ29uacXgu+aSm5TImV3bWm1eiX83Kw+k4O1gychwD96eGEFuWTWf72jAqjx5D/j3Jy89ncKMtJaPja+PsAlQlmEM5bwC7w5hDJw1h/NHD/Hm5w/w0r6XWmT6/4ySl8kERt4XjqOHFVu+iaEkV9W2Ap1cZWxHNvItMLdqmTk6ToKRb0Pc37D99VpPFWdnYuPohIVVC81dD6EDhuAdGs6+1d+jrrgF6gxJtChns8s4lFTEvX39kcsEuvo5cmcPX1bsSyYx9zpZ3qWZUHgeAgdxdu9OZHIzOvQd0HqCX0mH0SAzg7Nrr3lK2ac9WZ5aQmMUzLaf1CLTt7iSFwQhRRCEM4IgnBIEoU3LEl6KuBFkAhu/jqZa1bSIG71BpKiyGfVx1KWw421jIaOOk5s+TkPo97ix6ciBz+HotzWHizIzWs0ffyWCIDBs7sOoKyrY/9uPrT6/xL+LHw6moFTIuLOnb82x50d3wNrCjNfWxta/CXvRH2/w68/ZfXto160nlrZ2rSHytVg6GjNgr3LZHM89zgNbHyC+t4CtiyuZOw+2yPStZckPFUWxiyiKPVppvnqxc7FkzEORlBVUseXbWAxNiLh5+rdTDHh/5/Utieux5wNQFcLoRcYN0pZEEGD0+9B+FPzzHCRsQRRFY2GyNlDyAG4B7eh82xhOb/2HvJSkNpGhVcg8Dl/3g3P/tLUk/0pKVBrWnMxkUhdvHKwuJy8521jw7KgOHEwqZEN9m7DJUWDpSGqeDlVpicla/DWZsAlQlFRTNXZf5j4e3vYwblZufDthJTNeWcT4BQtbZOr/jLvmSrzaOzB4VgfS44rY/0fjQph2xeex9lQWaq2e+T+fRK1tZBZnQSIcXgLd7gGvLo27tqnIzWDqCmM97d/nokrYT7WqslXCJ+uj3/S7sbCxYed3S/99NYYaQlEy/Hwn5MXC77NNUvv/v8avR9NRaw3M7hdwzXOzevkR4W3H/+rahBVFo5IPGEjs3l0obWwJ7NqzdYSuj9DbQZDB2XVsS93G4zsfJ8A+gO9GfYeHtQcOHp4tloXbGkpeBLYKgnBcEIR5rTBfgwjv70Xn4b5E78ogdm/Daj2rNDpeWRNDkKs1S+/pQXxuOW+uj2vcxFteBoUVDHu1CVI3AwsbY9VKS0eKfnoMAKfWjjS4AksbWwbOvJfMc7Gc27+nzeRoESoLjeGrBh3cv93YPPqXuyC1ZZbjtyJ6g8iqQ6n0DnQizPNaN4tcJvDWxU3YL67ehC1OhtJ0qr36cuHoITr0HYiZQtFKkteDjSv49WNtwp88u+dZIpwjWD5qOc6Wzi0+dWso+f6iKHYDxgCPCYJQq4izIAjzBEE4JgjCsfz8/FYQ5zL9pgTj19GJqNUJZMYX3/D8T7cnkllSxaI7OjEy3J2HBrdj9cUkjQaRuB0St8Cg58DGrZnSNwFbD7jrd4ovVnlwcrFvfRmuIGLoSNzbBbN1yef88c6rHPxjNWkxp9Gq1S02p1ajRzS04MpBWwWrZ0BphjGM1bcn3LMG7Lzg5+mQdarl5r6F2HE2l4ziKubUYcVfopufI9N7+LD86k3Y5CgAEopt0Wk1LdccpJH87BnAK0oNvZwjWDpyKXbmrbNH0OJKXhTFrIuPecAaoNdVzy8TRbGHKIo9XJtRKEuTnt7oZb9MJnDbAxHYu1myadkZSvPrLxoUm1XK8n3JzOjpS69AYwuxZ2/rQFc/B1786wyphTeoj6PXwpYXwSkIej/cKDlNins4Rf6TMBP02G5/ytjFvo2QyeSMf2ohHYeMQFVSzIE/fub3t1/mi7nT+emlp9j1/TckHN5PZcmNb8ANQa838Ns7R/njg+NN3nS/LgY9/PkAZByFKd8g+vZGU6VCtHaFe9eC0gFWTYa8c6af+xZj5YEUvOyVjAx3v+55L4wOxcpczuvrrtiETY4CGw/iTsTi6OmFZ/sOrSDx9fn2zLcsyo1iaKWKL607YaVovag2oSX9oYIgWAMyURTLL/5/G/CWKIqb6zq/R48e4rFjjQ/AqTx0mLT77sN38dfYDB7c6OtL8lT88f4xrOwsmPp8d8wta7fc0xtEJn+9n6ySKnY8PQR7q8tLv4xiFWM/24u/szV/PNIXC7N6in0dWgybF8LMX40hVW3IX4tepyLrAvc6r4cud8HEr1p+A7gBqCsryE44R2Z8HJnn4sg5n4BOa7wJOXh44t2hI96h4Xh1CMPJywehkTLHH8pm+8qzIICbvx0TnuyCxVV/66YgiiKVRYUUrnmNwuhdFLoNpVBrS2FmOuryMqzsHfAIao+Hlwse8d/gbl2N1UMbwalds+e+FUnILee2T6J4fnQHHh0SfMPzVx1M4dW1sXwxsyvjO3nCh+0p8xjENxvy6Df9LvpOmdkKUteNKIp8euJTVsSsYFy7cbwdfxSFXgsPRZl0HkEQjtcX2NL8T/j1cQfWXPwymgE/16fgm4NV924oPD3J/+JLrAcNavSX38HNitHzIln/2Sm2Lo9l7KOdkMkuj/HDwRSiM0r5fGbXWgoewMfRig+mdubhH4/z/qZ4XhtfR/GjykLYvQiChkPIqCa9RlNSlJ2JR1AkdA6HPe+DYwAMfr6txUJpbUNg1x4EdjV+VvU6LblJF2qU/oUTR4jdsx0AS1s7vDqE4x0ajneHcNzbBSE3q9/vKhpETmxNw8nLmt4T2rHlmxjWf36K8U80XNGLokh5YQFFGWkUZKRRmJFOYWYaRRnpVKsureSCUFYU4exrQ0ivfti5ulGUlUHOhUSSTh4D0bjZbb/gEdwj++AZ2hmPoBDc2gVhrrRs+pt3C/H9gRTMzWTM6NmwJtuzevvzy9F0/rcxjuHOhVhV5hNX5g7ktX4ZgyswiAbePfwuv8b/yvSQ6bzc52Vksi9h26vGHs6OAa0iR4sqeVEUk4DOLTkHgKBQ4PLIw2S/8ioVu3ZjO6zxf1ifDo4MnBHCnp/jOfjXefpPbQ9AVkkVH26JZ3CIq9FKqIPRER7M7uvPiv3J9A1yvnaJuesdqK6AUe+2ucWs02gozcslbMBQGDILilON8jn4QecZbSrb1cjNFHiFhOIVEkrP8XfUhH5mxZ8l81wcmfGxXDhmrLZppjDHIzikRul7hoSitLapGSslppCirEpGzA2nXRdXRj0YwZZlRkU/4YkutVZvosFAWUGeUYlfocwLM9LRXlEH3NLOHmcfX0LDfHHO2IBzh244z/wCK0enOg2NapWK3KTz5JzcRc7e38k+c4SEY8cBEAQZzj6+uAe1xyMoBM/gEFz8/K9747oVKVVp+etEJpO6eOFk3bBok0ubsFMWH2D/1j8ZIUJcfB7eoR2xd/NoYYnrRmfQ8dr+11iftJ65EXN5qttTxs9E2Hijkj+7AfrNbxVZWtqSbzXsJ06kYOkyCr78EpuhQxptzQNEDPKmKKuSU9vTcfKyJrSvJ6+tjUUvivxvUgQAusIqqpNLEbUGrLq5I7MwumdeHBvG0ZRinvvjNP88MRAvh4tWWU4MHP8Oes0Dt1BTvdwmU5KTBaJoDJ8UBJjwBZRlwtr5xs3BwBZqbmwCBEHA2dsXZ29fIofdBkBlSTGZ8XFkXbT2j6z9w1gXRxBw9fXHK7QjXiGhnNmjx9bZivY9jBve7bq4ctv94Wxetp9f3z5HUFczSnIzKcxIoygzA90VTZetHZ1w9vYlYsgInH18cfb2w8nHFys7e2P9oVWToEsPuGeFsRJoPVhYWeEX0Qm/iE4wqCesuoNK2/bk9HqTnPRsci8kcOH4EWJ3G1crcoUCV/9APIJCjO6eoBCcvLxbt4piK/P78XSqtPo6wyavR3d/4yYs0R+TYdae4txcekyc3jJC3gCNXsPzUc+zI20HT3R9ggciH7isj5wCjaHMZ9e1mpJvUZ98Y2mqT/4SJX+tIfull/D56ktshzetToVBb2D9F6fJSizBY4Ivn+1K5IWO3vQyM6c6uRRD2eWNSpmNAtshvtj09kRQyEjKr2D8F/sI87Tjl3l9MJMJ8P14YwLEEyeMmW9tTMKhfaz/5D3uXvQp7u0u+jurSmDFKCjLhvu33hQ3o6aiVavJPh9/0dKPIyvhXI31rbRxxL9TJIIgGJV5VgZ67eUNWBsnZ5x9/HDx9cPJ2w9nHz+cvX1R2tjUPVneOVhxm7Fl431bwMqpccKe32GMxPHsbIzAsbBFFEXK8nPJuZBI9vkEci8kkpt0Hm21MeLI3NIK93bBRqUfbFT+ts6uTTJqbjb0BpGhH+7G3c6C3x/u1+jrC8tUKD4OYk1Bb4pLBB5euqrWaq41UGlVLNi1gIPZB1nYayF3hd117Ul7/g92/Q+ePgd2dXsHGktb+uRbFfsJ4ylYuoT8L7/CZtiwRn/wRYOILkfFoE7OpORWYrsjix9lNhBbSrWtORbt7LEItMMi0B6DWk/Z1hRKNyRRsTcD22F+BPZw553JkSz49RSfbE/gOd8EY3r1uI9uCgUPV/Z1vSJG3tLBGEP/7Qj4aRo8sB1srx/VcLOiUCrxi+iMX4TRS2jQ6/nr/7aSlxKPT0gVmfFxyGQynH388O/UFWdvX1QVNhzdWIprO1duf7wz5soGfC3KsuGnqWCmhLv+aLyCB2N1wqkr4LfZxmqhd/2BoFBi7+aBvZsHHfoONL4Gg56ijHRyLiRe/Eng+Ma1GC42bq/Z2A0KIbBLdzyCQxovy03A7vg80opUPD+6adEwzuXn0ItV5BaKOHTo0uoKvkxTxvwd8zmdf5q3+7/NpOBJdZ8YPsGo5M9tgF4Ptrhct4SS1xq07ErbRV+vvrg88gjZC1+kfPt27EaOvO51ot6AJrMCTXIp1UmlVKeUIVYbM1iVCoHsagMqSzMGPtoZSy+ba24arg92Qn2+hLKtKZSsOU95VAYjR/hzZ3dvvt19lsedXkHpFg7d5rTUS280RdmZ2Dq7XrvJ5+gPs36FleOM8dyz14GybePoTUFRdhW5KRb0njCJHmMD6j3PySuPrctj2fDlaW6ffwNFX10OP08DVRHM/cf43jWVsPEwaTGseciYGXvnjyCv7YeXyeS4+AXg4hdAxFDjZ1qn0ZCflkzO+YQa5Z908hgH/1zNjDffxyskrOkytRErD6TgYadkVMcm+tGTo0iucERu0LNJ7c1d1TqsLVpHxRWpi3h428MkliTyf4P+j9sCbqv/ZNcO4NIB4tZKSr6hnMo7xTN7nsFMMKO7S1ce83Qk67NPsBk2DJn8ckijqNWjSS+nOrmM6uRSNKlliFpj7RozV0usOrtiEWhPgrnI5B+P8UBHTxyPl6Jbm8zYhyOhjoWBMtgBi6DOqM8VUbY1leJf41ngZskAy3NYVGRQPOZ3HOU3z9tsLExWT6ardzejZfnLXbB4ANyxFPwbv2y+mTixJRWFhZyIwdfP7g3u7oYoimxbEXd9Ra/XGi3v3Djj6scUpSk63wmaCtj4NPw1D6Z8Czfou2tmbo5ncAc8gy9bvaqyUn566Wk2fv4h937wORZW1s2XrZU4n1fB3sQCnr0tBIX82j0Hg0ZPxf5MrHt4ILetZ0M2OYo4dTAKa1tOi+58vjORF8e0/M0utzKXB7c9SFZFFp8P/ZyBPgNvfFH4BNj7kbGpj7VLi8p3S+zgdHXryvejv2d2x9kU6Ur4pkcp4vlkXnt7FCvXLSb2j33kLj5F5hsHyV92hrLtqRgqtVj39MDprlA8X+6NxzM9cLyjPYpOLizcFo+HnZIn7+7EgGntSYku4NDa+gtpCYKAZZgzbo93xWlWKIJOR1fVAM5rlvHFDtubpu2gKIoUZ9+gMFmHMXDfZmPP2JXjYMdbbZow1RxK86s4fyyXjoO8UVrfOEqlfQ93Rt4XTs6FUjZ+FY22+qq6RKII6xfAhR0w/lNoP8J0wva831h2OvYvWP/ENfX/G4KVnT1jH3+W8oJ8dixfbDrZWoEfDqZgLpcxo1fdYZOlm5Ip25JK0S/n6s5Y1mlQJx0hqUhJxKAhTOnhz/K9yZzPa2IRwQaSXp7O7M2zyVPlsWTEkoYpeDAWLBMNcK7lm9vfPCZmMzCTmdHNvRtdbCN5yPIeCvWZaKtieKjKC+GAHD06Yi1jKPFRY9fejYguPXB38apzrG/3JnMup5xl93THxsKMyCHeFGVXcmJLKk6eVnToU/9GiSATsOrkiuX511CdKqRa/jj3Zes48+FRwqaFYtGubd0flcVFaKqqcKrPkr+Eby94eB9sWmi0Ns7vMFqXLu1bR1ATcWp7GoJcoMtw3xuffJH2PdwRRZHtK+LY+NVpxj3WGcXFCCr2vA+nfoTBL0C3e00vcP8njaG2UR+AuQ2Mfq/RIbfeHcLoO3UmB37/iYAu3ds0TryhlKm1/HE8g/GdvXCxsbjm+eqkEioPZqPwtqH6QqlxD2zwVX/TzGPEF1mjN4h0HDScTm6+bInN4fV1sfx4f+8W2Zi+UHKBB7c+iMagYflty+no0rHhF3tEGuPkz66D7rNNLtuV3BJKXpNZQfEfCWhzKo3l0OQCSi9PVEc3YztlMPH9rDmQl0JURhTZmdmQCaFOoQzyGcQgn0FEOEcgl8lJLazk0+0JjOrozm0X/YKCIDDwzvaU5Fay88dz2LtZ4XE9ZZ1xDCH6Z6wHPUXg4H58t/gY3bPU5C+LxqK9A/a3BWDua9s6b8xVXG75d63SEw0i2qwK1IklaDPKMQ+ww2rox8hDboP1T8KSgTDqHehxX5vH+jcEVZmGsweyCe3tgbXDtYrjeoT09AARtn8Xx8avLyr6mJ+NCW1d7oIhL7aQ1MDQl4yum0NfG1vHDXul0UP0njyd1DMn2bH8a7zah+LgYZoIjpbij2MZqDT6OuvUGDR6iv5IRO6sxPWhThT/nkDpllQsghww97nie5QcRVypG05eXrgFBiEIAs+O6sBra2P550wO4+rJcWkqsYWxPLztYcxkZnw36jvaOzbSABIECJtA9YGVZB9LJTNVi72rJRGDTF808JYIodSXaSj6LR6LQGP0i7mvHchEkiZMRJAJBK5diyCTIYoi50vOE5URRVRGFKfzT6MX9ThaONLfuz9nEr1ISfdl+4LReNjXjndWV2j5/f1jaKv1TFvYA1unOuKhDQZYPhJK0+Hx42BhS7layx2f72OoCu4VlFClQxnujP1t/ig8WtdnemrrP+xY/jXzvl6JrbML+tJq1InFqBNLqD5fjKHSGK0ht7dAX1oNAlgE2mMVao7lhdeQpW6BkNEw4UtjVb2bmEN/X+D4llTueqMPDu5NqxMSfziHHSvj8PIVGae5C0VQX6MfXt7CCUqiCOseN3YPG/EmDFjQ6CHK8vP44fnHcfLy4c4330dudnPacwaDyLCPduNkbc5fj/a/5vmSdReoOJiF67xOxqg2lZbcz04gKOS4Pd61Jk+l5KuxLI+SMWDmbHpPmgYYQzInfLmPwgoNO54ZbLJN2OO5x5m/Yz525nZ8c9s3+Nk1LDMXoLpKR/b5EjITSsiKySA/W4uIHJmZQMf+Xgya2bTIouuFUN4SSr4+yv75h8ynn8H744+wGzv2mudLq0vZn7mfqMwodqZGUaUvR0BGd/duNVZ+O/t2NUu9ouxK/nz/GHaultzxbPfLy/hLnP4V1swzRkt0mVVzODqjhCmLD3BbkAvv+rlTsTcTUaPHsrMrNsN9KLOuIq8qj3xVPvlV+eSr8slT5VFQVVDz6Gvry+jA0Yz0H4mLZdM2anatWEbewXhum/Ao1edL0F1sgSizVaBs74iyvSMWwQ7Ibc3R5quoOp2P6lQ+uoIq4+rItRSr4m9QWicgm/QphFwngqAN0VTp+P6lA/iGOTJ6XmSzxorffITtf5fhY5PMuNemYWbnYBohb4RBD389CDF/wtgPmxSFEX9wLxs+fZ/ek+9kwIx7TC5iYnEiGr2GEMcQFE288e06l8fclUf5fGZXJnSu7UKtTiohf9kZbPp54TAhqPbxb85g1d0dp6khoFFx4Om+HMz35cGvvsPO5bIBcjy1mCmLD/Dw4CAWjml+/sf+zP0s2LUAD2sPvrntGzysrx8JpKnSkXW+hKyEEjITislPK0cUQWYm4BFgh1fRarx9weP+9zEzv/5m+/X4zyp50WAgeeJERL2BduvXIcjrfhNLVBqGfbQLN5dcRvUqYl/mXhKKEwDwtvFmoPdABvsOpqdHT3LOVrDxq9P4hjszeGYIdi4XQxGrK+DLHmDrCQ/sQI9IcXUxeSqj8l5z5iz/xMXTPUiOt6WBTuf96J8ZiZkoZ6vDQX522USB4nK1RSelE25WbrhYuuCsdCa2MJbzJeeRCTJ6e/RmTOAYhvsPv265UtEgos2ppPqitV51vggZMjATsAi0Nyr19o4oPKzq9VmKoog2qxLVqTxUp/MxlGkQhGoshQNYhilRTn0MwfLmiuI4sTWVg39dYNqLPXDzb0Y515I0+HYE5yr6syP3Hnw6ODLu0U7N+jI2Cr0Wfr0HEjbB5KVNKjuxZclnxOzezvTX3sU3vHk3vEvEFcbx9amv2ZNh7AOgkCkIcwojwiWCCJcIIl0i8bPzQybcOK5j9oojnM0uY//CYbWiagwaPbmfngAB3J/shuyq97x0Swrlu9JxuisUS8toVrzxLna+IUxbdO2G87O/n+bvk5lsXjCIYLemx85vT93Oc1HPEewQzJIRS+qsBV+vUpcLuAfa4R3iiHcHRzwC7Yyfo3+ehxPfw3MXjD0fmsh/VskDlG3eTOaCp/D6v//DfvztdZ7z/B+n+fNEJhseH1DToCCnMoeojCj2ZuzlUPYh1Ho1lmaW9PboTY/CkVTusUE0gLJDNdWdsigoWkd+Xgz5HuHk61QUqgvRi9d2jRJ11vg7eOJn74Gf4E2/lHACLxgtc01nC6yHeOPi6o5Cdq1llFicyKbkTWxK3kRGRQYKmYIB3gMYGziWwb6DsTSzRF+uQZ1YTHViCerEYgwVxoxOhYcV8WlHED3kDHrqfgRF4xWVaBCpTi6l6mQOqlOZiDpzZLIKLDs6YtUvDHN/OwRZG9fm0epZ9fJBnLysmbiga9MHUhXBitFQkQP3beHcBQd2/HAW31BHxj7SiopeqzbG5Kfsg2nfG0PvGoFGXcWPC59Eq9Fw7wdfYGnT9P2g+KJ4vj71NTvTd2JrbsucjnPwt/MntiCWMwVniC2MpUpnzC62Nbclwvmy0o90jbxmBZqUX8Gwj/bw1IgQnhxR26ddsu4CFQcuumnq2AMT9QbylkSjy69C9N/Ir5tPMerBh4kYce13vKCimqEf7qazjwOr7u/VpE3YdRfW8er+V4l0ieTrEV/XGFcatY7s86VkJhSTmVBiVOoGsbZSD3HAvZ09iro+Myn7YOU4yjr8iiKyB5YRTVul/6eVvGgwkDxpMqJWS7sN66+x5g8lFTJj2aHrLufUOjVHc44alX7mXjIrMrGuticyewgdc/ujMFiQ6XCGHN/9mHdwws3SaIG7WbnhauWKq6UrblZuyAy2TPzyEAq5jA1PDMBOaVTkuhI1ZdvTUJ3IRZDLsOnvhe0gH2RWdS+BRVEkpiCGf5L/YWfSDtwL7elVFcmA6u64lBs/fDJrBRbtHS66YRwwWIh8Pnsa/abOou/U+kuvavUGDsblEdHO6boFokSdAXVUFKo9x1FXd0JEidzeHMsublh1dkXhad0mqfaxezPZ/VM8ExZ0wTe0CVmoYFSsqyZD5jFjuYGAAQCcPZDFzlXn8AtzYswjkZg14UbZJKorjPJknTQ2Imlk6GZu0nl+fuVZgrr3YvzTLzb675JYnMji04vZlroNW4Ut93S8h7vD7sbWvPYNQ2/Qk1SaRExBDNEF0cQUxJBYnFhj7HhYexDpElmj+P8+LPDbkTwOLByOq+3lzfHqpFLyl0Vf46a5Gl1BFbmfn6RCncTm9F94ZMVvmFvWvf/y/YEUXl8Xy1ezujV6E3b1udW8e/hdenv25qO+n1CSpiEzvolK/WoMeirfeYDiyvuw7uWB4x1Ni2D7Tyt5gLItW8l88km8Pngf+wmXLSG1Vs/Yz/ei1RvYumAwlg34o4iiSFJpEillKbhYuuAgOpPz3WpiUkNQG2zxDLan++gA/DrWXYnwaEoRM5YdYkyEB1/M7FrrHG1BFWXbUqmKzkcwl2M7yAebAV7IrtgwEkURXa7KuGGaUEx1chnoDOhlBs5aJXHE8gzxDum0D+3I6Haj6eneE7lMTl5KEqteeILbF7xQky5/JepKLVs3JXFmbyYO1bDFWoNbJxfu6ObNsFA3lPUpNFURhr+fQX22EJX5ZNRVwWAAMzdLrDq7YdXFFTPn1imhazCI/Pz6ISyszJi6sEfTbjIGA/x5H8SugSnLIXJqrafj9mexa9U5/Do6Mebh6yt6vUFPVmUWXtZeyG+Q3HRDqkrg+9uh4Dzc/ScEXLtJeT2OrvuTqJ++Y+S8+XQa3rB+BkklSSw+vZgtKVuwUlhxd9jd3BN+D/YWDQ8FrtJVca7oHGfyzxBTEMOZgjNkVBijvERRwEbmxcignkZr3yWSIOtACr84AyK4L7jWTXM1ZfsSKduQQ7ZwlJ6Lnq73PJ3ewIQv91Os0rD96YZvwn5zfDlr9m6mD8MJVXejIK3yGqXuFeKAR0OV+lWoE4opWBGNhTwal1fvR1A2LUjgP6/kRYOB5Ml3IKrVtNu4AeFipMHH2xL4fEciP9zXi0EhTYwWSd4L39+OduBrxAnTObUtjYriapx9bOg+yp+gbq7Irsrg+2rXef5vSzyL7ohkZh3JH9qcSkq3pqKOK0RmbYbtYF/kduaoE4y+dUO5MTnJzM3S6FcPccQi0B693MDB7INsSt7EzrSdqHQqXCxdGBUwiq6F3sSs/JV73v8ctwBjswqDQSTjXBEn92SQFl2ITIRic3C1MUdbpuUPVz0pVdXYKs0YF+nJ5K7e9AxwqlVr3/gGi3DqZ9j0PHrRnqrQD1AV+KJJLgNA4WuLVWdXrDq71p+taALOH89jyzcxjJ4XQVC3JrZX3PIyHPwSRr4N/Z+o85S4fVns+vEcfh2dGfNwRC1Fn12RzcHsgxzIOkDO0b0M21dOkacNtqNuY/DAu+ng1KHpK5zKAvhujLFuzuy14N29wZeKBgN/vPMqWQnnuPu9T3H2rj93IKU0hSXRS/gn6R+UZkruDrube8PvxUHp0DS5r6JYXcyne3ew+vR+eoVWkFYRT3G1cT/q0bw7GV84mG0DY3AP8yfSJRIf2/obxCT8+QUFuyzwtQ3F/dGu1w1PPp5axJTFB69ZtYuiiKpMQ3mhmrLCKsoK1JQXVhGTcB7ylMiQG5V6gB1eIQ5Gn3oTlfqVaLIqyF8SjZmtFteKO5HNXAGh1waINIT/vJIHKNu2jczHn8DzvUU4TJrE+bxyxny2l7GRnnw2o4m+W4Melg4CdRnMPwIKS/Q6AwlHcjm5NZXiHBV2rpZ0HelHaF+PGmVgMIjcu+IIR1OKWDu/P6EedW8OatLLKd2aQnViCQAyKzMsgh1qNkzNrhP/XaWrYm/GXjYlbyIqI4qweEu6JNojf2oYQ5xHUx2n5NzBHCpLqlELIucs9HTs78XDk8JQF1fz69tH8O7giN1tnvx9MovNsTmoNHq8HSyZ3NWbSV29r93EKko2puVnHIHIaej6v0tVvAbV6Ty0WZXGkMwgB6y6uGLZ0QWZCboyXUIURX5fZAxxnfl672tvRA3h0BLY/IKxLPSYD66bD3DJLeQT7oDd+DIO5RkVe0pZCnK9yD2HLRm9txKDpQVylRpBhAxnSOzsjOPosQweOgcv27oT8q5LaSZ8N9pYP2fOP+BeR5OaeqgoKuT75x/H1tmFWf/76Jrm1mllaSyNXsqGpA1YyC2YETqDOR3n4KRsoturHgwGkREf78HOUsHfj/VHFEUyKzJJOhNH4Dolh7zi+MBpOWq9sfKmvYU9ES4RhDuFo5Ar0Bl0NT/8tAfzIjm3tXsMg8zA6gFRVMmq0Yv6y+fpdYhqGWaVlpTmmSEvt8Jb5oSV2g5llR1WVXbIDbXfC5WinFJlHvYBCu4cejueQY7XRtM1A12JmryvTiPIBNwe7oh8aRh0GAuTlzRpPEnJY1QCyXdMwaCqJHD9BmauOEZ8bjk7nhlcZ5Zdgzi2AjY8BdNWQsfJtecziCSfLuD45hTyUsuxsjOn8whfIgZ6Y25pRl65mrGf7cPBSsG6+f2xMq9f4WkyykEEhbdNkzY2KzQV/PT+y5Sez6DUfRReZcGIiGTZFnJcAL+wAF6dEIGf8+Wl4qntaez/4zwj5obTobcHKo2OrbG5/HUyk32J+RhE6ORjz+Su3rUzFfU62Pcx7H7PWJ9+8lII6I82T1UToaMvVBtDMkOdjAo/1KlJG8FXkh5XxLrPTzH0nlDC+zdBecatg9/uhdBxMP2HemvH6A16zhad5UDWARIP5BNwqi+pDrHsCf+Jrl5dGKYLIXLxToi/gP3Eibi/8jKiWk3upnVkrv8T65hkZCLkOEBKN0/cxk6g/4g5jbOSi5KNFr1BbyxB4Vy/3/pqzh87zNr/e5vu4yYx5N4HAMgoz2BZ9DLWXViHmcyMGR1mMDdibp3RI6ZgT0I+s1cc4dM7uzCpqzH5x6DRk/vZiRo3jcFM5ELJBc4UXHbznC85j0E0ICBgJjPDSqtg4lYXkgLKkbcL5fmkuzhlnco22wtYVzlgVWWPssoOpcoWub62Eq82qwY7NQZrNQbbakRbDdhqEWx1mNkbkJvL8LP1Y1LwJJPvLRmqdOQtOY2+pBq3Rzob82WOrwR7X2Nl0iYgKfmLlO/YQcZj80l78Bkeyvfk/SmR3NnAFmPXUFUCX3QD11CYs7Feq08URTLjizm+OZWMc8VYWJkRMdibTkN9OZFbxj0rDjO1mw//N830DbREUSQnqYxzB7I4tflDQIm9/wzO2KSw12oT1Q4xIIiEO4czNnAsowJG1cT9Ggwiaz48TnGuipmv9cba/vKNMK9MzbrTWfx1IpO47DLkMoFB7V2Y3M2H28Ldjf77jGPGOO+iZGMyz5CXwMzcGJKZUWFU+NH5GMq1IAO5oxIzZ0vMnC8+ulz8v6MSwezGoXh/f3KSkpxK7vlfP+SKRpZkSjsMP0wwpprPXg+K2nsI2RXZHMg6wMHsgxzKPkRpdSkAYU5h9C+5HbP9PvhFONLHOprCTz5GZm2Nx5tvYHfbtXkEuqIi0jb+QfbGv7CPTkVugAI7gawefnjcPpneI+9FqWjAHkZ+vFHRK6xg7iZw8EWbW4m+TIOy/fXLWm9fvpjTWzcy5KknWW/Yz9rza5EJMqZ3mM59EffhatUw16VoENHpDCAaP2sY/4EoIopc/P3i8UvnAE//eoqzWeX8/Vg/FHIZokFEvSsNzfE8lNNCMLuYySpeOY4ootXpUJVoqCiqpqxATerJbeRc+Acbp5noRE9ClTI6KOUcrdSRL5dh52yJnYsSW2clds6WxkcXSzacz+ONzWf5+q5ujI1s3WxgUWeg4LsYqlPKcJkbgTLYwSTjSkr+IqIokjh5CpnpeSy9fxGrHxnQ9Lv05peMqecPRYFnpwZdkptSxsktqVw4lY+ZmYyw/l4ctdDyxeEUPrmzM5O7XqdwWCOoLK0m/lAOZw9kU5KrQm4uQ1XwGbLAXiwVumJA5LGhwUzsYc3ujG1sSt5EbGEsAN3cujE6cDTtHdpjXenEnk9SCYh0YfRDdcdYx+eUs+ZkJmtPZZJdqsbGwowxER5M7upNHx8LZFteNGZuenaGO74F18u1zkWDSHVSCdUXStEVVqErVKMrqKop9wyAcOkGUMdNwFGJoJCRm1zGH+8fo9+UYLqObORNuyDRmKVs6QT3bwNrZyq1lRzNOcrBrMsuGAA3Szf6evWlr1df+nj2qbF0T6+LZd8/ubgURNPHJRHvt9/AzPXGilJXUkL8hp/I27gW5+h0FHoosRHI7xWEz/hpdB458/rt/7JPI343AbXZACocnqY6yZjcZn97O2wH1J8en1GcxuqXnqG6soKNg/IZH3kH90fcj7t1w3sI5KeXs+WbGErzqm588g1wkgsMsJGTrDFwpqphhdnMzGVUl6xCpq+g09D52Pr7Y+dogXJvBpRU4/ZkVxROdd8sdXoD47/cT0kjN2GbiyiKFP+WgOpkHo7TQ7DuZrqeDZKSv4KP3lzO2NUfIn/hVULmzrrxBXWRnwCL+xrrmEz4vNGXF+dUcnJrGvGHcxBFkWx7GbuEan54qj/tXJuWEKHXGUg5U8C5A9mkxhYhGkQ8g+0J7etJOiXEfP48u5wH4tVnOK/eHo6vU+1d/LSytJoY/AulF2qOd80cQe+08cR334GivRpPa088rD2MjzYeeFh54KR0QhThUHIha05ksikmh4pqHZ72SiZ28eYeh2i8o14AbRWM+h9i9/swVFSgLylBX1qKzMoKiyCjy0EURQwqHbqCqsuKv7DK+HuBGlGtuyy0YCzBUKrWU1ypJWx0ABYeVpg5WyJ3Ut4wMoOKPPh2BHpNJXFTvuJgZRoHsg5wOu80OlGHUq6kh0cP+nr2pZ9XP4IcgmoZBaIoUvr3WnLfeYd0lz7EB0wmsLMLox6MQN6A1ceVVJeVEL32Owo3bcAjOgsLHZRbyyjpHYL/hBmEDL8D4QofukGjR3Uij4rd59GVgExehs2gYDR5etSxhThMDMKmb223VZ4qj2/PfMsfCX9gXyZn3H4PvDtGMOOldxtl7MTtzyLqlwSU1goih3gjyAQEBBCMC9pLYxlzoYSaRa4gE9gYnc2hpEJeGBOKnZUCdAZsojJAFFEN8zOu2oSL1whcMa6AIANrBwvsnC2pKs9l5dOPMNgrix4fHoGL5bx1hcawSoWnNa7zOtXr3jyWUsTUJQd5ZEgQL4xunU5opVtTKN+Zjt1If+yGN9GDUA+Skr/I7vg85qw4wi+nluGiUxG06R8E80ZGe4gi/DDRGLP8+Ilm1XApL1Jzens6MXsz0WsN5NgIPDivC34hDe8iVZhZwdn92cQfyUFdocXa3pwOfTwJ6+dJpYXA2+vjiD12jEk56wmZ8xzjxwy+wcsTySjPIKMig5zKHLLKs9H+6QUV5kT1+450bUrNhhiiiIUWnDXm+OOMj94eD70NzhoLtAUGKnLUqPPV2Kh1eIsq/KqzEKqq0WvkF9f1l7EeOBCXRx7Bqtv1N8ENKm0txV+ZUUF+TAH2SjPkutpWoNze/KL1b4n8ipWAws2K7PIkDv55Nwe0hRyyc6ZMVwkYXTB9vYxKvatbV8zldX8+dEVF5Lz+OuXbtmPZozte773HuUTY+2uCUdHPi0BeR130hlBRWsixtcso3bwZ35g8LDWgspRR0SecdqPuxtasI5XH8xGrdCi8bbANKcXy8EwEj1DEu/6m8I8M1GeLcLyjPda9PCioKmD5meX8nvA7eoOeicETmddpHjl7j7Nr5VKGznmIbmPG31AunUZP1C8JnD2QjU+oI7fd3xHLRkRLVVbr6PPuDoaGuvH5TOPfuWT9BSr2Z+HyYCTKIIcGj7Xvl1UcWfML80ZZY3Pfb7XnOZlH8a/xN1Smz/x2mnWnjZmwQVcZV6Jej76kBDNn0+xLVB7NofjPRKx6uOM4pb3J/fz/mfZ/10Ol0fHK3zEEudnQ4YWnyHn0UUr+/hvH6Y1s9nv6F0jeA+M+bnaRLlsnJQOmt6fH2AD+/u0cVUfzWP/xSbxDHOg2yh/f8Lpj7dWVWhKP5nL2QDb5aeXI5AKBnV0I7euJX7gTWlHkm6gkvtx1HoBHgs3R5cDQ3hE3FkoUcUkuwj6vgrBSPfoSc4qsM9lW2IF7d99Ol4odaIsL0RYXQ1k5glYHVAEZF3+ukFMB5ZZQYQnFSjlpduYYLBQ4W5RjYSHDKqQ/TqH9sUoroPLnv6icNQuxeyTa2ZPQdgqpHSFh0KETL/9fb61HZ6mjNM4KjVqJ8s5kBEGHRZkcyzI5luUKrMvNsSmxwDbTEsvqy8pIJVdzyDqa/bbtSXO0ZKh/f/p59aO3Z+8GbTaW79xJ9quvYSgrw+2553CaMxtBLqeTj/Emue+3RLZ+G8ttD3RskqK3sXdmyL0vwr0vUlCcxeG1S2FPPCGVPeGAPeVCJlXaJGx7ueMysQdyS0vwXw6/3o3w3Qic3btR4DSK4r9ENsUs533Fn2hFPeN9hjGvy6P4OhkTbjxHe5Jy+jhRP63ANzwCV//AemUqza9i87IzFKRX0GNsAD1vD2x0BNNfJzIor9bVNOmuTiml4kAW1n09G6XgRYOBuD3b8LcuxiZs3DXPW3d1Qx1fRNmOVCyCHbCop7TFwjGhbI3L4Y11sfxwX+1M2KwXFlK+Ywft1q/H3Kd5lSHVCcUUr0nEIsQRx8nBrZ4k+J+x5Bf9c5alUUn8Oq8PvQKdSJkxA11+PsGbNzfcmq8sgC97Guuqz73YWMOEvLUmhtN7Mhgpt0JfqcPVz5Zuo/xp19V4M8k4V8S5A9kknSpArzPg7GNDWD9PQnq5Y2ljfA274vN4c10sKYUqxkR48Mrt4Zz763vionYw/7vf6v2AGdRqSteuo+j779Ek1W6QIigUpLSfyAW3ofSo2oG3XRkye3vMHByQOzggs7dH7uCA/OKjaG9DkUJDjraQ7MpscipzyKnM4XxROknFmZRpctDLqmvNYaERGXFKZOIhAw6VEOcLfwyQEeMv1LupbV3twKyTrxLnfoD9gX/WHJcLcsxkZpjJzGr+byNa46VxwavajZ5FPoSXhGAu2iIoZFi0d8QywhnLUKd6s4wB9BUV5C5aROmff2ERGorX+++j7HBtP9XTO9LZ93siQV1dGdlERQ8g6kWqYguo2JeJJq0c0Vwgy/o8KXGrCTydhq0atBZydH06EzBhBg4eamQnl1GsyuUHQUtw8VNEqDqw02kJwzVb8dNddHUprI3diKxdUZk58/1uNZZKc+66ezAKe4+a57B2BStnkmOK2b7yLIIAI+aGExDZ+NR7URQZ+UkUVuZy1j7WH1FrIO/zk4h6A+4LutdUk2wI6XFn+O3NFxnrdY6wF/4Gj2uNF4NaZ4zWEQTcn+iKrJ52jiv3J/PG+rham7Dl27eTMf9xAGxHj8bn008a/XovURML76zE9eFOtRIbTcl/3pKPzSrl233J3NnDl97tjJaa6/z5pD84j5K/1uA4486GDbTlZWN88vjPTK7gARaOD2dqZglL8iv5clQHUvfnsOWbGOxdjfH3FcXVWFiZET7Ai7B+nrj6XU78SC9S8daGOLbF5dLO1ZpV9/diYHvjzeFAlrEbVF0KXldURPHPqyn++Wf0RUUow8PxfG8RypAQo+J2cECwtKS9QaRk0THiysbQ+fXeN+y05A14E1DncwaDyN6EC+TsfBPv8q3kyJTI5RbYhJmhCZFTGQuhx/W8ttqAwVOO2EeJvJ0SRY3SlqMQzDiTM5REUcbrfuk4WHSqUeyCzAxkZsa/kcwMBPnF3+VQngOZ3yAOfZrqoCepiilAHVuIOq6QYpmARZA9lh1dsOzoXCtxS3X0KFkLX0SbnY3zvHm4zn+sXuOg83BfRFFk/x/nYXksI+d2bFTEj0GlpfJoDhUHstGXViN3VuIwvh1WPdzxtRhAL3E2MTmn2L9pBfqd++h09AS5e06QqZBT1NGLA3YCCW5yyrvEEJkVxsjsR3Eaej+45kBlvtFYqcyHynysKrMY41/Jn/He7PnpO0Z4XN6PMYgyDlfM4kTlFFyVGYzusAm7s+aQdvEGYO1ibA/pduMWe/vPF3I+r4KPpnVGEARKt6aiK6jC5cHIRil4gLionSjMBILdRHCrO09ApjTDaUYo+UtOU7L2Ak531l3C9+4+/vx6LIP/bYhjSAdXLFQVZL/5JhahodgOG0rB14upPDIT6169GiUjGGPhC76LRWZphsvcji2m4G/ELW/J6w0id3y9n8ySKrY/PRgHK+MXUxRFUmfMRJuXR9CWzchuZM1f2AWrJsGg55rUyKGhpBZWMu7zfbR3t+GXB/uQHl1I9K50FBZyQvt6EtjZpVaGpVqrZ8meCyzefQG5TOCJ4e25r38g5lds/C19dA6+4ZGMnf9MzbHqpGSKVq6kdO1axOpqbIYMwWnuXKx69azX2s9PK+f3947RoZc7w+c0PAnnemjO7yF6y0oSs4txtJTRJ8ABBwsBg0ZL6fFcCvZloyvVovRU4jLACZt2SgTRgFqj4PvoR2lnf5aRfn+CQWf8EfUX/2+o//fOM43utos3atEgoskoRx1bSFVMAbpCNQhg7meHMtQe1aF1FP+wBIWvL17vvXfDfYNLXMo1sHNR0ndyMEHdXK+7VNfmq6jYn4XqeC6i1oBFO3tsBnijDHWqdwNRa9ByKP0AR7f+gFnUUcKStHgXgXDxay138cCy93wEhQuWERpsB3VA4et7jRy7f/iW4xv/ZuJD9xMc5I4qv4CtG+VkZlvS0T+VAQFRmKlza24OVF2umErIGBjwFPj1rve1PfD9MU6mFXPgxWGQUUH+0mise3viOCm4Qe9lzevVVLNk3t20t85j9OAAmP79dc8v255K2fY0nGZ0wKpL3VnQlzZhHx0SxN27VlK6YQOBv/+Gebt2XBg7Frm9A4F//F5vFdu6qDMWvgVpU0teEITRwGeAHPhWFMX3WnrOK1l1MIXTGaV8NqNLjYK/KBcujz9O+gMPUPrnnzjOrL9oFxoVbFgATkEw8NkWldff2ZpFd0Ty+OqTfLw9gRfHhBHcve4P5/a4XN7aEEdakYrbO3ny8rgwPO1rh41p1FVUFBbg5OVjTN8+epSiFd9RsXs3grk59hMn4jRndk10y/Uwuo/8OL4pleAe7vhHNH9Tyjx4MD2CB6NKyOeZ309TGqfl+dEduK9/II6zBBw0GkrWrqVw6TIyfs/AIiwMl0ce5pwmGN2pFLrNfxC8n2qWDIJMwMLPDgs/O+xGB6DLVVEVU0Dl8UzKtpQBXbGd9H9GBentiSiKDfKrdhnhh7OXDfv+SGTLNzF4BtszYFr7WuWPRVGk+nwJFfsyUccXg1zAqosbNv29MPe6caSVQqZgoP9gBj44GNUcFeWaclyxQR2fgDouDvXZONTnfkfuMhZVtC+F3zyDqEpFGRaGMjwcZbjxsf/0u0mPPcOWn3+HR99h7+8GqlU6hs/uQGjfYcDc2hPrtcZV0amf4fASWHEb+PUzKvv2I2u52NIKVew4l8v8ocEoDJD3RyJyBwvsx9S/B1AfF44eQlNVRbhrMgTeuAWj7VA/1IklFK85j7mfHWZ1NPvpEeDElG4+nPxtA+MPrMX54YdQhhuNGPfnniPzqacp+fPPBu/fiToDhT/GGVcqcyNavTnQ1bSoJS8IghxIAEZi3JU7CswURTGurvNNbclnl1Yx4qM9dA9w4vu511qooiiSOusutNnZBG3dUr81v/0N2PeJMVEmcJDJ5LseL/51htVH0lg5tydDOtRW8qmFlby5Po6d5/IIdrPhrQkd6Rdct580N+k8P764gOGDbsN+ZxTq2Fjkjo44zpqF46yZjY4e0GsN/PruUbRqHTNe642FCUsTFFVqeP6PaLafzWVgexc+mtYZNzvjl1LUaindsJHCJUuoSs/mQP93cfcyZ8JrwxplYTUEUaej8Nvl5H/1FQr3QBzufgZDlT2aVGMtHjMXS6MPv6MLCh+bGyp8g97A2QPZHF6XRFW5lg69Peg9LgBZShnl+zPR5aqQ2Siw6eOJdW/PFqnvoytVkb/0FPpiHTLFKarj91N9Lh6x2rg3Ilhaoglpzw5BDXIvnL3vZMwjnXENbECkl6YSTqyCA19AWQa4R0D/BcYscLkZ72yM47v9Kex7YRjKvVlU7MvE5YHIJiUC/fXeG+Sfj2We91aEx4+Dy41XAroiNbmfnUDhcTGsUn7t3ys3u4DEsbdjsLah/46NyC2MyX+iKJJ6zz1okpIJ2rIZue31SzW3ZCz89WizEEpBEPoCb4iiOOri7y8CiKK4qK7zTa3k5/1wjKjEfLY9NfiauPBLVB44QNp99+P+6is43XXXtSfkxMCywdBpBkz6ymSy3Qi1Vs/EL/eTX1HNpicH4m6npEqjZ/Hu8yyJSkIhE1gwIoQ5/QNqNVu4En1FBSc++5io6CMMjE/H2dMbpzlzsJ84AZmyjvaFDSQ3uYw/PzhGWH8vht5t2hhjURT56XAa/9sYh5W5GR9M6cSI8MtfFFGv58hX2zgWZ073Ex/i6iLg8vBD2I0dW1N4rjloUlPJemEhVadOYTtmNB6vvYaZo1HR6cuqqYorpCqmkOqkEjAYwzQtO7qg7OiMRYB9nQqkZuwqHSfXJVF5OBt/hYCFIGDmYYXtQB+sOrs2KLO3OegrtRR8cwZdYRXOczpi4W9DdVIS1WfPUh4Tz5FkZ9L1FehU22ifU0r7olKU7duj7BiORVgYluHhWHTogMyynoxcvRbO/A77PoWCeHDwR9N7Pv23eNIrxJuP+weTv+R0k9w0AJUlxSx9ZDY921sw0CEWnoptcL9h1ak8in6Jx3a4H/Yj/a95PvvVVyn+4y8WDJrPU/MnMeaKTFh1XBzJU6biNGcO7i88f915WjIW/nq0pZKfCowWRfGBi7/fA/QWRXH+FefMA+YB+Pn5dU9NTTXJ3Jtjcnj4x+MsHBPKw4Prd0VculNr09IJ2rYVmcUVdWwMelh+GxSnwPyjYGXaQk03IjG3nAlf7qezrz1z+gXy9oY4MkuqmNjFi5fGhuFuV7ei1mZlUbTqR0p++41zNuac93DivgeexGH4cAQTbRgf+PM8J7elMeHJLviGmf59OZ9XzuOrT3E2u4y7+/jx8thwLM3l6PUGfnzlILbOSkZE5FPw9WKqExJQ+PvhMu8h7CeMr5U01FBEUaTk11/Jff8DBIUCj1dfxe72cfVHI6m0VJ0toiq2EHVCMegMyKzNUIY5YxnhgjLYoZbS1mRWULEvE1V0PuhFyqwVROdWUWVtRp+JwYT28WiVhiv6Cg35y86gL1Hjcl8EFgH2FGZWsHlZDKX5VfSeEED60eUkxUYzJqwr1qkZqOPi0JeUGAeQybAIaocy3Kj47caMQeF+lbVqMBi7We39GDKPkS/aUd3lEczOD0fUC7g/1a1Jm5DHN65l9w/fMCf8As6dBje6mFfRr/GoTuXh+lAnLAIul0uu2L+f9PsfwPG++5hj3puyKi3bnxlcq55U9quvUrLmb9qtW4dFu7rdTC0dC3892lLJTwNGXaXke4mi+Hhd55vKki9Xaxn5cRQOVgrWPz6gXkv3EpWHDpM2Zw7uL7+M0z13X37i8DLY9Bzc8Q10amQ8vYn47Vg6z/8RDUAHd1venNiRPu3qdrFUxcRS9N13lG3eDIDd6NEctTOnoDCPBz7/1qRy6TR6fn3nKHqdgRmv9sK8nhC15lCt0/Phlni+2ZtMsJsNn8/oiiytkh0rzzLusU4ERLogGgyU79hBweLFVMedReHtjfO8eThMntTg0Fhtbh7Zr7xC5d69WPfrh+e776DwuH7vzisxVOtRJ1xU+GeLEKv1CBZylKFOWPjboYrOR5NShmAux7qHOzb9vTBztiT7Qin7fk8kL6UMF18bBkxtj3eHhifCNRV9uYb8pdHoyzWo+niyc1Mq5kozRj3YEa/2jlRVlPPD84+jMDfn7vc+Q2GhRJeTY/Txx8YZH+Pi0OXlofD2JuCP32tWO1ciGgw8+9FiZmr+JFjVmQr9Hbh0PY5y7Aywbfj7e4lVLzyJoFdzt80v1/RRbggGtY7cz0+CQTTWqleaoa+oJHnCBARzcwL/XsPxHBXTLm7CPn9FJqyuoIALo0Zj1aMHvkuvvbmoE4opWBmDRbAjLrPDEZoYNttUbnl3jaq0hF3ff8PQ2Q9iZe/A62tj+OFQKmse7U8XX4cGjZF6z71oUlKM1rxSaSzp+lUv8O0Fd//V4GWhqRFFkcV7LmClkHNXH/9rbliiwUDF7j0UffcdqqNHkVlb4zB9Ok733I3Cy4sfnn8cGydn7lj4hsllyz5fwl8fnSBykHeTu8w3hL2J+Tzz22lKKrUs0NvgaG3OjFdrJ6+IokjF7t0ULF6COjoaM09PnB+4H4epU2uvzq6ibNMmct54E0N1NW7PPYvjrFnNssBEnQH1hRLUMYVUxRVgqNQhd7TApp831j3dr4nXFg0iicdyObjmAhXF1QR2dqHflGAc3JrWPKKhaAqryPzsJFTrSHC0ZMAjnWoVoUuPO8Nvb71Ex8HDGf3IgjrHUJ04SdqcOVh264bft99c4y47cKGAWd8cZvGQECJ352Dteg7HiudBpjAq6H6P37CCpsGgJ+XUCU5v+4ekE0cZOjiMbnnLYEEMONRfE78+qtPKyF9yGstIV5xmdCD37bcpXv0L/j/9VBM19fRvp1h/OostCwbVKjNSuHwFef/3f/h+swybgZcb77RWLPz1aEslb4Zx43U4kIlx43WWKIqxdZ3fVCWfm3yBX159Ds/2HQi69xmmLjvMvX38eXNiAzI8L1J55Ahp987G/cWFOM2eDb/cBed3wKMHwanxUQAtjUGtpvTvtcbkpeRkzDw9cbrnHhymTa3ZHBINBj6fPY3OI0cz5N4HW0SOvb8lEL0zg8nPdMXrBtUPm0NRpYb/LTtOUHwVie0seOnh7jWbslciiiKV+/ZT8PXXVJ08iZmrq1HZT59ey5esLy0l5623Kdu4EWWnTni9/x4Wgab9O4sGEV1BFWYuljd0xeg0ek5tT+f4llQMOgORQ3zoMTbghvkITaGssIoty2IoTytnmKsShVzA9cHIa6J59v2yisNrfmXck88T2q/ugIOSv/8me+GLON57Dx4vvVTruXk/HCM6pZg1lg6gF41umopU4wbtqZ+MIa3hk4xVSj1rV2GtKC4iZtc2ondsprwgHyt7BzoNH0Uf7QbkRQnwxMmmv/4daZRtS8Wquxm5r96H0+x7cX/xxZrn88urGfbhboLdbXh0SDC9Ap2wt1QgajQkjZ8Acjnt1v6NoFDUrgv/WGfkdk0sW95M2rR2jSAIY4FPMYZQrhBF8Z36zm2OuyZ2zw42f/0JKZ49Oeo2gG1PD8JW2bgvSOrsOVRfuEDwlwuQ/X0fjHwL+j/ZJHlaCl1h4eXkpeJilB074jR3LnajbrvGF12Wn8c38+9j5IPz6TSiYS3fGou2Ws8vbx8GQWDGq72a3S2nPkRR5M8PjpOfr+JzZSWWFma8P6UTI8Prjl4QRRHV4cMUfL0Y1ZEjyJ2dcb7vPhxn3Inq5CmyX34ZXWEhLo8+gsu8eSbZtK1LhoziKnwcLRu8OqgsrebwuiTOHsjGwsqMXrcH0nGQd5OzZq8mNbaQbStiEfUiw2eH4+dvS/7S04g6A64PdqoV7qfX6fj19Rcoysrg3g++wM617lDe3EXvUfT993i+8w4OU+4AIKNYxaAPdrHEx53w9CpcHohAGXyFEVCeA4cWw9HloCmHoOGI/RaQVmnL6e2buHDsMAa9Hr+IznQeOYagHn2QC8AHgRBxhzEhsYmIBpH8JaeoTi5EE7eMwN9XIrOqvXL683gGL605Q7XOgEyAjl729AtyZnDhORzfeQn3l17CYdrMVo2Fvx7/mQJln739HrqYffhMeZg7p1/btf1GqI4dI/Xue3DrLeLcxwXm7QK56S2pplCdlETRdxeTlzQabIYOxWnuHKx61p+8lHLqOH8uep3pry/CN7zuUsGmICO+mLWfnKTzCF8GTG1aI+IbkZVYzJqPTjJoRgiW4fY8sfoUcVdtytaH6uhRChYvpvLAQWS2thjKyzEPCsLr/fexjOhoclnP5ZSx7lQW66OzSC+qum6T+PooyChn3+/nyYwvxsHdiv5TgvGPdG6yK8lgEDm2MZmj/6Tg7GXD6HkROLgbFZuuoIq8pdEgirjO64TiCldRSW4Oq154HBe/QO58fRGyOsJVRZ2O9HnzUB09hv+qH7Ds0oVFm85yMCqVr0VrrHt74Di5ns9FVQmqvUuI3fIX0bm2lGgtUVop6Th0NJ1GjMHJ64q6MRnH4dthMHUFRExp0vtwiZx3PkZb1BEzN2s8nu1Xpw9drdVzMq2Eg0mFHLpQyMn0YrQ6A+8c/IawsmyY9jGulSL293bErqlN403Ef6KsQVqhiqXVEcxySCF3w0oK+kbi4nttqNT1sOrRA6v2zhSeysPx1feR3QQKXpudTe67iyjftg3BwgL7yZNxmj273h3+KynKMhYMc/IyTZ36+vDp4EjHQd6c3pFOcDc3PNo1vNFzQzm+OQ1LWwVh/TwxM5ez5rF+NZuyh5KK+GxGFzp61T2vVc+e+PXsierkSYpXrULh7YPLY482K4z0atIKVaw7ncm601kk5FYglwn0D3YhwsueJXsu4GCluG6U19W4+NgycUEXUs4UcuDP82z8OhqfUEf6T22Pi0/jylFXVWjYtiKO9LgiQvt4MGhWh1orLjMXS1wfjCR/WTT535zB9aFOKFyMri0Hdw+G3/8om778iMNrfqPv1GuTBgUzM7w++oiU6XeS8fgTeKz+lb8Op/OtuQ1yS3Psx177WTU204kjetsmEg4dQq9zw9vbmX6W8bSXn8OsLA3yrMB92mVDK3mP8TGgebkqqhMnKP7xW+ynPY6+OIKyHWnY3xZwzXlKhZy+Qc70DXKGkVCl0XM8tZjoUAsctp/CvFzkbarYteowXXwd6BPkTL8gZ7r6OWBh1jIr2qZwS1jyomjsmXoyrYS1czuy9d2FWFhZc9e7H2Nh1YglVPoRVO+NI3WHC27PPYfz/fc1WhZTIer1FP+8mvxPPkEURZznzsXx7rswc2q4xbD92685d2APjy3/pcXDuTRqHavfOozCXM70l3vWKr3QXAoyyvn1f0fpPbEdPcYE1HquZlNWdTlTtkn9XZtAXpma9dHZrDudxen0EgB6BjgyobMXYyI9cbGxQG8QWfCrcSOvvsbtN0KvNxCzJ5OjG5LRVOkI6+dJrwntam2U1kduchmbl51BVa5h0J0hhA/wqvezoM2pJP+baAQzGa4Pda6VHfrPFx9ybn8Ud77xHt6hdZe0UCckkDJjJhWefuzu+AgzZJa43B9Rq1NVtaqSuKidnN62icKMNMwtrQgfNIzOI0bj4hdgbB8Z97cx+TA3Bux8oN986HavcZ+sIg8ePdCo9+9KDGo1yZMmI2o0BK5bR+mmTFQncnGd1wmLwIYZJ5di4avPriXrkSnsNThw8EIhMVmliCJYmMno7u9I33bO9At2ppOPww0j/JrLLe+u2ZuYzz3Lj/DG+HDm9A8kIy6G395+iaDuvZjw9EsNiw3XaYxJT+pS0qJ7oU5IJHj7tmt8da2BOj6B7NdeRX06GusBA/B443XMfRpvjf/21kvoqquZ9c5HLSDltaTFFbL+89N0G+VP38kNt1pvxNblsaScKWD2u/2wqKNKZFGlhhf+jGZb3LWZsqamVKVlU4xRsR9MKkQUoaOXHRM6e3F7Zy+8Ha5NFNLoDDz4wzH2Jubz5aymt5xTV2o5tjGFM7szkCtkdB/jT+dhvpjV4aoSRZGYPZns+z0RawcLRs+LqFVOoT40WRXkf3MGmYUc14c7YeZgfB+rVZWseuEJo0H1wRf1Gk9lW7eR/fqnWA16HutenjhNMVbpzLmQyOltmzh3YA+66mrc27Wn88gxhPYbhKKuFZUowvntxlj7tAPGzl2aCuhxP4xpemWUvA8/pPDb5fgu/xab/v0xVOsuVsMUcX+y2w2by1+Khbfs5EjhZw9gERqK38rvjEXXVFoOJxdyMKmQgxcKOZdTDoCVuZweAU5GpR/kTEcvO8xMrPRveSUviiI7zuYxNNQN+UUr7lLixIAZ99J7cgNi3KM+hJ1vw8xfUKk8SJ05C7dnn8H5gQcaLU9TMVRXU7B4MYXfLkdua4v7Sy9dNyHnRix9+F78O3Vl9KPNq+3SGHb+cJZzh3KY+kL3BimVG1GaX8VPrx2kywg/+k2pP0tSFEV+PpLG2xvisFTI+WBq53o3ZRuLSqNjW1wu609nsSchH61epJ2LNeM7ezG+sxfBbjd2n1Rp9Nyz/DCnM0pYMadnTYXQplCSq+LAX+dJPl2AjZMF/SYHE9zDreZzoq3Ws+vHcyQezcU/wpkRc8MbFaWjySgn/9szyKwVuM3rhPziiiEr4Ry/vP48IX0GMO6J5+r8XB5KyMd68RHs9VrMI0vIa+dJ9PZN5Cadx8zCgrD+g+k0YgweQY3Yu0k7ZMyiTdgMs9c1ubRIVXQ0KTNm4jDlDjzffvvy600vJ2/xaSwjnHGaGVrv9+3qWPjiX38h96238f7ic+xGjrzm/KJKDYeTCjlwwaj4z+dVAGBrYUavQKcaV1CYh12zV5+3vJKvC1EU2fj5/xF/cC9TXnyTgM7d6j+58AJ83Rc6jIbpPwCQ9uA81DExRmveuuV3zSsPHyHntdfQpKZiP2kSbi88X2eCSUOpVqn4cu70ht/kTES1SsvqNw9jYa1g+ks9G90G72r2/BxP3IEs7v1fP6wdbuyeOJ9XXrMpe1dvP14Zd/1N2fqo1umJSihg3ekstsflUqXV42mvZHxnLyZ09qKjl12jb76lVVpmLDtESkElPz7Qm+7+zQs5zYgvZv8fiRSkV+AeaMeAae2xsDJj09IYinMq6T2+Hd1H+zcpk7Y6rYyC5THIbc1xfahTTT2dQ3/9yv5fVzH60afoOHj4Ndf9/uFB+hboSChcx5niWHRyGS6+/nQaOYbwgUMb5z69Gm3VNU3WG4pBoyH5jjswlFfQbsP6a2rQlO1Kp2xLCo5TQ7Duca1xUFcsvKjTkTz5DgxqNe02rL9uPgYY3XsHkwo5dNHSTyk09uR1sFLQO9CJsZGeTOzStAYl/0klD6BVq/n5lWeoKC7i7kWfYu9Wh2UnivDDBMg6DfOP1GTiVUVHkzL9TlyffhqXeS0TYw7GeO3c//s/Sv/4E4WvL55vvoF1v37NHjfnfAI/vfw0E555ifa9mj9eY0iJLmDj19H0GBdA7/HtmjyOqkzDDy8doEMfj0bVyKnW6floawLLopIIdrO57qbslegNIoeSCll3KotNMdmUqXU4WikYG+nJhM5e9AxwarbFlV9ezbQlByhWafntob508Lh+wasbYTCIxB/K5tDfSajKNMgVMhQWcm67v2Ozy01Up5RSsCIGuYMS13mRyG3MMRj0/P7Wy+QmX+Ce9z/D0cPYR1an0XByzR7cT5iTXB7NydKdeKm1+OWX0PXHn7Hwa706LnWR9+mnFC5Ziu/SJdgMvrYFpmgQyf/mDNrMctyf6IaZy+WbyfVi4SsPHiRt7n1N0hNZJVUcvHDZvTOwvQvvTenUpNf3n1XyAMXZmfz00tPYu3sw460PUJhfdbc99TP8/YixvnjP+2s9lfbQQ6hPnSZox3bkNk1rsF0foihSvmkTOe8uQl9cjPN9c3F59NH6iz81kri9u9j05UfM+Wgxzj6NzwxsLtu+i+X80TymvtgDV9+mKbKDf1/gxJZU7nqjT024n1arJSMjA7VafcPr1Vo9xSotBlHETqnAxsKszsRljc6ASqOnSqtHbxCRCcbICitzORZmMpNvWusMBvLLNQC42phf1z+rVCrx8fFBcYN6PBq1jpNb0yjMrGDQjBBsHE2zJ6G+UELhyljMnC1xeTASubWCsoJ8fnh+Po4eXox6ZAExu7dzdvcuBttPRZCZk9Ojkj7jRiEvLiF52nQUbm4E/LK6VVbEdb6GuDiSp03H/vbb8Xq/fn++rqSa3M9OYOasxO2RzghyWYPqwqfPn0/lgYMEbd6Ewq3uXIIGyanVo2xiwMJ/WskDXDh+hL8/eIuOg0cw6pEnL39pKwvgyx7gElJnO7+qM2dImTYd1wVP4vLwwyaTR5uVRc6bb1GxZw/KiAg8334LZdiNu+s0hn2/rOLI2t95ctWfyM1aPxRUXanl5zcPY21vztSFPRqdzFNdpeOHF/fjG+7M6HmXM5eTk5OxtbXF2blhMeM6vYGM4irK1FpsLMzwdbJCIZdRpdVTqtJQUqVFozMgCAJ2SjMcLBXYKhUtHqGj1uq5kG8MtQxytakz+kIURQoLCykvLyfQxNm4jUGdWEzB97Eo3KxwfSASmZWChEP7WP+JUWHK5HIGdJiBZ5UPP/kpeOHRPjXXVuzfT/qD87AdMQLvTz8xWYG8hiJqNCRPvxNdYQFB69cjd3C47vmqMwUU/XQW2yG+2I3wo+C7GKpTynCZG1FvaWRNWhpJ427H7vbb8Vr0rulfRAO4npJv3Xe8jQjq3os+U2YQu2c70ds3XX5iy8tQXVFvOz/LyEhshgyh8LuV6MvLmy2HqNdT9MMqkm4fT+WRI7gtfIGAX1abXMEDFGdl4ODu0SYKHkBprWDwzBAK0is4uSWt0dfHRmWiUevpNqr2Ml+tVjdYwQOYyWX4O1vh7WCJSqMnMbechNxyEnPLyS/XYGEmx8fRinBPW/ydrbG3Mm+VEEylQk6gizU6vUhyQSU6veGacwRBwNnZuUGrlpZE2d4R53vC0eaqyP8uFoNaR0ifAQy590EGzLiX+175Go8qH9ahYeCo2pvjNv374/bcc5Rv3UrBksZVjTQFBd98Q/W5c3i+/voNFTyAVaQLVj3cKd+TTsGKGKovlOI4pf11a9+b+/nhNGc2pWvWUHXmjOmENxH/CSUP0HfqTAK7dGfnd8vISjgHF3ZC9C/GuhnX6VHpMn8+htJSilatatb86vgEUmbOIvfdd7Hs3p1269fjPGdOi6TTgzERytGzeV3mm0tQVzeCu7tx9J9kCrMqGnydTqvn9I50fMMc64zQaaz7RBAEnG0sCHazQamQIxcEvB0sCfW0JdDFGidrc+StbGECWJmbEeBsRbXOQEqhCr3h2lV1a5arvR6WHZxwvisMbWYFBd/FYqjW033cRHrdPpWqTdkUy2CLq4K+dVRIdZozG/uJEyj4/AvKd+xoNZnV8QkULFmK3dix2I4Y0eDrHMYHYeZsSXVSKXYj/RvU+MP5oYeRu7qQ+8673EzeEfgPKXmZTM6Yx5/F1tmZ9R+/S+VfzzSonZ9lREdshg2jaOX36MvKGj2vQa0m7+NPSJ4yBW1GBl4ffojvsqWY+7ScAjYY9BTnZOHk3fq++KsZNCMEc6UZO78/i6EOa7Uu4g/loCrT0G1U4zKWb4RSIaedqw1BbjY421i0eIJKQ7BRKvBzsqJKoyO1sBLDTaYgrsQy3BhiqEkvo2BlDAaNnrLtqejyq/ifoZI7BwTUeVMSBAGPN99EGRlJ1nPPU52Y2OKyijod2S+9ZAxFfrVxPZllFnJc5nTEcWoItsMa9h2S21jjtuApqk6domzDxqaI3GK0/ae8FbG0sWXCMy+jLitmQ5w1hrGfgOLGG1Su8x/DUFZG0Q+Ns+YrDx0maeJECpctw378eNpt3IB9M+LeG0pZfj56rbbFyxk0BEtbcwbdGUJeajmndqTf8HyDQeTE1jTc/G1bpbZ6U0hPT2fo0KGEhYXRsWNHPvvMWCyrqKiIkSNH0r59e0aOHElxsbHZdWFhIUOHDsXGxob58+fXGmvIkCH06hLBrLGDGTukLyfjU246S/BKrCJdcLqzA5qUMvKXRVMelcEpJzPOKQUmdfWq9zqZUonPF58jWFmR/tj8y01IWojCFd+hjo3F49VXmhSKbOZiiXUP90Z9V+0nT0LZsSN5H36IQaVq9JwtxX9KyQO4KVWMdE8gQ+VA1IGGWRTK8HBsRgyn6PuGWfP6khKyXn6ZtDlzQAS/71bgtejdZsW9N4aiLKMydfRqW3fNJYJ7uBHY2YUj65Ipzqm87rkXTuRRll9Ft9H+N42r4mrMzMz46KOPOHv2LIcOHeKrr74iLi6O9957j+HDh5OYmMjw4cN57z3jxqRSqeTtt9/mww8/rHO8n376iTPRp9l76BgKG0cyS6pubkXf2Q3HqSFoMyvARsFLxcXc2dO3VielulB4eODz+edos7PJfPoZRJ2uReSrvnCBgi++wHbkSGxHt0z11boQZDLcX34JXW4uhd8ub7V5b8QtU6CsQRj0sP4Jwj11ZIeN4PjGv/EIDqm3VvaVuM6fT/L2yRSt/B7XJ+psbIUoipT98w+57y5CX1KC84MP4PLYYyYthNUQirMygZYvTNZQBEFg8KwOrH7zMLtWnWPSM93q3NwURZETW1JxcLeiXecbZ4S+uT6WuKzGu9CuR7iXHa+Pv35lSk9PTzw9jaUJbG1tCQsLIzMzk7Vr17J7924AZs+ezZAhQ3j//fextrZmwIABnD9//rrjutpaoDcYyCuvRi4T8LQ3TThtS2Dd3R25gwXfn86k/Ggh9/YNaNB1Vt264vn6a2S/8ip5H318w56pjUXU68l+6WVkVlZ4vP5aqxsKVt26YTduHIXLl+Mw5Q4U3m1vaP23LPmj30LmcRj9HkPuewyvkDC2LvmcgrSUG16qDA3F9rbbKPrhB/Slpdc8r83KIv3hh8l65lkUXl4E/vkHbs880+oKHqAoMwOljS1WdqavBtlUrO0tGDC9PdkXSjmzK6POc9LPFlGQXkHX2/xapd+pKUhJSeHkyZP07t2b3NzcGuXv6elJXl5eg8aYO3cuXbp04e2338bN1gJna3Pyy6vJK2/bqJob4mfLstgshoe64+vU8BpPDlOn4jhrFkXffUfpunUmFanoh1VUnT6N+ysvY+biYtKxG4rbs8+AIJBbz8qttfnvWPKlGbDjLQgaDpFTkQsC459ayI8vLmDdx+9y17uf3DDl2uWxxyjfupXClStxe9LYTETU6yn+6SfyPjX6Zd1fXIjj3Xcj1FF3u7Uoys64aaz4K+nQ24Pzx/I49PcFAjo5Y+9aWzGc2JyKtYMFHXo1rP/njSzulqaiooIpU6bw6aefYmfXtDo9P/30E97e3pSXlzNlyhR+/PFH7rnnHvQGyClV19RiuhnZGJ1NYaWGOf0CGn2t+4sLqU5MJPuVVzEPbIdlZMO7uNWHJiWF/E8/xWbIEOxub3w/CVOh8PTE+YEHKPjyS1R33YVVjzrD11uN/4YlL4rwz3NGd83tH9f0a7Vxcub2BS9QmpfLpq8+RjRcP/pD2SEE29GjKf5hFfqSEtTnzpEyYya57y7Cqkd3gtavw2n27DZV8GC05J28bz4lLwgCQ+7qgEwusGvVOcQrQgZzkkrJTCihywhf5Iqb/2Op1WqZMmUKd911F3fcYeyG5O7uTnZ2NgDZ2dm4NSD70fvict7W1pZZs2Zx5MgRBEHAx8kSW6WCzOIqqjT6lnshTUCt1fPT4VQ+2HKOYDcb+gfX3Vj+eggKBd6ffYqZiwsZ8+ejy89vlkyiwUDWK68gmJvj8eYbbb6f43z/fZh5epLz7ruI+rb9+9383yZTcHY9xP8DQ18Ex4BaT/mERTD4nvu5cOwwh//+/YZDuT72KAaVirQH55E8dRrazExjWOTSpTeF/01dWYGqtKTNY+Trw8ZRSf+p7clMKCF2X1bN8RNbUrGwMiN8QP0RGjcLoihy//33ExYWxtNPP11zfMKECXz//fcAfP/990ycOPG64+h0OgoKCgDjTWPDhg1ERBgtWpkg4O9khbW5GUUqDVEJzVOCpqCwoppPtyfQ772dvLwmBnc7JR9M7dRkhWrm5ITPV1+iLy0l44knMWg0TZat+OfVVB07jvvChSjcTVN9tDnILC1xf+5ZquPOUrpmTdsKI4riTfPTvXt30eRUlYjihx1EcXF/UdRp6zzFYDCIGz77QPzwztvF5JPHbjhkxlNPi3EdQsXMF18SdcXFJha4eWQlnBM/nD5OTDx6qK1FqReDwSD+/ckJcekTu8XSApVYmFUhfvnQDvHQ2gs3vDYuLq4VJLw+e/fuFQExMjJS7Ny5s9i5c2dx48aNYkFBgThs2DAxODhYHDZsmFhYWFhzjb+/v+jo6ChaW1uL3t7eYmxsrFhRUSF269ZNjIyMFMPDw8UnnnhC1Ol0tebS6vXi7kMnxNBXNonHUopa+6WKoiiKSfkV4strosWQl/8R/V/YIN733RHx4IUC0WAwmGT80n/+EeM6hIpZr7zSpDGr09PFs127ian3P2AymUyBwWAQk2fdJcb36y/qyspadC7gmFiPXr31ffI73oKKXJjxE8jrfrmCIHDbvMcpSE9l4+f/x93vfYq9W/1+Yc//vY3LIw9j0b5l+pk2h8st/25OSx6M7/fQu0NZ/fYRdv94Dmt7C8wUMjoNvflcTHUxYMCAekMcd9ST0ZmSklLn8ePHj193LjOZDGcbC9ztLLhv5VF+fagPoR7Nr9PfEI6nFrMs6gJb43JRyGRM7urNg4MCCXZrXuXMq7EbMwb1uXgKly7FIiwMp1mzGnytKIpkv/IqgiDg+dabbe6muRJBEHB/8UVSpk2jYPES3J9/rk3kuLXdNWmHjd3gez0E3t2ve6pCqWTiMy8jIrL2o3fRaqrrPVdmZXVTKngwKnmZXH7dm9TNgJ2LJf0mB5F+tphzh3IIG+CF5cWa5RK1kcsEVt3fG6VCxj3Lj5BW2HKJNnqDyOaYHKYsPsCUxQc4lFTEY0OC2bdwKO9P7WRyBX8J1yefwGbwYHLfXUTlkSMNvq7kt99RHTqE23PPofC6+Vx9lhEdsZ9yB0WrVqGp50bf0ty6Sl6ngfVPgp03DHu5QZc4eHgydv6z5KcksePbr2/qhJT6KMrMwMHdE3kL1cQxJRGDvPFq74BMJtBlRNuXYLiZ8XWyYtX9vdHqDdy9/DB5ZaYNr6zS6Fl1KJXhH+3m4R+Pk1eu5o3x4Rx8cRjPjuqAm23LhgILMhleH/4f5r6+ZD65AG1m5g2v0WZlkffBB1j17o3D9GktKl9zcFuwAJm5Obnvf9Am89+6Sv7A55B/FsZ9CBYNtz7adetJ36kzid2zg9PbNt34gpuMoqwMHG/C8Mm6EGQC4x7txLSXemLnfPMm/twshLjbsnJuLwoqqrln+RFKVE3fqLxEYUU1n2xLoP/7O3n17xjsLRV8Nasbu54Zwpz+gTfMYjUlcltbfL76ClGnI33+49ctDSCKItmvvY5oMOD5v7dbvYRxYzBzccHl0Ueo2LWLin37W33+m/edaQ6FF2DPBxA+ETqMafTlfafMJLBrD3atXEZWwtkWELBlMOj1lORk35Thk/VhbmmGi49pG7LcynTxdeCbe3uQXFDJ3JVHUWmaVhogKb+Cl9acod97O/lsRyLd/Bz47aG+/P1Yf8Z18jR5o+mGYtEuEO+PPqT63DmyX3ml3tV06Zq/qdy3D7enn8bc9+ZfBTrecw8Kfz9y31uEqNW26twt9pcUBOENQRAyBUE4dfFnbEvNVQtRNLppzJQwpmnLI0EmY+z8Z7F1cWH9x4uoLCk2sZAtQ2leDga9DqebNHxSwjT0D3bh85ldOZ1ewkOrjlOta1gctiiKHEspYt4Pxxj+8R7+OJ7BHd282f70YL6d3ZNegU43xcalzaBBuD79FGX/bKLwm2+veV6bm0fue+9h2b07jnc1fJO2LZGZm+P+wgtozl+g+JdfW3fuFh7/E1EUu1z8+aeF5zJy6mdI2Qsj36jp19oUlDY2THzmZdSVlWz49H30LVRMyZQUXapZ8y+y5CWaxugID967oxN7Ewt4+tfTddaiv4TeILLpTDZ3LD7A1CUHOZJSxPyhwex/YRiL7uhEsNvNt5JyfuAB7MaOJf+TTyi/WA8IjDeqnDfeQKyuxuud/93UbpqrsRk6FOt+/cj/8kt0xa1nOP573qGGUFkAW18G3z7QbU6zh3P1D+S2efPJOBvD3p+/a758Lcyl8Ml/i0/+34opSw1rNBrmzZtHSEgIoaGh/Pnnnw2WY3pPX14ZF8bGM9m88veZa1wbVRo9qw6mMOyj3Tzy0wkKKzS8NbEjBxYO45nbOuBqa1HPyG2PIAh4vvM/LMJCyXr2OaqTkgAo27CBil27cH3yScwDAtpWyEZiDKlciKGigoIvvmy1eVtayc8XBCFaEIQVgiDUWWdXEIR5giAcEwThWH4zU5vZ8tLFdn6f1tnOrymEDRxK1zHjOb5xLWf37zHJmC1FUWYGlnb2WNq0TJibhBFTlhp+5513cHNzIyEhgbi4OAYPHtwoWR4Y2I75Q4NZfSSd9zfHA1BQUc3HW+Pp994OXl0bi4OVOV/f1Y1dzw7h3r4BrbqZ2hxklpb4fvklgrk5GY8+RnVyMrn/ewdl5044zb63rcVrEhbt2+M4YwbFv/yCOiGhVeZs1l9bEITtQF0+kZeBxcDbgHjx8SPgvqtPFEVxGbAMjI28myzMhZ0Q/SsMev667fyawuC77ycv+QJbl36Oi68/rn4BJh3fVBTfpIXJWoxNCyHHxD01PSJhzHvXPcWUpYZXrFjBuXPnAJDJZLg0oXLiM7eFUKzSsGTPBWKzSjmcXIRWb2BEmDvzBrWjh7/jTeFrbwoKLy98PvuU1Ln3kTz5DtDr8XrnnTavD9UcXB+fT9mGDeQuWoTfihUt/rdplrkriuIIURQj6vhZK4piriiKelEUDcA3QC/TiFwHGhVseAqcg2HgMyYfXm5mxu0LFmJhacW6j95BXdnwfqWtSVFmxk2d6Xor0pxSwyUXuyO9+uqrdOvWjWnTppGbm9toGQRB4K2JEUzs4sXh5CKmdPNh+9OD+ebeHvQMuDk2U5uDVc+eeLzyMqJajcv8+VgEB9/4opsYuYMDLo8/jurgISp27mzx+Vps3SYIgqcoitkXf50MxLTUXGSfNvrjZ/7SoHZ+TcHG0YnxT73Ib2+9yKavPmbSs6/cVJs+VeVlVJWX/bcs+RtY3C1Nc0sN63Q6MjIy6N+/Px9//DEff/wxzz77LKua0DReLhP49M4uvHeHAUvzf6+VWx+OM2Zg3b8/Cp9b4/PtOONOSn79hdz3P8B64EBk5i2X7d2SWuoDQRDOCIIQDQwFnmqxmfz7wlMxEDiwxaYA8A4NZ8i9D5B0/AiH1rRuGNSNuBRZI226tg6mKDXs7OyMlZUVkydPBmDatGmcOHGiyTIJgnBLKvhLmPv6/utXJZcQzMxwf/FFtGlpFP/wQ4vO1WJKXhTFe0RRjBRFsZMoihOusOpbBsvW6Z/aZdTthPYfzME/VlNW0LDOP63Bpb6uUvhkyyOaqNSwIAiMHz++xo+/Y8cOwsPDW0xuiZsL6379sBk2jIKvFze7nv71uHn8Df8SBEFg4KzZAJzYtL6NpblMcVYmcjMz7F3bvpb2rc7+/ftZtWoVO3fupEuXLnTp0oV//vmHhQsXsm3bNtq3b8+2bdtYuHBhzTUBAQE8/fTTrFy5Eh8fH+Li4gB4//33eeONN+jUqROrVq3io48+aquXJdEGuL/wPAatlrxPP22xOf4dsVQ3GXYuboT0GcCZHVvoO2UmFlYN72/ZUhRlZeDg4YXsXxx18G/BlKWG/f39iYqKMpVoEv8yzP39cZ59L4XLV+A4Y6ZJ2iBejWTJN5Eet09GU6XizM4tbS0KYPTJ/6c2XSUkbhGcH34YubMz+Z9/3iLjS0q+iXgEtccnLIITm9a1eckDvU5HaW42jlL4pITEvw65jQ0+n32K13uLWmR8Sck3g+63T6a8IJ+Ew61fPvRKSnKzMej1kiUvIfEvxap7d8ycG98QvSFISr4ZBHXriaOnN8c3rGnTBiPFUmEyCQmJepCUfDMQZDK6j5tIbtJ5Ms62XK7Xjbjc11VS8hISErWRlHwzCR80DKWtHcc2rGkzGYqyMrB2cMTCyrrNZJCQkLg5kZR8M1FYKOly2ziSjh+psahbG2PLP2nTtbUwVanh8vLymjj7Ll264OLiwoIFC9riJUncwkhK3gR0HTUOuULB8Y1/t/rcoihSnPkfqz7Zxpiq1LCtrS2nTp2q+fH3968pkSAhYSqkZCgTYGXvQPjAocTt2Un/O+/Bys6+1eauKi9DXVmBk9fN3+fS1Lx/5H3OFZ0z6ZihTqG80OuF655jylLDl0hMTCQvL4+BA1u2/pLEfw/JkjcR3cdNRqfVcHpr63Q5vERR5sWaNZK7pk1oTqnhK1m9ejV33nnnLVOAS+LmQbLkTYSzjy+BXXtwautGek6YglkLlg69kv9yX9cbWdwtTXNLDV/JL7/80qQSwxISN0Ky5E1Ij9snoyotIW7vrlabsygrA7lCga2La6vNKWGaUsOXOH36NDqdju7du7eYvBL/XSQlb0J8O3bCNaAdxzf+jWgwtMqcxVkZOHp6I5NJhclaC1OVGr7E6tWrmTlzZovIKiEhKXkTIggCPW6fTFFmOsmnj7fKnEVZUmRNa2PKUsMAv/32m6TkJVoMySdvYjr0Hcjen1dyfMMa2nXt2aJz6bRaSnNzCe03qEXnkaiNKUsNAyQlJZlCLAmJOpEseRMjNzOj6+jxpMVEk5fSsl/e0txsRNEgWfISEhL1Iin5FqDTiNEolJYtXuqgKNOYYSv1dZWQkKgPScm3AEprGyKHjiT+QBTlhQUtNs/lwmRSjLyEhETdSEq+heg2diKiQeTEpnUtNkdRVgY2Ts6YW7Z9+0EJCYmbE0nJtxD2bu6079OfMzu2oKlStcgcxsgayYqXkJCoH0nJtyA9bp9EtaqSMzu3mXxsURQpzsrE8T9Ys0ZCQqLhSEq+BfEM7oB3aDgnNq3FoNebdGxVaQnVqkrJkm8DTFVqGIyJUJGRkXTq1InRo0dTUNByezgS/02apeQFQZgmCEKsIAgGQRB6XPXci4IgnBcEIV4QhFHNE/PfS/fbJ1OWn0fikQMmHVfqBtV2mKrUsE6n48knn2TXrl1ER0fTqVMnvvzyy7Z4SRK3MM1NhooB7gCWXnlQEIRwYAbQEfACtguCECKKomnN2X8BQd174eDhybENawjpM8BkVQYvhU/+l5V8zrvvUn3WtKWGLcJC8XjppeueY6pSw6IoIooilZWVODs7U1ZWRnBwsElfj4REsyx5URTPiqIYX8dTE4FfRFGsFkUxGTgP9GrOXP9WZDI53cdOIud8ApnxcTe+oIEUZWVgZm6BrbOLycaUaDzNKTWsUChYvHgxkZGReHl5ERcXx/33398aYkv8h2ipsgbewKErfs+4eOwaBEGYB8wD8PPzayFx2paOQ4az/7cfOb5hDT6hHU0yZvHFln+C7L+7rXIji7ulaW6pYa1Wy+LFizl58iTt2rXj8ccfZ9GiRbzyyistIK3Ef5UbaghBELYLghBTx8/1SuzV5ZOos9iHKIrLRFHsIYpiD1fXW7NcrsJCSeeRYzl/7DDF2ZkmGbMoKwMnT2nTta0wRanhU6dOARAUFIQgCEyfPp0DB0y7dyMhcUMlL4riCFEUI+r4WXudyzKAK2P7fICs5gr7b6br6NuRy+Uc/6f5yVE6jYbS/Lz/ZKOQmwFTlRr29vYmLi6O/Px8ALZt20ZYWFjLCS7xn6Sl3DXrgJ8FQfgY48Zre+BIC831r8DawZHQAUOI3b2d/tPvwtK26Z2EinOyQBSlmjVtxKVSw5GRkXTp0gWAd999l4ULFzJ9+nSWL1+On58fv//+e801AQEBlJWVodFo+Pvvv9m6dSvh4eG8/vrrDBo0CIVCgb+/PytXrmybFyVxy9IsJS8IwmTgC8AV2CgIwilRFEeJohgrCMJvQBygAx77L0bWXE2PcZOI3b2d09s20eeOO5s8jhRZ07b8f3v3H1vVfd5x/P0Ajp1gWpufwXMCxMbA+BEb0zSEpE0KKCFAApW6TO2SVBuKSKfBpi0JXaUoUrSlUqdplaLQoXQNbIhmCsUdkAAOJGPJAo0JEGAmMaUh2BB++JoS0uLi8OyPezAm2NjXPtfn3uPPS7J8f5wfz1e2H3/v95zv8w2z1PDixYtZvHhxWKGJXKWnd9esc/did8919xHufm+b9/7B3UvcfZy7v9bzULPf0JtHM7q8kj2bN9By4UK3j9N06R55jcmLSCf67q0ZEZk2dyGfnWni4FtvdvsYiWP1DBoyjJy8vPACE5FYUpLvZTdPvpVhN49OrgPbwUf+ziSONeiiq4h0iZJ8LzMzKuct5PTRIxzZ+17K+7s7iWDxbhGRzijJR2D8jK+RXziYd7uxctS5pkYunP+9evIi0iVK8hHoPyCH8vvm8/G+PSmvA9t0LDmZSnfWiEhXKMlH5NZZc8jJzWPXxqqU9tPtk9ELs9Twyy+/zJQpU5g4cSJPPvlkr7dF4k9JPiJ5+flMumc2B9/ezrlEY5f3SxyvJyc3j/zBQ9IYnVxLWKWGGxsbeeKJJ9i6dSsHDhzgxIkTHd5nL9Jd6ZrxKl0w9f4H2bN5I7s3reeub3+3S/skGoLCZCGVLM5m//OfH3L66LlQjzn0pnzu+pOya24TVqnhw4cPU1ZWxqWaTbNmzWLt2rXMnDkz1DZJ36aefIQKRtxI6W23s/f11/jD+d93aZ+m4w0aqskgPSk1XFpaysGDB/noo49oaWmhqqqKo0eP9kbY0oeoJx+xafMWUrfzf9n/xutMnTP/mtteaD7P2VMnmXTP7F6KLrN11uNOt56WGi4sLGT58uU89NBD9OvXjzvuuIPDh1O7EC/SGfXkI1ZUNoGRZeOT68BevHZ5n6bjyUKe6slHL4xSwwDz589n586dvPPOO4wbN46xY8emNW7pe5TkM8BX5n2T3574hEPv7rjmdlrXNTOEVWoYaB3SaWpq4oUXXmDRokXpCVr6LA3XZICSr3yVghHBOrBfndHhdomGejCjYGRRL0YnXxRmqeGlS5eyd+9eAJ5++mnKyqIdgpL4UZLPAP369Wfq/Q+w7Wf/yrEPaykqa3/hiKbjDXxp6HByrsvt5QilrTBLDa9ZsyassETapeGaDDHp7tnkDcyn5hqlDhIN9SpnICIpUZLPEDl5eUyZPYdDv9rBmROfXPW+X7xI4rjWdRWR1CjJZ5CKe+dh/frx3qtXL5/7aaKRluZm9eRFJCVK8hkkf/AQJtz5dfa/Uc35c1fO5Lx0Z03hSCV5Eek6JfkMUzl3AReaz7P39StXTGxd8k89eRFJgZJ8hhk2agyjplSwe9N6Pm+5vA5s4lg9111/AwMLCiOMTkSyjZJ8Bpo2dwGfNSU4+Pb21tcSDfUMVmGyjJBqqeHq6moqKyuZPHkylZWVbNu2rfVYu3btYvLkyZSWlrJkyZJuLwkp0hEl+Qw06tapDL1pFDUb1rX+0SdUmCxjpFpqeOjQoaxfv559+/axcuVKHn744dZjPf7446xYsYK6ujrq6urYtGlTVM2SmNJkqAxkZlTOXcDmn/yYI/v2UFQ2nnONpylUkr/CGy+t4OSRcAt6DR91C/d897FrbpNqqeGKiorWfSdOnMj58+dpbm4mkUhw9uxZpk+fDsAjjzxCVVUVc+bMCbVN0repJ5+hxt95NwMLCtm1Yd3lJf900TXjpFpqeO3atVRUVJCbm0tDQwPFxZd/psXFxTQ0NPRa7NI39Kgnb2bfAp4BJgC3uXtN8PpooBb4INh0h7sv7sm5+poBOTlU3Deft36+iuFjSgA0EeoLOutxp1uqpYYPHDjAU089xZYtWwDaHX/XNRcJW0978vuBbwLb23nv1+5eHnwpwXfDlNlzGJCbS836dZj1o+BGFSbLFKmWGq6vr2fhwoWsWrWKkpLkP+3i4mLq6+uv2KaoSD9jCVePkry717r7B51vKd1xff4gJt09i4uft/Dl4SMYcN11UYckpF5q+MyZM8ydO5fnnnuOGTMuVxkdOXIkgwYNYseOHbg7q1at6lJ5YpFUpHNMfoyZ7Taz/zazuzrayMweM7MaM6s5depUGsPJTlPvfxDMKCzSUE2muFRqeNu2bZSXl1NeXs6rr77KsmXLqK6uZuzYsVRXV7Ns2TIAnn/+eQ4dOsSzzz7buv2l8frly5ezaNEiSktLKSkp0UVXCZ11dl+umb0O3NjOWz9w918G27wJ/F2bMflcIN/dG82sEqgCJrr72Wuda9q0aV5TU5NyI+Ju9+YNDC4qZtTk8qhDiVxtbS0TJrRfijmu+mKbJTVmtsvdp7X3XqcXXt19VqondPdmoDl4vMvMfg2UAcrg3VBx77yoQxCRLJWW4RozG2Zm/YPHtwBjAa1QLCLSy3qU5M1soZnVA9OBjWa2OXjra8D7ZrYXeAVY7O6JnoUqktSXpv73pbZKevToPnl3XwdctZSRu68F1vbk2CLtycvLo7GxkSFDhsT+nnJ3p7Gxkby8vKhDkSymsgaSVS7dW95X7sTKy8u7YlasSKqU5CWr5OTkMGbMmKjDEMkaql0jIhJjSvIiIjGmJC8iEmOdznjtTWZ2CjgSdRxdNBQ4HXUQaRTn9qlt2SvO7etJ20a5+7D23sioJJ9NzKymo2nEcRDn9qlt2SvO7UtX2zRcIyISY0ryIiIxpiTffSuiDiDN4tw+tS17xbl9aWmbxuRFRGJMPXkRkRhTkhcRiTEl+RSZ2U1m9oaZ1ZrZATNbGnVMYTOz/sHSjRuijiVMZlZgZq+Y2cHg5zc96pjCZGZ/E/xO7jezNWaWteUrzezfzOykme1v89pgM6s2s7rge2GUMfZEB+37UfC7+b6ZrTOzgjDOpSSfuhbgb919AnA78Jdm9scRxxS2pUBt1EGkwY+BTe4+HriVGLXRzP4IWAJMc/dJQH/gT6ONqkdeAu77wmvLgK3uPhbYGjzPVi9xdfuqgUnuPgX4EPh+GCdSkk+Rux939/eCx5+STBSxWWXbzIqBucCLUccSJjP7EsnFbH4K4O5/cPczkQYVvgHA9WY2ALgBOBZxPN3m7tuBLy409CCwMni8EljQmzGFqb32ufsWd28Jnu4AQqkxrSTfA2Y2GqgAdkYcSpj+BXgSuBhxHGG7BTgF/CwYinrRzAZGHVRY3L0B+CfgY+A48Ft33xJtVKEb4e7HIdnZAoZHHE86/TnwWhgHUpLvJjPLJ7n61V+7+9mo4wmDmc0DTrr7rqhjSYMBwFRgubtXAJ+R3R/3rxCMTz8IjAGKgIFm9mfRRiXdYWY/IDksvDqM4ynJd4OZ5ZBM8Kvd/RdRxxOiGcADZvYR8HPgG2b2H9GGFJp6oN7dL33qeoVk0o+LWcBv3P2Uu18AfgHcEXFMYTthZiMBgu8nI44ndGb2KDAP+I6HNIlJST5FllxY9KdArbv/c9TxhMndv+/uxe4+muRFu23uHoveoLt/Ahw1s3HBSzOB/4swpLB9DNxuZjcEv6MzidGF5cB/AY8Gjx8FfhlhLKEzs/uAp4AH3P13YR1XST51M4CHSfZy9wRf90cdlHTJXwGrzex9oBz4x2jDCU/wCeUV4D1gH8m/7awtAWBma4B3gHFmVm9mfwH8EJhtZnXA7OB5Vuqgfc8Dg4DqIK/8JJRzqayBiEh8qScvIhJjSvIiIjGmJC8iEmNK8iIiMaYkLyISY0ryIj0QVLb8Xpvnd8eteqdkNyV5kZ4pAL7X2UYiUVGSlz7DzEYH9bpfDGqurzazWWb2dlCj/LagZnlVUNN7h5lNCfZ9JqgB/qaZHTazJcFhfwiUBJNXfhS8lt+mbv3qYAaqSCQGRB2ASC8rBb4FPAa8C3wbuBN4APh74Ciw290XmNk3gFUkZ8cCjAfuITkr8QMzW06yyNkkdy+H5HANycqkE0mW+n2b5Czpt9LeMpF2qCcvfc1v3H2fu18EDpBchMJJlgIYTTLh/zuAu28DhpjZl4N9N7p7s7ufJlkca0QH5/iVu9cH59gTHFckEkry0tc0t3l8sc3ziyQ/2bY3tHKp9kfbfT+n40/CXd1OJO2U5EWutB34DrQOvZzuZL2AT0kO34hkJPUwRK70DMnVo94Hfsfl0rbtcvfG4MLtfpIr+WxMf4giXacqlCIiMabhGhGRGFOSFxGJMSV5EZEYU5IXEYkxJXkRkRhTkhcRiTEleRGRGPt/x0EWPrO4UX4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "return_overtime.plot()\n", "plt.legend([str(i) for i in range(2015,2021)])\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "c04c2e6f", "metadata": {}, "source": [ "Standard deviation information can be used to create error bars in a time series plot. " ] }, { "cell_type": "code", "execution_count": 33, "id": "4d42e29b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
monthly_return_USD
meanstd
date
2015-01-31-1.3247196.849391
2015-02-285.2977379.277657
2015-03-31-0.33637810.137502
2015-04-302.1541388.376473
2015-05-310.64420810.366596
\n", "
" ], "text/plain": [ " monthly_return_USD \n", " mean std\n", "date \n", "2015-01-31 -1.324719 6.849391\n", "2015-02-28 5.297737 9.277657\n", "2015-03-31 -0.336378 10.137502\n", "2015-04-30 2.154138 8.376473\n", "2015-05-31 0.644208 10.366596" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "monthlyreturn_ts = etf_ts.drop('total_mkt_val_net_USD_millions', axis=1).resample('M').agg(['mean', 'std'])\n", "monthlyreturn_ts.head()" ] }, { "cell_type": "code", "execution_count": 34, "id": "af9bed88", "metadata": { "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4YAAAFUCAYAAAB4GiIAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABm8ElEQVR4nO3deXwM9/8H8Nfsbu472RwiCCKibuIIIRr0oi2qjlKkVFUdLfVFqdL+2jrqqKu0UupoS79f0bvVuOJqxV1HEESpIzdybnb38/tjkmXlsCG7Sezr+XiEZGb2M++Zz8zsvOfzmRlJCCFAREREREREVktR2QEQERERERFR5WJiSEREREREZOWYGBIREREREVk5JoZERERERERWjokhERERERGRlWNiSEREREREZOWYGBIR0X3NnDkTkiQhKSnJpOklScKwYcPMGpO14rp9eF26dEFgYKDZpn8UDBs2DJIkVXYYRGRBTAyJ6KFkZGTA3t4ekiRh/fr1lR1OtbBz505IkgRJkjBmzJgSp0lOToatrS0kSUKXLl0sFtfMmTORmZlpkfmVV1FyWvSjUCjg6emJrl274ocffniostesWYNFixZVTKDVVGBgYJnJT1GicO/Fgbi4ODz33HMIDAyEnZ0dfH19ERoaivHjx+PChQuG6ZKSkorVn5ubGxo2bIgBAwbgu+++g1arNdPS3Z+5t4F7t997f7p162a2eRMRmUJV2QEQUfW2YcMGaDQa1K1bF9HR0Rg8eHBlh1Rt2Nvb4+uvv8b8+fNhZ2dnNG7dunUQQkClstxheufOnZg1axaGDRsGd3d3i823vN5//33UrVsXWq0W58+fx8qVK/H8889j/fr1GDRo0AOVuWbNGiQlJeHNN9+s2GDNIDc3F0qlsrLDAAB89tlnGD16NOrVq4ehQ4eiVq1aSElJwYkTJ7B69Wp06tQJ9erVM/pM9+7dMWTIEABAVlYWLly4gJ9++gkbN25Eq1atEBMTg9q1a5s17q1bt0IIYTTMUttA0fZ7rxo1aph1vkRE98PEkIgeSnR0NB5//HE8//zzePPNN3H+/HnUr1+/UmIRQiA7OxvOzs6VMv/y6t27N7755ht8//336Nevn9G41atX45lnnsG2bdsqKbqq6+mnn0ZoaKjh7759+6JFixaYPXv2AyeG5qTT6ZCfnw9HR8cKKc/e3r5CynlYWq0W77zzDmrXro0jR47A1dXVaHxubi5yc3OLfS44OLjYBaS5c+di0aJFeOutt9CjRw8cOXLErBdFbG1tzVb2/dy7/ZqqrO2oIo99t2/fhouLy0OXU13mS0R3sCspET2ww4cP4+jRoxg6dCgGDRoEGxsbrF692jBep9OhZs2aaNWqVYmfX7lyJSRJwpYtWwzD8vPz8dFHH6Fx48awt7eHu7s7nn32WRw5csTos0XdMdesWYNly5bhscceg729PT755BMAwIEDBzBs2DAEBwfD0dERLi4u6NixI2JiYkqMZdeuXQgLC4ODgwP8/Pwwfvx4nDx5EpIkYebMmUbTCiHw2WefoXXr1oayH3/8cezYsaNc669Vq1Zo3ry50Toriv3kyZOIiooq9bNbtmxBx44d4ezsDGdnZ3Ts2BHff/99sekCAwPRpUsXJCQkoEePHnBxcYGbmxv69u2L69evG6YbNmwYZs2aBQCoW7euoXvbvcuen5+Pd955BwEBAbCzs0Pz5s3xyy+/lLmcGo0G3t7eCA8PL3H83LlzIUkSdu/eXWY5pWnevDnUajXOnTtXbNzBgwfRu3dvqNVq2NnZoWHDhvjwww+NuiwGBgZi165duHTpklHXvp07dxrGl9Sd9+5tsMiaNWsgSRJiY2PxwQcfoH79+rC3t8emTZuMpl+9ejUaN24MOzs71KlTB3PnzjV5eUu6x7Bo2P79+xEREQEnJyeo1WqMGDECWVlZJpddHqmpqcjMzESbNm2KJYUA4ODgAE9PT5PLe/PNNzFo0CCcOHEC3377bZnTFq3nojoCgIKCAjg7O0OSJBw9etQw/Pbt27CxscHo0aMNw+69Z/B+20CRq1evYuDAgfDw8ICTkxOefPJJnD171uRlNJWp21FJxz6tVos5c+YYhnt5eaF37974+++/jeZR1LV35syZ2LhxI1q3bg0HBweMHTvWaLqUlBQMGTIEXl5ecHJyQteuXYsdjwFg+fLleOKJJ1CzZk3Y2tqiRo0aGDx4cIn3JRdtr9u2bUN4eDicnZ3x7LPPAgDS09Px1ltvGZbZy8sLrVu3xrx58ypo7RJRadhiSEQPLDo6Gk5OTnjhhRfg5OSEHj164KuvvsL7778PhUIBpVKJQYMGYd68eThx4gSaNGli9Pm1a9dCrVajR48eAOQTu6eeegr79u3Dyy+/jDFjxuDmzZv44osv0LFjR8TFxRW70r5o0SKkpaXh1VdfhZ+fH2rVqgUAiImJQUJCAvr164c6deogLS0NX331Ffr06YMNGzbgpZdeMpSxZ88ePPHEE/Dw8MCUKVPg7u6OTZs2Ye/evSUu98svv4xvvvkGffv2RVRUFPLz87FhwwZ0794dmzdvxnPPPWfyOoyKisKECRNw5coVBAQEAAC+/PJL+Pj4oGfPniV+Zvny5XjjjTcQEhKC6dOnG04Se/XqhZUrV2LkyJFG0//777/o0qULevfujXnz5uHYsWNYuXIlbt26ha1btwIAXnvtNdy6dQsxMTFYuHAh1Go1AKBZs2ZGZQ0dOhQ2NjZ4++23odFosGjRIvTq1Qtnz54t9f40W1tbDB06FPPnz0dCQgJCQkKMxq9evRrBwcHo1KmTyevtbhkZGcjIyICPj4/R8F9++QW9e/dGUFAQJk6cCE9PT+zfvx8zZszA0aNH8d133wGQt6GpU6ciNTUVCxcuNHy+UaNGDxQPALz99tsoKCjAq6++CldXVzRs2BD5+fkAgBUrVuDGjRsYPnw43N3dsX79ekyePBkBAQFG22V5HT16FD179kRUVBReeukl7Ny5E9HR0VAoFPj8888fuNzS+Pr6wtnZGXFxcThz5gwaNmz40GWOGDECGzZswM8//1xmt/SuXbsCALZt22ZI2v/66y9kZ2dDoVBg27ZtaNGiBQD5HkitVovIyMhSyzNlG8jOzkbnzp3Rvn17fPTRR7h48SI+/fRTPP/88zhx4oTJ3Xtv3ryJ1NTUYsOdnJzg4OBgNKys7ai0Y9+gQYOwadMmdO/eHa+//jquX7+OZcuWISwsDLt370bLli2N5rFlyxYsXrwYr7/+OkaNGlUsyX/qqafg6emJmTNn4vr161i6dCk6d+6M/fv3Gx3TP/nkE7Rv3x7jxo2Dp6cnTpw4gVWrVmH79u34+++/4eXlZVTuwYMH8b///Q+vvvoqhg4dahj+4osvIi4uDq+99hqaN2+OnJwcJCQkYOfOnZg0aZJJ65iIHpAgInoAubm5wsPDQwwdOtQwbMuWLQKA+OWXXwzDTpw4IQCISZMmGX0+MTFRABBjx441DFuwYIEAIH777TejaW/evClq1aolIiIiDMN27NghAAgPDw9x48aNYvFlZWUVG5adnS2Cg4NFo0aNjIa3adNG2NnZifPnzxuGaTQa0aFDBwFAvPfee4bhmzdvFgDEypUrjcooKCgQrVu3FoGBgUKv1xeb992KYp83b55ITU0Vtra24sMPPxRCCJGTkyPc3NzExIkThRBCODk5GS13enq6cHJyEvXr1xc3b940Wkf16tUTzs7OIiMjwzC8Tp06AoDYuHGjUQyjR48WAMTp06cNw9577z0BQFy8eLFYzEXjevToYbR8Bw4cEADElClTjKYHYLRtnDlzpsTtYM+ePQKAmDNnTpnr7O4YYmNjRUpKirh27ZrYs2eP6NKlS7Gyc3Nzha+vr+jUqZMoKCgwKqdoO9uxY4dhWEREhKhTp06J861Tp45RHRQpqsfVq1cbhq1evVoAEMHBwSI7O7vE6WvUqGFUR9nZ2UKtVov27dvfdx0IUXzdFg2TJEns37/faPgzzzwjVCqVuH379n3LrVOnTqnrQAghhg4dWmz7+OSTTwQAoVQqRZs2bcS4cePE+vXrxbVr14p9/uLFiwKAeOONN0qdR1pamgAgWrVqdd9469evLzp06GD4e9asWUKtVounnnpKPP3004bhEyZMEJIkiZSUFMOwkuq7rG0gIiKixO107ty5JR6zSlK0/Zb2M2/ePMO0pmxHJR37tm7dKgCIfv36Ge2nx44dE0qlUoSHhxuGFdWHSqUSp06dKhZvUX337t3bqKyDBw8KSZLEk08+aTR9Scfc2NjYEtdb0TL/8ccfRsMzMzMFAPH6668XK4uIzI9dSYnogWzevBkZGRlGV3p79OgBHx8ffPnll4ZhjRs3RuvWrbFhwwbo9XrD8LVr1wKA0efXr1+PkJAQtG7dGqmpqYYfjUaD7t27Y8+ePcXuWRoyZEixliJAvvpeJCcnB2lpacjJyUFkZCROnz6NW7duAQBu3LiB+Ph4PP/880YPybCxscH48eOLlbt+/Xq4uLigV69eRjFmZmbi2WefRVJSUoldGkvj5eWF5557ztAdcfPmzbh58yZeeeWVEqf/448/kJ2djXHjxhld2Xd1dcXYsWORlZWF2NhYo8/4+/sXu4exqPUkMTHR5FgBYPz48UaPsG/Tpg1cXFzuu8zBwcGIiIjA2rVrjbpxRkdHQ6VSGW0H99OtWzd4e3ujRo0aCA8Px/79+zF58mR89NFHhmn++OMP3LhxA1FRUcjMzDSqq2eeeQYADK2l5vD666+Xek9hVFSU0cN9HB0d0b59+3JtNyUJCwtD+/btjYZFRkZCq9Wa/JqR8po4cSJ++OEHPPHEEzh16hQWL16MwYMHIyAgAMOHD0dOTk65yivapov2z7JERkYiPj7e0FV2+/btePzxx9GtWzfs3r0bBQUFAIAdO3agWbNmhlbwB6VQKDBu3LhiMQAoV90tW7YMf/zxR7Gfe/dRoOztqKRjX1FX+WnTphntp82aNUPPnj2xZ88epKSkGH2mR48eZbaO/+c//zEqq3Xr1ujevTtiY2ONuikXHXP1er2hVbR58+Zwc3PDX3/9Vazc5s2bF3sSq4ODA+zs7PDXX3+ZbZslotIxMSSiBxIdHQ1vb28EBAQgMTERiYmJSEpKQvfu3fHDDz8YdZUaMmQIrl69apSwrF+/3pA0Fjl9+jQSEhLg7e1d7OfLL7+ETqcr1gUrODi4xPiSk5MxcuRI+Pr6Gu638vb2xooVKwDA8EqGixcvAkCJ3eBKGnb69Gncvn0bvr6+xWIsuh/vxo0bJqzBO6KionDu3Dns2bMHX375Jdq2bYvHHnusxGmL4m3cuHGxcUXduu5+RQCAYk+FBGDo1pWWllauWEsqy9PT06RyRo4ciRs3buCnn34CID+RctOmTejZsyd8fX1NjqHoxPr777/Hm2++iYKCAmRkZBg9rOT06dMAgFdeeaVYPRV1ZS1vPZVHadslUHp9lLcuTC0XKH89l+Xed9s9++yz+OWXX3Dz5k0cP34cCxcuRK1atfDll1/irbfeKlfZRQlhSfcs3isyMhIFBQXYvXs3cnNz8eeffyIyMhKRkZHIysrCgQMHkJGRgWPHjpXZjdRU/v7+xR788yDrt23btujWrVuxn5KexFrWdlTSuIsXL0KhUJSY6BUdH4qOIabMAyi5S/Vjjz0GnU6HS5cuGYZt374dXbp0gZOTE9zd3Q37282bN5GRkWFS/La2tli0aBFOnDiBunXronHjxhg7diwfwkVkIbzHkIjK7eLFi9ixYweEEKWeVKxfv97w2PeXXnoJb7/9NtauXYsnnngCu3fvxoULFzBnzhyjzwgh0LRpUyxYsKDUeXt7exv9XdoT+p544gmcPn0a48aNQ5s2beDm5galUonVq1fj66+/NrReinseWX8/Qgh4e3vj66+/LnWae++lvJ8nn3wSNWvWxKxZs7Bjxw589tlnZc6/vMq696m85ZVWlinlvPDCCxg3bhyio6PRq1cvfPvtt8jOzsaIESPKFUPbtm0N95o+99xz8PX1xdSpU9GyZUuMGjXKKJ558+YZ7jW7l7+/v0nzK+0l32W9c6+sJ5Ca61UTD1vPDg4OZSY42dnZhulKm3/Tpk3RtGlTDBo0CA0aNMBXX32F5cuXm7zMx48fB1DyRZl7FSV727dvh42NDfLz8xEZGYkGDRrAy8sL27Ztw40bN6DX6yskMazI/chUZW1HpR37KnIepbl3PvHx8XjiiScQFBSE2bNno27dunBwcIAkSRgwYIBRb5H7zXfUqFF4/vnn8fPPP2PXrl3473//i6VLl6J///73fSgRET0cJoZEVG6rV6+GEAJffPFFie+7mz59OqKjow2JoVqtxjPPPIOYmBhkZWVh7dq1UCgUxR4u0aBBA6SkpCAyMhIKxYN3aDh+/DiOHTuGGTNmGJ60WWTVqlVGfxe1spw5c6ZYOSUNa9CgAc6ePYv27dtX2GsxlEolhgwZgo8//hgODg4YMGBAqdMWvQrk5MmThgdwFDl16hSAkluOTFFaAlRR7OzsMGTIECxevBhXr15FdHQ0atasiaeeeuqhyp04cSKio6Mxffp0vPTSS3B1dUWDBg0AyN3bTHlxeFnL7unpifT09GLD722Zre7q1q2LhIQEpKamltjt8vTp03BxcTGpS6a3tzfq16+Pw4cPIzU11eQW4aL9s+iBVGXx8fFB48aNsW3bNqhUKgQEBBguVHXp0gXbtm1DSkoKlEolOnfufN/yzL39W0L9+vXx+++/4/Tp08UeHFV0fCjpHYplOX36dLEuyqdPn4ZSqUSdOnUAAF9//TV0Oh1+/fVXo/Kzs7NLbC28nxo1amDEiBEYMWIEdDqd4YFfEydORJs2bcpdHhGZhl1Jiahc9Ho91qxZg6ZNm2LEiBHo27dvsZ+BAwfixIkTiI+PN3xu6NChyMnJwfr16/Hdd9+he/fuxVpshgwZguvXr5faYmhq17+iK/v3XtU+ceJEsddV+Pr6IjQ0FN9//73RiX5BQQE+/fTTYmUPGTIEer0eU6dOfagY7zVq1Ci89957WLFiBdzc3Eqdrnv37nBycsKSJUtw+/Ztw/Dbt29jyZIlcHZ2Rvfu3R8ohqJEt6QkqKK8+uqr0Ol0mDx5Mv78808MGzbsoVvQbGxs8M477yAtLQ2LFy8GILfC+vj4YPbs2SUuT25urtH6c3Z2RkZGRoktLsHBwUhISMC///5rGJafn49ly5Y9VNxVTa9evQCgxP3v999/x8mTJ/Hss88aLtrk5ORg165dJZZ17tw5nDp1ytCF2xSffvopNmzYgGbNmqF///4mfSYyMhLHjh1DTEyMUatgZGQk/vzzT/z6668IDQ01qWtqWdtAdVFUhx9//LHRcpw4cQI//PADwsPDTa6PInPnzjUq6/Dhw4iNjUXXrl0Nx4zSjrkfffRRia2FpcnJySl2X6pSqTQkueY8NhERWwyJqJy2bt2Ky5cvY/jw4aVO88ILL2DmzJmIjo42XN3t0aMHvLy8MHnyZNy6davEh42MHz8ef/zxByZNmoTt27cjMjISrq6u+Oeff7Bt2zbY29ub9K7ARo0aoXHjxpg7dy5ycnLQsGFDnD17FitXrkSTJk1w+PBho+k/+eQTdO/eHR06dMDo0aPh5uaGTZs2QaPRADBuSSh6RcXSpUtx+PBh9OzZE2q1GleuXMH+/fuRmJj4QC1JtWvXLvbOwJK4u7tj7ty5eOONN9CuXTvD++zWrFmDxMRErFy5sszEsixFrQKTJ0/GoEGDYG9vjyZNmpS7a2xZGjVqhPDwcKxfvx6SJJX6kJ3yevnll/H+++9jwYIFGDt2LNzc3LB27Vr06tULDRs2xCuvvIKgoCBkZmYiISEBmzdvRkxMjOFVB+3bt8dPP/2EMWPGoEOHDlAqlYiMjISPjw/GjBmDb7/9Ft26dcOoUaOg0Wiwbt26CnthfVURFRWFDRs24OOPP8aRI0fQtWtXODg44MiRI/jqq6/g5+eHjz/+2DB9Tk4OunTpgiZNmuCpp55CgwYNIIRAQkIC1q5di7y8PCxbtqxY6//Zs2exfv16Qxnnz5/HTz/9hFOnTqF169bYsmWLyS+3j4yMxJIlS3DmzBmjizWRkZHQaDQ4f/58iQ91KUlZ20BF+vXXX5GQkFBsuJOTE3r37v1QZXfv3h39+vXDt99+i4yMDPTs2dPwugp7e3vDhZPyuHTpEp588kk899xzuHbtGpYuXQoHBwej9wr27t0bCxcuxDPPPIORI0fC1tYWf/zxB44fP16uh/6cPXsWERER6N27N5o0aQIPDw+cPn0an332GerWrfvAr7QhIhNZ9BmoRFTt9e3bVwAQx48fL3O64OBg4ebmJnJycgzDxowZIwAIV1dXo+F3KygoEJ9++qkIDQ0Vjo6OwtHRUQQFBYmXXnpJ/P7774bpSnpVwN2SkpJE3759hVqtFg4ODqJNmzZi8+bNpb6SYdu2baJdu3bCzs5O+Pj4iHHjxok///yz1FcprF27VoSHhwsXFxdhZ2cn6tSpI3r37i2+/fbbMtfL3bHf/Xj60tz7uooimzdvFmFhYYZ1FBYWJmJiYopNV55XLQghxJw5c0TdunWFSqUyelVHWa+yKGkeKOGVCkXWrl0rAIjIyMgSx5emKIb4+PgSx69YsUIAEDNnzjQM+/vvv8WgQYOEv7+/sLGxET4+PiIsLEy8//77Ii0tzTBdVlaWeOWVV4SPj49QKBTFXmexZs0aERwcLGxsbERgYKCYM2eO2LZtW6mvq7j7s0XK2maLXg1gipLWbWnru6x4SpKXlyc+/vhj0bx5c+Ho6ChsbW1FvXr1xBtvvCGuXr1qNG1BQYH48ssvxYABA0RwcLBwcXERNjY2wt/fX/Tu3Vts377daPqi1yMU/UiSJFxcXESDBg1E//79xaZNm4q9WuR+MjIyhFKpFADEP//8YzSuZs2aJb4SQYiSX01R1jZQ2qssipbp7lfalOZ+r6uoWbOmYdoH3Y6EkOtl9uzZIiQkRNja2goPDw/x/PPPFztm3y/2om0yOTlZDB48WHh6egoHBwfx+OOPi4MHDxabPiYmRrRq1Uo4OjoKLy8v0b9/f3Hp0qVyHR9SU1PFm2++KZo3by7c3NyEvb29qF+/vhg/fnyx7Y+IKp4kRDXuM0FEZEb/+9//0LdvX3zzzTdl3vdH5bNp0yb0798fX3/9NQYOHFjZ4RAREREAJoZEZPWEEMjPzzd6FH1BQQG6dOmCAwcO4PLly/Dz86vECB8tEREROHXqFK5cuQI7O7vKDoeIiIjAewyJiJCfn486depg0KBBaNiwIdLS0rBx40YcP34ckydPZlJYAZKTk7Ft2zbs3r0bcXFx+Pjjj5kUEhERVSFsMSQiq6fT6fDqq69i165duHbtGoQQaNiwIUaOHInRo0dXdniPhJ07d+Lxxx+Hu7s7BgwYgMWLF8PGxqaywyIiIqJCTAyJiIiIiIisHN9jSEREREREZOWYGBIREREREVk5q3v4zNWrVy06P7VajdTUVIvOkx4e6616Yr1VT6y36on1Vj2x3qon1lv1VFXrzd/fv8ThbDEkIiIiIiKyckwMiYiIiIiIrBwTQyIiIiIiIivHxJCIiIiIiMjKMTEkIiIiIiKyckwMiYiIiIiIrBwTQyIiIiIiIivHxJCIiIiIiMjKMTEkIiIiIiKyckwMiYiIiIiIrBwTQyKq0nTz3oFu3juVHQYRERHRI42JIRERERERkZVjYkhERERERGTlmBgSERERERFZOSaGREREREREVo6JIRERERERkZVjYkhERERERGTlmBgSERERERFZOSaGREREREREVo6JIRERERERkZVjYkhERERERGTlVJUdwN30ej2mTJkCT09PTJkyBVlZWVi4cCFSUlLg7e2Nt956C87OzgCAmJgYbN++HQqFAlFRUWjRokXlBk9ERERERFRNVakWw19++QU1a9Y0/L1lyxY0bdoUixcvRtOmTbFlyxYAwJUrV7Bv3z4sWLAA06ZNQ3R0NPR6fSVFTUREREREVL1VmcQwLS0Nhw8fRteuXQ3D4uPjERERAQCIiIhAfHy8YXiHDh1gY2MDHx8f+Pn5ITExsVLiJiIiIiIiqu6qTGK4Zs0aDB48GJIkGYbdvHkTHh4eAAAPDw/cunULAJCeng4vLy/DdJ6enkhPT7dswERERERERI+IKnGP4aFDh+Dm5oZ69erh5MmT951eCGFy2bGxsYiNjQUAzJ49G2q1+oHjfBAqlcri86SHx3qrOtJtbAAAnibUB+utemK9VU+st+qJ9VY9sd6qp+pWb1UiMTxz5gwOHjyII0eOQKPRIDc3F4sXL4abmxsyMjLg4eGBjIwMuLq6AgC8vLyQlpZm+Hx6ejo8PT1LLLtbt27o1q2b4e/U1FTzLsw91Gq1xedJD4/1VnXoCgoAmLbvst6qJ9Zb9cR6q55Yb9UT6616qqr15u/vX+LwKtGV9KWXXsKKFSuwbNkyvPnmm2jSpAnGjRuH0NBQ7Nq1CwCwa9cutGnTBgAQGhqKffv2oaCgAMnJybh27RqCgoIqcxGIiIiIiIiqrSrRYliaXr16YeHChdi+fTvUajUmTJgAAKhVqxbCwsIwYcIEKBQKDB8+HApFlchxiYiIiIiIqp0qlxg2btwYjRs3BgC4uLhgxowZJU7Xp08f9OnTx5KhERERERERPZLYzEZERERERGTlmBgSERERERFZOSaGREREREREVo6JIRERERERkZVjYkhERERERGTlmBgSERERERFZOSaGREREREREVo6JIRERERERkZVjYkhERERERGTlmBgSERERERFZOSaGREREREREVo6JIRERERERkZVT3W+CK1euYNOmTUhISEBWVhacnZ0REhKCfv36ISAgwBIxEhERERERkRmV2WJ47do1TJs2DRqNBgMHDsR//vMfDBgwABqNBtOmTcPVq1ctFScRERERERGZSZkthjExMejUqRNGjBhhNDwyMhJffvkltmzZgtGjR5s1QCIiIiIiIjKvMlsMT58+jeeee67EcT179sTJkyfNEhQRERERERFZTpmJ4a1bt+Dt7V3iOLVajdu3b5slKCIiIiIiIrKc+z6VVJKkkj+oUJQ6joiIiIiIiKqPMu8xzM/Px3vvvVfiOCEENBqNWYIiIiIiIiIiyykzMRw1alSZH46MjKzQYIiIiIiIiMjyykwMu3TpYqEwiIiIiIiIqLKUmRheuHABKpUKtWvXBiA/jGbNmjW4fPkyGjRogCFDhsDe3t4igRIREREREZF5lPnwmTVr1iAzM9Pw94oVK3Dt2jV07doVly9fxvr1680dHxEREREREZlZmYnhv//+i0aNGgEAsrOzceTIEYwdOxZPPfUUxo8fj0OHDlkkSCIiIiIiIjKfMhNDnU4HlUrubXru3Dm4u7vD398fgPwew+zsbPNHSERERERERGZVZmJYq1Yt7N+/HwCwd+9eNG3a1DAuPT0djo6O5o2OiIiIiIiIzK7MxHDQoEH44osvEBUVhcOHD6NXr16Gcfv27UPDhg3NHR8RERERERGZWZlPJQ0JCcHy5ctx7do11KhRAw4ODoZxrVq1QocOHcweIBEREREREZlXmYmhXq+HnZ0dAgMDDX8rFHIjY9G9hkRERERERFS9lZkYDhw4sNgwhUIBLy8vdOzYEX379oWNjY3ZgiMiIiIiIiLzKzMxXLp0abFhOp0ON27cwObNm7Fp0yYMGjTIbMERERERERGR+ZWZGHp7e5c43M/PD7Vq1cK7777LxJCIiIiIiKiaK/OppGVxd3dHTk5ORcZCREREREREleCBE8MTJ07A19e3ImMhIiIiIiKiSlBmV9KNGzcWG6bT6ZCcnIwjR45g/PjxZguMiIiIiIiILKPMxDAtLa3YMIVCgYCAAPTt2xcBAQFmC4yIiIiIiIgso8zEcPTo0ZaKg4iIiIiIiCrJA99jSERERERERI8GJoZERERERERWjokhERERERGRlWNiSEREREREZOXKfPjM3Y4dO4akpCTk5eUZDe/fv3+FB0VERERERESWY1JiGB0djf3796Nx48aws7Mzd0xERERERERkQSYlhnv37sXcuXOhVqvNHQ8RERERERFZmEn3GLq4uMDJycncsRAREREREVElMKnFsGfPnli8eDF69+4NNzc3o3G+vr5mCYyIiIiIiIgsw6TEcNWqVQCAw4cPFxu3cePGio2IiIiIiIiILMqkxJDJHxERERER0aPL5NdVmFNqaiqWLVuGzMxMSJKEbt264ZlnnkFWVhYWLlyIlJQUeHt746233oKzszMAICYmBtu3b4dCoUBUVBRatGhRuQtBRERERERUTZWaGH744YeYNm0aAGDGjBmQJKnE6WbNmvXQQSiVSrz88suoV68ecnNzMWXKFDRr1gw7d+5E06ZN0atXL2zZsgVbtmzB4MGDceXKFezbtw8LFixARkYGPvjgA3z66adQKEx6lg4RERERERHdpdTEMCIiwvB7ZGSkWYPw8PCAh4cHAMDBwQE1a9ZEeno64uPjMXPmTEM8M2fOxODBgxEfH48OHTrAxsYGPj4+8PPzQ2JiIoKDg80aJxERERER0aOo1MQwPDzc8HuXLl0sEQsAIDk5GRcvXkRQUBBu3rxpSBg9PDxw69YtAEB6ejoaNGhg+IynpyfS09NLLC82NhaxsbEAgNmzZ1v8XYwqlYrvf6yGWG9VR7qNDQDA04T6YL1VT6y36on1Vj2x3qon1lv1VN3qrUrcY1gkLy8P8+fPx7Bhw+Do6FjqdEIIk8vs1q0bunXrZvg7NTX1oWIsL7VabfF50sNjvVUduoICAKbtu6y36on1Vj2x3qon1lv1xHqrnqpqvfn7+5c4vMrclKfVajF//nx06tQJ7dq1AwC4ubkhIyMDAJCRkQFXV1cAgJeXF9LS0gyfTU9Ph6enp+WDJiIiIiIiegRUicRQCIEVK1agZs2a6Nmzp2F4aGgodu3aBQDYtWsX2rRpYxi+b98+FBQUIDk5GdeuXUNQUFClxE5ERERERFTdVYmupGfOnEFcXBxq166NSZMmAQAGDhyIXr16YeHChdi+fTvUajUmTJgAAKhVqxbCwsIwYcIEKBQKDB8+nE8kJSIiIiIiekAmJYZarRY7d+5EUlIS8vLyjMaNGTPmoYMICQnBpk2bShw3Y8aMEof36dMHffr0eeh5ExERERERWTuTEsOlS5fi0qVLaN26Ndzc3MwdExEREREREVmQSYnhsWPHsHTpUjg5OZk7HiIiIiIiIrIwk27MU6vVKCh8ZDwRERERERE9WkxqMezcuTPmzZuHp59+Gu7u7kbjmjRpYo64iIiIiIiIyEJMSgx/++03AMA333xjNFySJCxdurTioyIiIiIiIiKLuW9iqNfrMWrUKISEhMDGxsYSMREREREREZEF3fceQ4VCgXnz5jEpJCIiIiIiekSZ9PCZRo0a4ezZs+aOhYiIiIiIiCqBSfcYent74+OPP0ZoaCi8vLwgSZJhXP/+/c0WHBEREREREZmfSYmhRqNBmzZtAADp6elmDYiIiIiIiIgsy6TEcPTo0eaOg4iIrJBu3jtIt7EB3pxV2aEQERFZNZMSwxs3bpQ6ztfXt8KCISIiIiIiIsszKTEcN25cqeM2btxYYcEQERERERGR5ZmUGN6b/GVmZuK7775Do0aNzBIUERERERERWY5Jr6u4l7u7O4YNG4avv/66ouMhIiIiIiIiC3ugxBAArl69ivz8/IqMhYiIiIiIiCqBSV1JZ8yYYfTuwvz8fFy+fBl9+/Y1W2BERERERERkGSYlhpGRkUZ/29vbo06dOqhRo4ZZgiIiIiIiIiLLMSkxtLOzQ1hYWLHhf/75J9q3b1/hQREREREREZHlmHSP4YoVK0ocvnLlygoNhoiIiIiIiCyvzBbDohfb6/V6JCcnQwhhNM7W1ta80REREREREZHZlZkY3v1i+7FjxxqNc3d3x4svvmieqIiIiIiIiMhiykwMi15s/95772HWrFkWCYiIiIiIiIgsy6R7DIuSwtTUVJw9e9asAREREREREZFlmfRU0tTUVHz66adISkoCAKxbtw5//vknjh49ilGjRpkzPiIiIiIiIjIzk1oMP//8c7Rs2RJfffUVVCo5l2zWrBmOHz9u1uCIiIiIiIjI/ExKDBMTE9GrVy8oFHcmd3R0RE5OjtkCIyIiIiIiIsswKTF0c3PD9evXjYZduXIFarXaLEERERERERGR5Zh0j+Gzzz6LOXPmoFevXtDr9dizZw9iYmLQq1cvM4dHRERERERE5mZSYhgZGQlnZ2ds27YNXl5eiIuLQ//+/dG2bVtzx0dEVOXo5r0DAFBO+qiSIyEiIiKqGPdNDPV6Pd5//31MmzaNiSAREREREdEj6L73GCoUCiQnJ0MIYYl4iIiIiIiIyMJMevhM37598cUXXyAlJQV6vd7oh4iIiIiIiKo3k+4xXLlyJQAgLi6u2LiNGzdWbERERERERERkUSYlhkuXLjV3HERERERE5cYHghFVDJMSQ29vb3PHQURERERERJXEpHsMiYiIiIiI6NHFxJCIiMgK6Oa9Y+hyR0SPFu7fVBGYGBIREREREVk5kxLDgwcPQqfTmTsWIiIiIiIiqgQmJYYbN27EyJEjER0djXPnzpk7JiIiIiJ6xLH7I1HVYtJTSefNm4ekpCTs3r0b8+fPh52dHTp37oxOnTrBx8fH3DESEREREVkl3bx3kG5jA7w5q7JDoUecSYkhAAQGBiIwMBCDBw/G33//jXXr1mHTpk0ICQlBt27d0LFjRygUvGWRiIiIiIioujE5MQSA69evY/fu3di9ezckSUL//v2hVqvx22+/4a+//sLbb79trjiJiIiIiIjITExKDH/77Tfs3r0b169fR1hYGMaMGYPg4GDD+Hbt2mHEiBFmC5LoUVV0b4Vy0keVHIl14PomIqKqgt9JVNWYlBgePXoUPXv2RJs2baBSFf+InZ0dWwuJzMTqvzhyc4DcbIjzCZDqh1R2NERERNWO1Z9LkElMuilwypQpCAsLKzEpLNK8efMKC4qovPhks4pTldal/ng8cPkCkHoD+nlToT9xuLJDokpQlbZJMh3rje4rJxtIS4Y4n1DqJI/0dpSbA6SnlLn8RJZUaqa3ZMkSSJJ03wLGjBlToQGVx9GjR7F69Wro9Xp07doVvXr1qrRYzIVXeExUXVuVcrKrZ9xmJm7fhPhtM8S2H+4M1OkglrwPfWgnSJ26A8FNIPGBV9Vfbg50mbkA94FHTzU8LvM713L0f+0CrlyUf58zGQh7HIpWHYC6wZBc3c0yz6pUv/r9O+QLnwD0c6cAEU9D0TQU8K8FeHqbdA5elVWldU2mKzUx9PPzs2Qc5abX6xEdHY3p06fDy8sLU6dORWhoKAICAio7tIqVfRvIzoL+3EkoGjQudTJTdkDd+28CudlQjJhY6pd0Re3Iljwg6P8+BFy+CEBA/8k0SBM+gKLBY2afb1lKWn4hBJB6A+LCGeDiWYhTR4FrlwEUfimGNIcU1AjwqwnJtybg6w/J3sGkkyuT6t+EaUR+HnArE9DkP/T8HoS4fQtiawzEjp8BjQZ4rAVw6gggBKCyAZq1gThxEOLALsDbD1J4d0gdukJy9zRtBvdZl+J8AsSZvyE1bFr2iWw1POE1VUUdJ8qaRggBZN2GOB4PXL4IPQTwyTRIL42CVC8YsLUDbGwBW1v595xsIC+nyqxvnvCU/fh8odNB/LbZ+KT3yT5QtGgH+NeCZO8ol2HCtmZyPBVVVm4OkJNVKce/h1GecwDNxPcBdY2HK+sh14E4dQRizeK7Bghg/w7o922X//bygVQ3GKgbDGSmAVpt2edBph6TTfk+rcDt8l4iPQXiQBzEnzuBfy/dGaHXAzt+hn7Hz/Lfdg7yvlKjFuBfG0hPhU6vhTjyJ6QmrSDZ2JZ/2UxcRxV1PlldVfRxKSU/F3jlrWqznkpNDF988UXD75mZmXB3dy82TWZmpjliMkliYiL8/Pzg6+sLAOjQoQPi4+OrXWJ49waIusHAtSsQFxKA8wkQp48B6SkAADF3KnS+/vKB0r8OpJq1gZp17lxVKmGHF3q9PDzrFsSZv+Urc6IweRo2FlLQY4CdvXwAUqlKLeeBmPHEWQgB/HsJ4ni8fGJ5/gwAIY/UFkAseBe64CaQ6jWEVK8hUC8YkpNLuU54MefzhwsyNwfIvg399p+AvFw5GbxwBrh9Ux5vawfcfUVUCODSOYiEY4AQRUsDOLsAWbcBAPq5U4EuT0EKLLyaWvTj7Gra+i6cRn/6OCQXF+DGNYjkq0By4f83rgE30w2T62f/B/ALgFSrLuDtB6h9IXn7yb+bcKJu0vounEYa9Dpw7hTEth8BTR6kNp0hPdsfkl9AsXKEJh/i8D6I3X9AxKyD+H4D0DQUuHIJyboCoOtzgIeXvLz5uUCe/COSrxmfqLZoJy+PrT1gZw9xMwP443sAAkKpAp5+AZLaD9Dr5C/twh+RfPVOOfPegdSzP6Q6QYX70p0f/aczgdxcSMPfghTUqMTWzfKsI/kY0UBOmAs0hf/nAwUF0K+YA+TlQuo1GFJQiLxM9nIcksqm5LICGxS2WGcB2dlAThb0F88YLRuefgGKmnXkpFxlA9jYAEoVcDMDyM+Fft92efsQAoZ9UBT+czNDbg38foMcQ1oyRHoKkJYiH9c0+cYLqi2AWLvkzrZfAv3cKZD6RkGKeAqSrV0ZU5asvOv7fvtSWdt/WRcZhBBATra8j+VmQ+ozBFK9EHnbsbUD7OwApcrQYlBhcZvgYcoRtzIg4rZCxP0OZKTeGaHXA7/+F/pf/yv/7ekNuHsZ70d9h0Gq3whwcAQcHQEHZ0g2NsViQr2G8vafd9e+fT7hzvfb/OlQTPy/csUusm5BnDoqn6wXxTR7MlCvIaTa9eRjn9oHUPsCXj4mX6gw6QR75lggNwfSy6MhBTYoDMh4Gv38aUBODqSXRsr7m04nH5d0ekCnlX/PTAfycqH/4wdI3r4QBQXyeir8Edf/NSxbxvQ3ID03EFKj5nI9uLlDUijvzNDMF770O3+B+OZzwNMHSLshHz9sbCGNnQFJqYRIOgtcOCt/bx7cY/icmDsVOkjyBSMbW/l4ZGMrb19pyXLZcybLdaRUyetGpwO0BfL/ResDhd9vzi7y+Y9N4fFNqZKnLUzY9POmQnohClLbTpDcPMq9nIbvt8GvA+mpEH/tAs6ekJe3XkOg+/NA7A93ln/0O5Bs7SCuXQau/gNx9R+Ik4eBfdvkeABg+Ufy5mFrJ3/3O7vI/wth/P3WuBUke4fC7SBfvuB7+a7W2fohkLxrAE7OgKMz4OgEODpDcnSWE/H8POhjf4Ck9oW4+/tGk2+0LennTQUin4UUUAeSnYN87Cr6/rmVKZdzLB5S/Yby+lUqAYUSUCohSZLJx5v7TSd0Oug/eBPIzYVi5NvlP3bp9UDqdYj4PUbLJr34CqS2EZBcXMtXXl4OxKH9dy58PsBxqbJIQoiyvocBAEOHDsVXX31VbHhUVBRWr15tlsDu588//8TRo0cxatQoAEBcXBzOnTuH4cOHl/m5q1evWiI8A7VajdTU1BLH6c+egPhkmrxDSxJgYwdo8uSRzi6Akytw4987H/D1l3fOu79w7R0AD7Wh5QmSJH/pavLl1ka93rRAlUpAaXNn/pIEPNYSUkAdwNUDcPOQkxE3D+g/nyd/kQ18DVKNACA/T/5cnvy//vJF4KeNcjkqFaRXJkBq2R5SCfeomnxlKjsLUteeQMp1ORksTJhRJwgICJQPnELIB56mrYHUZPngLgqX30N9Z70plUBkT/lKnI2tfOWt8AtGv/4zQJMH97HTcatW/VK7ctwbt9DrgKuXIS6ehTh2ADh2wPgDfjUh1W0on2jUD5GvACadkw/QhV8Kion/B9SqC6RcB67/C3HjX4hDe4F/LpRZdcV4qOUvDQAoCl+jubPO7uXqDvj4Q/KtAZGRBpw6emecTw05vvQU+Yu1JE4u8vpTKABJIf+v1d5Z35IENHhMTrIcneQTPwcniNs3gV//h7vPgqQ2neREy7+2YViZLU/X/4XYGyufiOZklRyfJMkn3IB8Ilmk6Ipr4YmC2UlS4ReiQv5fCHnfKeLoJA8HcOdChw7Iy3m4+SqV8vIrlEDWrYcr62G4uMnHJi9vSJ4+gJca0GggtqwvbBFWQer1MiQvbwiNRj6GFWggThwy3iYBue6CG0Nq3ApS45bQfzEfyMsxOmkQRev39k25dfLcCYjv1gAQ8rpo3QGSnT1EbnbhiXCOfGEk/a7jq629XG9CL8eo18sn4Xd/bXqq5ZNrRyf5pMrRCSIvD/hzhzxeoQAatZDne/umfLJ0+5Z80loWheJOvWXLF4cgSUCNWvKJoEpVmLCrgNxc4HThOlKqIA1+HVJoR0PLXJESezLk5QD/XIC4dN54XUsKoMtTUIR2AuoEQbKzK1aWjY0NdONnAhfOQGz/WT5e6bTAYy0gNWoGsXndnZPeV96EpFJB/PuPfKxMOCavi7KobOQkICf7zjBJMl7/JfH0gdSyHVCrnpzY1agFSaW6c6L+ypuQJAXEycMQJ48ASecMcRodD9w85L/vnv/dio5tPv7yCbaTK+DkDMnJBXB2gX7dcnm7ingKkr29nLzdzIDITJd/z0i13PGnLJICcHOXt2MbW+DcSXm4SgXp9alQNGtT7CMP0mIo9DqITV/KFwCbhkIx8m3o575T5gm/fvNaiKILCpDkWwgC68vrTauVjxH/XACu/nPnQ/61IdWsU3heozIkJOKfC8D503emCwyC5FdLviil1cpJ4Y1/5e/ge7m4AQGBcmIeUBfil01Afj6kF4ZC8qkh13NeLkReLpCfC3HlEhD3m3EZvjUhtYuQf3zkFltTEiP9lvUQP28qXAUS0Ki5vHxZtyGybsnHhxtX7xwnAMDeUf5uL0qib98EUm/cGe/qLh87srPlC6iVQaEwPkf18JLPJ2ztCi+Q2cuJcl4u8PdBeRpJAdSuJ6+H3Bz5+zE3p/iFxlr1INWuC3jXuOuidg3oF7wrHwOeGyjv8/9cgLh8QU6a88pYD+6eQEBdSAGBQEAgxE/fAhoNpOcHQbKzg7hxFUi+CnHjGpB8tfixTaGA9PwgKJ55saTSK4W/v3+Jw016KmlJuWNOTk6lvtC+pJhKOomPjY1FbGwsAGD27NlQq9Vmj+1uKpWq1HlmbbuA7KLlEAKq2vXg+HQf2DRsAqV/LRScOYGMd0bJG6+tHTzefA+2IU2hz74N7T8Xof3nArT/XED+oX0w7FpCQOnoBNvWYVC4uEFydYfC1Q36m5nI+mqpoUueU79hUHp4y1c18vMgcnOQf+IwtGdOGMqRks5CnD1h+OK6d42LZf9X5tV9AIBWC/H5XAiFAgq1L1R+NaEs+vH1x+2sWxC5OXDYFwulpxr67CyInCyI7Czoc7Khu3YZusKrN+K7LwEbW9i1bAfb0OGwax0Gpac3ACB1wj8Q2bfh9tZM2IY0BQDoc3OgPZ+AgjMnkLvzN+iKEhWdDvjje0PsJS1D5gcTABtbKH38oFT7QuHlA6W3r/y72ge3s29Dn3ULqnVLoU9LgfZ8gnzwAuQDcRFJglPfoXB+aWTxmfj6IjWwQbG44V8TaN4aAKBpG260DbhPnQOltx/0NzOgv5kOfWY68vbvRMHfhwzFKl3doKpV986SCUB7JQm6osRQkmDXsSuceg2CskYAFI5Ohs9qEv423uYK4xI6LfRpKdBd/xfZv/wXmr/iDJ9R1QiAKjDIqGWt4NL5O+tbCEg3rkJKS5HrNrfkRMehx4twHfFWseHpha0GniXtR2o10KQ5sjy9kP11YSuvpIBjzxfh2OslSA6OkOwcICkUxZdt1uLCZdNBaPKhOXkENz/6j+EE0XX8DNgGhchfXoVXOSWFAgXnE5D5wUTDdC6jp0BVIwAiL1fen/LykLdvBzQH4gzr26Zpa9g2bCJfldTpAJ0WmrMn7+xvAFQ168CmfkMYsnlJQsH5BGjPFp6kQYJNs9awa9EOUmEXS8nWDvmH9yM/butddRsJ22Zt5NaDvFx5/87LQUHCCWgNiaFcln2bcEjOLlA4uUJydoEu5TpuLZp1Zx2Mexc2tQIhtAWGFojcnb8ib/svd+bX6QnYh3UpDFuOPW//TuTvKjwpUijg1O8VOPd/pcR6Tz36F5CTBdfC49u9NAltjerN+aWR0KfeQP6Rv6DbFG20/+rnTIGyRk2I/Hzob2fKF0RKotcBh/fLx0dHJyicnCG5uUOn00J3V2JoU68BbBo8JidnCgmQFCg4exIFdz0ESeniBqWLq3zsSkuGPjvrTs8AANDrISWdhbJGLSh8akDR4DEo3D2hTUqE5tC+O+sx7HHYNm9TWF+5QH4eRH4eNKePQ1v0YAohoNTroLCxkU9m83IBbQF0GWl31oNOC/HVEoivlkDh5Q1VzTpQ1qwDVUAdZN/KgMjLhW3MWoisWyg4nwD91cuGREtycLxTjtADO36BfscvgEIJVWAQbIIbw6ZhE9g0bILM/Dxor12GYuYY6K5ehuToBIenesPx6T5Q1awj1+3hP4sf3wz1etf+aGMLl1fGQenlC33O3d8BWdD8fQTaxFN36uSxFrBr2Q6Sg5O8f9s7QJd6A1mrF8tlKZRQujhDt+cPeR0CgMoGSp8ahuRBzJ0qD1coYNPgMdj2fwV2LdtDaLXImD76zjFiymzDd64u+Rp0N64hN/YHaA7tN9SHdOMqpJQb0N++KScWKOE75cdvDK08Sk81FJ5qKIIbQZ+ajIKEvw3bgG3rDrBr0dbwNwDkHz0ATfyeO9tJuwjYteskt7go5IQn/6845O38tXAahaEeYGMLydYWko0dtEmJyHhvrGHZXEa+DaWrG3RpKdCnpxj+L7h47k78Wi3Ekg+gd3WHqnY9qOrUg6p2fahq18Ot/FyI3By4pl4rcb8FgPTpbwAAPP9vGfS52bg5/z1oDu2D47P94Tx0DCSlEumuboCrGzzbhZdYhqZzd2T89r/CuG3hETWm7G3J1g4eY6eVciy5Z7rXJt23LJehb8jfaUmJ0F5KhHbnL0bHFbFq/v3PgwA4PNUHLiMnFjtPvd/yA4AmvCsyfvnOsK94vPz6/dfBewuNpik2fuocw3ih08r7W9Zt5Py4Ebm/bZY/dNe2JBUma5Jt4bb07huGstwm/R9UAYGF34Hyd07ujl+Qv+v3wnIk2LYOg22TVvKzAnRaQKuD5uQRFJw8YohR5eYBpU8N+RiYnw9xOxMiLw/6zDSj45IiJwuqWnUhOTpC4SBfkCu4eA4Fx+MNZSnycoBTx6DPkFtbi52/rv5U/sXOHjaBQVB1eRqqesGAJOH28tmG7c158OuAXgdtUqL8E/u9fEHCUM4iQ9kKDy+oagRA2SZcPicQQj4vKTzvdm8bDlsL5yAPoszE8PXXXwcAaDQaw+9FsrKy0LFjR/NFdh9eXl5IS0sz/J2WlgYPj+JN/d26dUO3bt0Mf5fWemcuZbUYisDgO1c/bWyh7zsM2UVXjNLSAHUNKCbPMXRHuqWuARSV5e0v/7QOB5q1Be5qeRKDXoempCtP2342XJnKK6kpvkETo3KksTPkrpi52cDNTOBWBvS7fgPid8sfkCSgdQco2nQu7D4ndyEQyVchPp93576wJ3rLi5lyHZqU68CFs8VaLrJWLzYORlLILSh3XwCQJEhP94X22QHQAsjRw7A+dDa2gLuX8ToCAL/agF9tiIB6xsv2+hT5iltRN4uCAojdWyF23znBRp360Ll5yCeKl87LXePuuSCRH7dV7m4ZFgmpXjCkug3lB6fMnWJY/tz6jyGvlG2g1LiLqGsAAXUN9XY7oJ483McR8Kkp15unL3Di8J36H/gatPd2XTufcGf5VTYoCH8CN928gJxc+aeU+RnFpbAB/AMhHu8JHNh913YbhYKy5mdjC+n1qZDqh0BCYetqXi5Ewt8QK2Ybpslv2qbEfUVXIJ9slbXvitpBd/YllQp5jVsjXy8B2bnyz/2WDQACGxrtb9n1Q2BoJ9Cj8MqmHqgVZFROTkn7kr0TcORPufVEqYLumX7F9jlxPgGYP90wjf6FYcX2W+P1aAPdM/2Qe+809k7A/p2GcgrCnyxW/6WVVSx2b/9i66BYOW27ADt+vbMtdehafHuDAoj73dCKnxsYXOY+YKP2NXkfMCz/84OhSEuG/ttVwNE/C2esh06vl7tvurjKLWsubpCc3SBupkOsX27UQl90hb7owtq9262u18vQ37tswU2Bk0eM9jfdXdMoAOgTT985BhQeS0X9EOgA6O6e1/GDd+qt81Ml11sT45jEsPHFYpLOJ0DctX9Lzw2UP3vtCjTXrwA7f5WvqhfK/eW/cgtI/RBIoeGQateXe1+k3rhTTtFxUi8gLiRAe+EMtDt+vXPSWFR/WbeAJ/tA6tkfGnsHaIA79fjOJ5AA3Lp72F31eve2VtJ+BACiYXPjOnl2YLF9AA2aAH/8eKe7af0QKPQ6ubv8P+eByxegO7zfeJ217QzppVHQOzkjD0BR232p37kunoCLJ4SkBA7/WezYphDiTk+d7CyI7T9C7IktnJkCUo8XIT33EiBJKDySFDsua7s9b7QtAYDw8gOOHriznXR5pvj+JimBXb8Zjn/5zdtB4+Aij9QDyNcANWobls29bbi8bABQt6xtSQVEPA1o8lHw7yUUxP5crHUpY9pouYtr+BOQlEqjcUXH7pQzp6Bf8gFw7TKkQa8jv8vTyM/IMJqm1OP7/Y7bpk5TjrJK3C7bRwIAFDodxH9XQ8QWPhhNkiC1fxxSeHe5B1fhj7j6D8SCd+98v7VoD81d56wGhffolnluWhi3ovBetQdaB6Ysu60DRIv2wO8xJW9LOgHk5gG+AUbrKCuwoTze2Q5wdgcAiLCuQNzWu7btXsW37Xohcg+FonOJASMhSjgOGG2TNrbA8AnFyzqfAJw+ZthPMHyCvF/m58stpanX5fNXQ8ujBKnrs5BejIJeoYQGQFG6f/eyGY41HZ+Qx2kLIL5bDbH9pzvldHkGUp+XIdk7GvbtgqLA4v4ou94qUWkthmV2JT116hSEEPj444/xzjvGjwp2d3cvtVBL0Ol0GD9+PGbMmAFPT09MnToV48aNQ61atcr8XFXqSgrA9Idd3Iel7i8R5xOKdX8sabr7lpOTDbFlvfyQEUDeuSJ7Qnqyj9zV0M4ekiSZPD9T3G9dG83L1g6KCR8YTSe0BUBmOsQv/4XYXXglrJTuASb3m6+gm/wteQ8SYNp2a8o0FflAJHE+AY5XLiAnoF6VeLhSRa2jipqmPNPdjyn1Zuq8irok6kt4iIkpynOMqGp1UpH1dr97GkXMujtd8iQFpF4ld2sqs5zCLvP677++k4xboItURWy3FfldYur2b8r8LL0tAfc/Lylt+YReD2SkQmzZAFHUVbqIgxPwWPPC7t2tIHmq5XJuZcgXYIWAYtR/ID3W0nhe1fCBdxV1HlQephwn77cOTF1Hlrxf2VLHwKLxFXEMEOcToL/rou79yrnf/lZZHigxLJKfnw+7e+4vqAoOHz6Mr776Cnq9Ho8//jj69Olz389UtcSwOjLphN/EE+eK+uKsKEXzMrqi+oBxV5Sq+AQ8SyrP8t/3hKcanoQ86h42MQQse4yorir6Ipslj4EVxdJPUqyq2+XDHifvrX+pRz+5tfnEYfnBJQCg9gNSrxs+I42YCEW7iHLPy1SWPiZbum4tmRg+yiqq3iryQkxleah7DJVKJWJjY5GUlIS8vDyjcZX5HsNWrVqhVatWlTZ/ayXVD7nvjmDKgUeqH2LUZF9amabMr6IUzctWrS61yd/UuCuKNR/EiUxhyWNEdSXVDzHqSvYw66uoLEU1ewy7csYii86vum6X9/vOKW1bEkLIT9M8cQii6B5jQL41pPCpoY+K6li3PJeouHqrjvVvKpMSw6VLl+LSpUto3bo13NzczB0TWZHqunNV17iJyIo5OAIOjhVz7HJwhNLVrdj9jmQlStiWJEkCataBVLMORNBjd1oVVSpIDUt+QA2TFaKqxaTE8NixY1i6dCmcnJzuPzERURXFkxAioof3oK2KRFS1mZQYqtVqFBQU3H9CIiIieuQpJ30Ezyp67wxVERXZQm3luL+RpZiUGHbu3Bnz5s3D008/DXd3d6NxTZo0MUdcRERERFRNsYcGUfVjUmL422/yTcTffPON0XBJkrB06dKKj4qIiIiIiIgsxqTEcNmyZeaOg4iIiIiIiCqJSYkhIL9Q/syZM0hPT4eXlxeCg4OhVCrNGRsRERERERFZgEmJ4b///os5c+ZAo9HAy8sLaWlpsLGxweTJkxEQEGDuGImIiIiIqBS8p5MqgkmJ4apVq9CtWzc8++yz8ntqAPzwww+Ijo7Ge++9Z9YAiYiIiIiIyLwUpkyUlJSEnj17GpJCAOjRoweSkpLMFRcRERERERFZiEkthp6enjh16pTRqylOnz4NDw8PswVGRERERHQ/7EZJVDFMSgwHDhyIOXPmoHXr1lAXvmDz8OHDGDt2rLnjIyIiIiIiIjMzKTEMDQ3FnDlzsH//fmRkZKBWrVro168f/P39zR0fERERVQC2qhARUVlMfl2Fv78/XnjhBXPGQkRERERERJXApMQwJycHv/zyC5KSkpCXl2c0bvr06WYJjIiIiIiIiCzDpMRwwYIF0Ov1aNu2LWxtbc0dExEREREREVmQSYnhuXPnEB0dDZXK5J6nRESPLN6rRURERI8ak95jGBISgn///dfcsRAREREREVElMKkJcPTo0fj4448RFBQEd3d3o3F9+/Y1R1xERERERERkISYlht988w3S0tLg7e2N3Nxcw3BJkswWGBEREREREVmGSYnhvn378Omnn8LDw8Pc8RAREREREZGFmXSPoa+vL5RKpbljISIiIiIiokpgUothp06dMHfuXDz11FPF7jFs0qSJOeIiIiIiIiIiCzEpMfz9998ByPca3k2SJCxdurTioyIiIiIiIiKLMSkxXLZsmbnjICIiIiIiokpi0j2GRERERERE9OhiYkhERERERGTlmBgSERERERFZOSaGREREREREVs7kxPD27duIi4vD999/DwBIT09HWlqa2QIjIiIiIiIiyzApMTx16hTefPNN7N69G//73/8AANevX8cXX3xh1uCIiIiIiIjI/ExKDNesWYM333wT06ZNg1KpBAAEBQXh/PnzZg2OiIiIiIiIzM+kxDAlJQVNmzY1GqZSqaDT6cwSFBEREREREVmOSYlhQEAAjh49ajTs77//Ru3atc0RExERWQnlpI/g+X/LKjsMIiIiq6cyZaKXX34Zc+bMQcuWLaHRaPD555/j0KFDmDRpkrnjIyIiIiIiIjMzKTEMDg7GvHnzsHv3btjb20OtVuOjjz6Cl5eXueMjIiIiIiIiMzMpMQQAT09PPP/88+aMhYiIiIiIiCqBSYnhkiVLIElS8Q+rVPDy8kKbNm0QGBhY0bERERERERGRBZj08BlHR0fEx8dDCAFPT08IIXDw4EEoFAr8+++/mD59Onbt2mXuWImIiIiIiMgMTGoxvHbtGqZOnYqQkBDDsLNnz2Ljxo149913cfToUaxZswYRERFmC5SIiIiIiIjMw6QWw3PnzqFBgwZGw+rVq4fExEQAQPPmzZGWllbx0REREREREZHZmZQYBgYG4ptvvoFGowEAaDQabNy40XBfYXJyMpydnc0WJBEREREREZmPSV1J33jjDSxevBhDhw6Fs7MzsrKyUL9+fYwbNw4AkJWVhREjRpg1UCIiIiIiIjIPkxJDHx8f/N///R9SU1ORkZEBDw8PqNVqw/j69eubLUAiIiIiIiIyL5MSQ71eD0B+l6Gnp6dhmEJhUk9UIiIiIiIiqsJMSgwHDhxY4nClUgkPDw+0a9cO/fr1g729fYUGR0REREREROZnUmIYFRWF+Ph49OrVC15eXkhNTcUPP/yAVq1awd/fH9999x3WrFmDUaNGmTteIiIiIiIiqmAmJYY///wz5syZA0dHRwCAv78/6tevjylTpmDJkiWoXbs2Jk+ebNZAiYiIiIiIyDxMSgxzcnKQn59vSAwBID8/Hzk5OQAAd3d3w6ssymvdunU4dOgQVCoVfH19MXr0aDg5OQEAYmJisH37digUCkRFRaFFixYAgAsXLmDZsmXQaDRo2bIloqKiIEnSA82fiIiIiIjI2pn09JiIiAj83//9H2JjY3H06FFs27YNH374ISIiIgAAx44dg7+//wMF0KxZM8yfPx+ffPIJatSogZiYGADAlStXsG/fPixYsADTpk1DdHS04SE4X3zxBV577TUsXrwY169fx9GjRx9o3kRERERERGRii+HgwYPh5+eHffv2ISMjA+7u7njyySfRrVs3AEDjxo0xa9asBwqgefPmht+Dg4Px559/AgDi4+PRoUMH2NjYwMfHB35+fkhMTIS3tzdyc3MRHBwMAOjcuTPi4+PRsmXLB5o/ERERERGRtTMpMVQoFHjiiSfwxBNPlDje1ta2QoLZvn07OnToAABIT09HgwYNDOM8PT2Rnp4OpVIJLy8vw3AvLy+kp6dXyPyJiIiIiIiskUmJIQBkZmYiMTERt2/fhhDCMDwyMvK+n/3ggw+QmZlZbPiAAQPQpk0bAMDmzZuhVCrRqVMnADCax91KG16a2NhYxMbGAgBmz54NtVpdrs8/LJVKZfF50sNjvVUd6TY2AABPE+qD9VY9sd6qJ9Zb9cR6q55Yb9VTdas3kxLDAwcOYMmSJahRowYuX76MWrVq4fLlywgJCTEpMXz33XfLHL9z504cOnQIM2bMMDxExsvLC2lpaYZp0tPT4enpWWx4WloaPD09Sy27W7duhi6vAJCamnrfeCuSWq22+Dzp4bHeqg5dQQEA0/Zd1lv1xHqrnlhv1RPrrXpivVVPVbXeSns2jEkPn9m4cSNGjx6NuXPnwt7eHnPnzsXIkSNRt27dhw7s6NGj+P777zF58mTY2dkZhoeGhmLfvn0oKChAcnIyrl27hqCgIHh4eMDBwQFnz56FEAJxcXEIDQ196DiIiIiIiIislUkthqmpqQgLCzMaFhERgZEjR2LIkCEPFUB0dDS0Wi0++OADAECDBg0wcuRI1KpVC2FhYZgwYQIUCgWGDx8OhULOY0eMGIHly5dDo9GgRYsWfPAMERERERHRQzApMXR1dUVmZibc3d3h7e2Ns2fPwsXFxfD6iIexZMmSUsf16dMHffr0KTa8fv36mD9//kPPm4iIiIiIiExMDLt27YqEhAS0b98ePXr0wKxZsyBJEnr27Gnu+IiIiIiIiMjMTEoMn3vuOUM3zoiICDRu3Bh5eXkICAgwa3BERERERERkfvd9+Ixer8fLL7+MgsInAwLyE3aYFBIRERERET0a7psYKhQK+Pv74/bt25aIh4iIiIiIiCzMpK6k4eHhmDNnDp5++ml4eXkZ3jUIAE2aNDFbcERERERERGR+JiWGW7duBQB89913RsMlScLSpUsrPioiIiIiIiKyGJMSw2XLlpk7DiIiIiIiIqok973HsIhWq8Xp06exb98+AEBeXh7y8vLMFhgRERERERFZhkkthv/88w/mzJkDGxsbpKWloUOHDjh16hR27dqFt956y9wxEhERERERkRmZ1GL4xRdfoH///li0aBFUKjmXfOyxx5CQkGDW4IiIiIiIiMj8TEoMr1y5gk6dOhkNs7e3h0ajMUtQREREREREZDkmJYbe3t64cOGC0bDExET4+fmZJSgiIiIiIiKyHJPuMezfvz9mz56N7t27Q6vVIiYmBn/88Qdee+01c8dHREREREREZmZSi2Hr1q0xdepU3Lp1C4899hhSUlLw9ttvo3nz5uaOj4iIiIiIiMzMpBbDW7duoV69eqhXr5654yEiIiIiIiILMykxHD16NBo3bozw8HC0adMG9vb25o6LiIiIiIiILMSkrqTLly9Hq1atsHXrVowcORKLFi3CwYMHodPpzB0fERERERERmZlJLYaurq548skn8eSTTyI1NRV79uzBt99+i88++wzR0dHmjpGIiIiIiIjMyKQWw7tlZmYiMzMTt2/fhpOTkzliIiIiIiIiIgsyqcXwypUr2LNnD/bu3QuNRoOwsDBMmjQJQUFB5o6PiIiIiIiIzMykxPDdd99Fu3btMHLkSDRp0gSSJAEA9Ho9FIpyNzoSERERERFRFWJSYvjFF19Apboz6T///IOdO3di7969WLlypdmCIyIiIiIiIvMzKTFUqVS4desW9uzZg127diEpKQmNGjXCsGHDzBweERERERERmVuZiaFWq8XBgwexc+dOHDt2DH5+fujYsSNSUlLw1ltvwc3NzVJxEhERERERkZmUmRi++uqrUCgUiIiIQL9+/VCvXj0AwNatWy0SHBEREREREZlfmU+OqVOnDrKzs5GYmIjz588jKyvLUnERERERERGRhZTZYjhz5kykpKRg165d+PHHH7F69Wo0a9YM+fn50Ol0loqRiIiIiIiIzOi+D5/x9vZG37590bdvXyQkJGDXrl2QJAmTJk3C448/jsGDB1siTiIiIiIiIjITk55KWiQkJAQhISGIiorCgQMHEBcXZ664iIiIiIiIyELKlRgWsbW1RXh4OMLDwys6HiIiIiIiIrKwMh8+Q0RERERERI8+JoZERERERERWjokhERERERGRlWNiSEREREREZOWYGBIREREREVk5JoZERERERERWjokhERERERGRlWNiSEREREREZOWYGBIREREREVk5JoZERERERERWjokhERERERGRlWNiSEREREREZOWYGBIREREREVk5JoZERERERERWjokhERERERGRlWNiSEREREREZOWYGBIREREREVk5JoZERERERERWTlXZART54YcfsH79eqxatQqurq4AgJiYGGzfvh0KhQJRUVFo0aIFAODChQtYtmwZNBoNWrZsiaioKEiSVInRExERERERVV9VosUwNTUVf//9N9RqtWHYlStXsG/fPixYsADTpk1DdHQ09Ho9AOCLL77Aa6+9hsWLF+P69es4evRoJUVORERERERU/VWJxPCrr77CoEGDjFr94uPj0aFDB9jY2MDHxwd+fn5ITExERkYGcnNzERwcDEmS0LlzZ8THx1di9ERERERERNVbpXclPXjwIDw9PREYGGg0PD09HQ0aNDD87enpifT0dCiVSnh5eRmGe3l5IT09vdTyY2NjERsbCwCYPXu2UaukJahUKovPkx4e663qSLexAQB4mlAfrLfqifVWPbHeqifWW/XEequeqlu9WSQx/OCDD5CZmVls+IABAxATE4Pp06cXGyeEKLGs0oaXplu3bujWrZvh79TU1HJ9/mGp1WqLz5MeHuut6tAVFAAwbd9lvVVPrLfqifVWPbHeqifWW/VUVevN39+/xOEWSQzffffdEof/888/SE5OxqRJkwAAaWlpmDx5Mj7++GN4eXkhLS3NMG16ejo8PT2LDU9LS4Onp6d5F4CIiIiIiOgRVqn3GNauXRurVq3CsmXLsGzZMnh5eWHOnDlwd3dHaGgo9u3bh4KCAiQnJ+PatWsICgqCh4cHHBwccPbsWQghEBcXh9DQ0MpcDCIiIiIiomqt0u8xLE2tWrUQFhaGCRMmQKFQYPjw4VAo5Dx2xIgRWL58OTQaDVq0aIGWLVtWcrRERERERETVV5VKDJctW2b0d58+fdCnT59i09WvXx/z58+3VFhERERERESPtCqVGBIR3Us56aPKDoGIiIjokVcl3mNIRERERERElYeJIRERERERkZVjYkhERERERGTlmBgSERERERFZOSaGREREREREVo6JIRERERERkZVjYkhERERERGTlmBgSERERERFZOSaGREREREREVo6JIRERERERkZVjYkhERERERGTlmBgSERERERFZOUkIISo7CCIiIiIiIqo8bDE0sylTplR2CPQAWG/VE+utemK9VU+st+qJ9VY9sd6qp+pWb0wMiYiIiIiIrBwTQyIiIiIiIivHxNDMunXrVtkh0ANgvVVPrLfqifVWPbHeqifWW/XEequeqlu98eEzREREREREVo4thkRERERERFZOVdkBVDepqalYtmwZMjMzIUkSunXrhmeeeQZZWVlYuHAhUlJS4O3tjbfeegvOzs64ffs2FixYgMTERHTp0gXDhw83lDVz5kxkZGTA1tYWADB9+nS4ublV1qI90iqy3rRaLaKjo3Hq1ClIkoQBAwagffv2lbh0j66Kqrfc3FzMmDHDUG56ejo6deqEYcOGVdKSPdoqcn/bs2cPYmJiIEkSPDw8MHbsWLi6ulbi0j26KrLe9u3bh82bN0Ov16NVq1YYPHhwJS7Zo6289Xb8+HFs2LABWq0WKpUKL7/8Mpo0aQIAuHDhApYtWwaNRoOWLVsiKioKkiRV8hI+miqy3r755hvExcUhKysL69atq+Qle7RVVL3l5+djwYIFuHHjBhQKBVq3bo1BgwZV9uIBgsolPT1dnD9/XgghRE5Ojhg3bpy4fPmyWLdunYiJiRFCCBETEyPWrVsnhBAiNzdXnD59Wvz+++9i1apVRmW99957IjEx0aLxW6uKrLeNGzeKb775RgghhE6nEzdv3rTcgliZiqy3u/3nP/8RJ0+eNHv81qqi6k2r1Yrhw4cb9rF169aJjRs3WnZhrEhF1dutW7fEqFGjDPW2ZMkScfz4ccsujBUpb71duHBBpKWlCSGEuHTpkhg5cqShrClTpogzZ84IvV4vPvzwQ3H48GHLLowVqch6O3PmjEhPTxeDBw+27EJYoYqqt7y8PPH3338LIYQoKCgQ7777bpXY39iVtJw8PDxQr149AICDgwNq1qyJ9PR0xMfHIyIiAgAQERGB+Ph4AIC9vT1CQkIMrYJUOSqy3nbs2IFevXoBABQKBVsvzMgc+9u1a9dw69YtNGrUyPwLYKUqqt6EEBBCID8/H0II5OTkwNPT07ILY0Uqqt5u3LgBf39/w7GxWbNm+Ouvvyy4JNalvPVWt25dw35Uq1YtFBQUoKCgABkZGcjNzUVwcDAkSULnzp0Nn6GKV1H1BgDBwcHw8PCohKWwPhVVb3Z2doYWX5VKhbp16yItLa0SlsgYu5I+hOTkZFy8eBFBQUG4efOmYaf08PDArVu3TCpj+fLlUCgUaNeuHV544QV22bCAh6m37OxsAMDGjRtx6tQp+Pr64pVXXoG7u7u5w7Z6FbG/AcDevXsRFhbGfc1CHqbeVCoVXn31Vbz99tuws7NDjRo1MGLECEuEbfUept78/Pzw77//Ijk5GV5eXjhw4AC0Wq0lwrZ65a23v/76C3Xr1oWNjQ3S09Ph5eVlGOfl5YX09HSLxW7NHqbeqPJUVL1lZ2fj0KFDeOaZZywSd1nYYviA8vLyMH/+fAwbNgyOjo4PVMa4ceMwf/58vP/++0hISEBcXFwFR0n3eth60+l0SEtLQ8OGDTFnzhwEBwezP78FVMT+VmTv3r0IDw+voMioLA9bb1qtFlu3bsWcOXOwcuVK1K5dGzExMWaIlO72sPXm7OyMESNGYNGiRZgxYwZ8fHygVCrNECndrbz1dvnyZWzYsAGvvvoqALmFnizvYeuNKkdF1ZtOp8Onn36Kp59+Gr6+vuYK12RMDB+AVqvF/Pnz0alTJ7Rr1w4A4ObmhoyMDABARkaGSd0Li5qWHRwcEB4ejsTERPMFTRVSby4uLrCzs0Pbtm0BAO3bt8fFixfNG7iVq6j9DQCSkpKg1+sN3UDIfCqi3pKSkgDILVCSJCEsLAxnz541a9zWrqL2t9DQUHz00Uf48MMP4e/vjxo1apg1bmtX3npLS0vDJ598gjfeeAN+fn4A5BbCu7uypaWlseu2mVVEvZHlVWS9rVy5En5+fujRo4flFqAMTAzLSQiBFStWoGbNmujZs6dheGhoKHbt2gUA2LVrF9q0aVNmOTqdztDMrNVqcejQIdSqVct8gVu5iqo3SZLQunVrnDp1CgBw4sQJBAQEmC9wK1dR9VZk79696Nixo1lipTsqqt48PT1x5coVw7Hy+PHjqFmzpvkCt3IVub/dvHkTAJCVlYXff/8dkZGR5gmayl1v2dnZmD17NgYOHIiQkBDD9B4eHnBwcMDZs2chhEBcXBxCQ0MtuzBWpKLqjSyrIuvt22+/RU5OTpV6QjpfcF9OCQkJmDFjBmrXrm24R2ngwIFo0KABFi5ciNTUVKjVakyYMAHOzs4AgDfeeAM5OTnQarVwcnLC9OnToVar8d5770Gn00Gv16Np06YYOnQoFArm6uZQUfUWEBCAlJQULF26FNnZ2XB1dcXo0aOhVqsrc/EeWRVZbwAwZswYTJ06lcmFmVVkvW3duhW//vorlEol1Go13njjDbi4uFTm4j2yKrLeFi1ahEuXLgEA+vbtywsyZlTeevvf//6HLVu2GLVcFL0u6/z581i+fDk0Gg1atGiBV155hfdjm0lF1tv69euxZ88eZGRkwMPDA5GRkejXr19lLdojraLqTavV4vXXX0fNmjWhUsmPfHnqqafQtWvXSlmuIkwMiYiIiIiIrBybp4iIiIiIiKwcE0MiIiIiIiIrx8SQiIiIiIjIyjExJCIiIiIisnJMDImIiIiIiKwcE0MiIqoSJkyYgJMnT5p9Pps3b8aKFSvMPp+KdvLkSYwaNaqywyAiokeUqrIDICIi6/Dyyy8bftdoNFCpVIZ3t44cORILFiywSBx9+vSxyHweVr9+/bB48WKj91+VV1xcHDZu3IisrCzUrFkTEydOhJeXVwVGSUREjwomhkREZBHr1q0z/P7GG2/gtddeQ7NmzSoxokdbXl4ePvvsM0yZMgVNmzbFhQsXYGNjU9lhAQB0Oh2USmVlh0FERHdhYkhERFXC3cnipk2bcOXKFahUKhw8eBDe3t6YOHEi/vrrL/z888+wsbHBqFGj0Lx5cwBATk4OvvrqKxw5cgSSJOHxxx9Hv379DC2Sd9u0aROuX7+OcePGITk5GWPGjMHo0aOxceNGaDQa9OjRo9RWxWXLlsHOzg7Jyck4ffo0AgMDMXHiRGzZsgW7du2Cm5sbxo8fj7p16wIArly5glWrViEpKQmenp546aWXEBoaalRWSkoKTp8+jYCAAIwbNw5+fn547733AACTJk0CALz++utwc3MDAPz444/4/vvvoVAoMHDgQDz++OOlrlOFQgEfHx8oFAoEBQWVuf4zMzMxZswYfPbZZ3BxcQEAXLhwAR9++CFWrlwJlUqF7du348cff0RmZiaCgoIwcuRIeHt7AwBWr16NAwcOICcnB35+fhg2bBgaNWpkWOeXL1+GjY0NDh06hCFDhqBr165lxkNERJbFewyJiKhKOnToEDp37ozVq1ejbt26+PDDDyGEwIoVK/DCCy/g888/N0y7dOlSKJVKLF68GHPnzsWxY8ewbds2k+eVkJCATz/9FO+++y7++9//4sqVK6VOu3//fgwYMADR0dFQqVSYNm0a6tati+joaLRv3x5r164FAGi1WsyZMwfNmjXDqlWr8Morr2Dx4sW4evWqoay9e/fixRdfxOrVq+Hn54dvv/0WADBr1iwAwLx587Bu3Tp06NABgJy85eTkYMWKFRg1ahSio6ORlZVVYpwqlQqBgYFYuHBhqdPczd3dHY0bN8b+/fsNw+Li4tCxY0eoVCocOHAAMTExmDhxIlatWoWQkBB8+umnhmnr16+PuXPn4ssvv0R4eDgWLFgAjUZjGH/w4EG0b98eq1evRqdOne4bDxERWRYTQyIiqpJCQkLQokULKJVKtG/fHrdu3UKvXr2gUqnQsWNHpKSkIDs7G5mZmTh69CiGDRsGe3t7uLm5oUePHti3b5/J83rxxRdha2uLwMBA1KlTB5cuXSp12jZt2qBevXqwtbVF27ZtYWtri4iICCgUCnTo0AEXL14EAJw7dw55eXmGmJs0aYJWrVphz549hrLatWuHoKAgKJVKhIeHIykpqcw4lUol+vbtC5VKhVatWsHe3t4o0bzbl19+iTp16qBjx4744IMPDMnhN998Y0he7xUREYHdu3cDAPR6Pfbu3YvOnTsDAGJjY9G7d28EBARAqVSid+/eSEpKQkpKCgCgc+fOcHFxgVKpxLPPPgutVmsUW3BwMNq2bQuFQgFbW9syl5OIiCyPXUmJiKhKKuo6CQC2trZwdXU1dA0tSizy8vKQkZEBnU6HkSNHGqYXQpTrISvu7u6G3+3s7JCXl2fStLa2tsXiLPpsRkYG1Gq1UXdWb29vpKenP9B8ARgSr/t9Ji8vDzt27MCiRYvg6+uLrKwsfPDBB3j33Xdx9uxZPPfccyWWHxoaii+++AI3btzAtWvX4OjoaOiCmpKSgtWrVxsllUIIpKenw9vbGz/++CO2b9+O9PR0SJKE3Nxc3L592zAtH3pDRFS1MTEkIqJqzcvLCyqVCtHR0VXqgSYeHh5ITU2FXq83JIepqamoUaOG2ecthIBerzesj0GDBiE7OxvTpk2Dk5MTWrRoUeLnbG1tERYWht27d+Pq1auG1kIAUKvV6NOnT4ndQE+fPo3vv/8eM2bMQEBAABQKBaKioiCEMMvyERFRxWNXUiIiqtY8PDzQvHlzrF27Fjk5OdDr9bh+/TpOnTpVqXE1aNAA9vb2+OGHH6DVanHy5EkcOnQIHTt2NOnzbm5uuHHjxgPN28HBAS1atMCqVauQmZkJrVaLJk2a4MaNG1CpVNDpdKV+tnPnzti1axcOHjxolAR2794dW7ZsweXLlwHID/wpuh8xNzcXSqUSrq6u0Ov1+O9//4ucnJwHip2IiCoHWwyJiKjaGzNmDDZs2IAJEyYgNzcXvr6+eP755ys1JpVKhf/85z9YtWoVYmJi4OnpiTFjxqBmzZomff7FF1/EsmXLoNFoMHLkSKMuq6YYO3Ys1q1bZ3iyaVBQEGbPno3o6GgsX74c48aNK/FzISEhkCQJdevWhY+Pj2F427ZtkZeXh0WLFiE1NRWOjo5o2rQpwsLC0KJFC7Ro0QLjx4+HnZ0devToAbVaXa54iYiockmC/TyIiIjoLrNmzUJ4eDhfKUFEZEXYlZSIiIgMEhMTcfHiRcMrMoiIyDqwKykREREBkN8HGR8fj6ioKDg4OFR2OEREZEHsSkpERERERGTl2JWUiIiIiIjIyjExJCIiIiIisnJMDImIiIiIiKwcE0MiIiIiIiIrx8SQiIiIiIjIyjExJCIiIiIisnL/D09ph/TF089zAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.style.use('ggplot')\n", "fig, ax = plt.subplots(figsize=(15,5))\n", "ax.errorbar(monthlyreturn_ts.index, \n", " monthlyreturn_ts[('monthly_return_USD', 'mean')],\n", " yerr=monthlyreturn_ts[('monthly_return_USD', 'std')],\n", " marker ='.'\n", " )\n", "plt.xlabel('Time in month & year')\n", "plt.ylabel('Averagge montly return in USD')\n", "plt.title('Average Monthly Return in USD with Errorbars', fontsize=18)\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "fcf85c13", "metadata": {}, "source": [ "`fig.savefig` method can be used to save plots. We need to specify the name and extension for the image. If we do not specify the full path, the plot will be saved in the same folder as the notebook. " ] }, { "cell_type": "code", "execution_count": 35, "id": "cd3a8202", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4YAAAFUCAYAAAB4GiIAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABm8ElEQVR4nO3deXwM9/8H8Nfsbu472RwiCCKibuIIIRr0oi2qjlKkVFUdLfVFqdL+2jrqqKu0UupoS79f0bvVuOJqxV1HEESpIzdybnb38/tjkmXlsCG7Sezr+XiEZGb2M++Zz8zsvOfzmRlJCCFAREREREREVktR2QEQERERERFR5WJiSEREREREZOWYGBIREREREVk5JoZERERERERWjokhERERERGRlWNiSEREREREZOWYGBIR0X3NnDkTkiQhKSnJpOklScKwYcPMGpO14rp9eF26dEFgYKDZpn8UDBs2DJIkVXYYRGRBTAyJ6KFkZGTA3t4ekiRh/fr1lR1OtbBz505IkgRJkjBmzJgSp0lOToatrS0kSUKXLl0sFtfMmTORmZlpkfmVV1FyWvSjUCjg6emJrl274ocffniostesWYNFixZVTKDVVGBgYJnJT1GicO/Fgbi4ODz33HMIDAyEnZ0dfH19ERoaivHjx+PChQuG6ZKSkorVn5ubGxo2bIgBAwbgu+++g1arNdPS3Z+5t4F7t997f7p162a2eRMRmUJV2QEQUfW2YcMGaDQa1K1bF9HR0Rg8eHBlh1Rt2Nvb4+uvv8b8+fNhZ2dnNG7dunUQQkClstxheufOnZg1axaGDRsGd3d3i823vN5//33UrVsXWq0W58+fx8qVK/H8889j/fr1GDRo0AOVuWbNGiQlJeHNN9+s2GDNIDc3F0qlsrLDAAB89tlnGD16NOrVq4ehQ4eiVq1aSElJwYkTJ7B69Wp06tQJ9erVM/pM9+7dMWTIEABAVlYWLly4gJ9++gkbN25Eq1atEBMTg9q1a5s17q1bt0IIYTTMUttA0fZ7rxo1aph1vkRE98PEkIgeSnR0NB5//HE8//zzePPNN3H+/HnUr1+/UmIRQiA7OxvOzs6VMv/y6t27N7755ht8//336Nevn9G41atX45lnnsG2bdsqKbqq6+mnn0ZoaKjh7759+6JFixaYPXv2AyeG5qTT6ZCfnw9HR8cKKc/e3r5CynlYWq0W77zzDmrXro0jR47A1dXVaHxubi5yc3OLfS44OLjYBaS5c+di0aJFeOutt9CjRw8cOXLErBdFbG1tzVb2/dy7/ZqqrO2oIo99t2/fhouLy0OXU13mS0R3sCspET2ww4cP4+jRoxg6dCgGDRoEGxsbrF692jBep9OhZs2aaNWqVYmfX7lyJSRJwpYtWwzD8vPz8dFHH6Fx48awt7eHu7s7nn32WRw5csTos0XdMdesWYNly5bhscceg729PT755BMAwIEDBzBs2DAEBwfD0dERLi4u6NixI2JiYkqMZdeuXQgLC4ODgwP8/Pwwfvx4nDx5EpIkYebMmUbTCiHw2WefoXXr1oayH3/8cezYsaNc669Vq1Zo3ry50Toriv3kyZOIiooq9bNbtmxBx44d4ezsDGdnZ3Ts2BHff/99sekCAwPRpUsXJCQkoEePHnBxcYGbmxv69u2L69evG6YbNmwYZs2aBQCoW7euoXvbvcuen5+Pd955BwEBAbCzs0Pz5s3xyy+/lLmcGo0G3t7eCA8PL3H83LlzIUkSdu/eXWY5pWnevDnUajXOnTtXbNzBgwfRu3dvqNVq2NnZoWHDhvjwww+NuiwGBgZi165duHTpklHXvp07dxrGl9Sd9+5tsMiaNWsgSRJiY2PxwQcfoH79+rC3t8emTZuMpl+9ejUaN24MOzs71KlTB3PnzjV5eUu6x7Bo2P79+xEREQEnJyeo1WqMGDECWVlZJpddHqmpqcjMzESbNm2KJYUA4ODgAE9PT5PLe/PNNzFo0CCcOHEC3377bZnTFq3nojoCgIKCAjg7O0OSJBw9etQw/Pbt27CxscHo0aMNw+69Z/B+20CRq1evYuDAgfDw8ICTkxOefPJJnD171uRlNJWp21FJxz6tVos5c+YYhnt5eaF37974+++/jeZR1LV35syZ2LhxI1q3bg0HBweMHTvWaLqUlBQMGTIEXl5ecHJyQteuXYsdjwFg+fLleOKJJ1CzZk3Y2tqiRo0aGDx4cIn3JRdtr9u2bUN4eDicnZ3x7LPPAgDS09Px1ltvGZbZy8sLrVu3xrx58ypo7RJRadhiSEQPLDo6Gk5OTnjhhRfg5OSEHj164KuvvsL7778PhUIBpVKJQYMGYd68eThx4gSaNGli9Pm1a9dCrVajR48eAOQTu6eeegr79u3Dyy+/jDFjxuDmzZv44osv0LFjR8TFxRW70r5o0SKkpaXh1VdfhZ+fH2rVqgUAiImJQUJCAvr164c6deogLS0NX331Ffr06YMNGzbgpZdeMpSxZ88ePPHEE/Dw8MCUKVPg7u6OTZs2Ye/evSUu98svv4xvvvkGffv2RVRUFPLz87FhwwZ0794dmzdvxnPPPWfyOoyKisKECRNw5coVBAQEAAC+/PJL+Pj4oGfPniV+Zvny5XjjjTcQEhKC6dOnG04Se/XqhZUrV2LkyJFG0//777/o0qULevfujXnz5uHYsWNYuXIlbt26ha1btwIAXnvtNdy6dQsxMTFYuHAh1Go1AKBZs2ZGZQ0dOhQ2NjZ4++23odFosGjRIvTq1Qtnz54t9f40W1tbDB06FPPnz0dCQgJCQkKMxq9evRrBwcHo1KmTyevtbhkZGcjIyICPj4/R8F9++QW9e/dGUFAQJk6cCE9PT+zfvx8zZszA0aNH8d133wGQt6GpU6ciNTUVCxcuNHy+UaNGDxQPALz99tsoKCjAq6++CldXVzRs2BD5+fkAgBUrVuDGjRsYPnw43N3dsX79ekyePBkBAQFG22V5HT16FD179kRUVBReeukl7Ny5E9HR0VAoFPj8888fuNzS+Pr6wtnZGXFxcThz5gwaNmz40GWOGDECGzZswM8//1xmt/SuXbsCALZt22ZI2v/66y9kZ2dDoVBg27ZtaNGiBQD5HkitVovIyMhSyzNlG8jOzkbnzp3Rvn17fPTRR7h48SI+/fRTPP/88zhx4oTJ3Xtv3ryJ1NTUYsOdnJzg4OBgNKys7ai0Y9+gQYOwadMmdO/eHa+//jquX7+OZcuWISwsDLt370bLli2N5rFlyxYsXrwYr7/+OkaNGlUsyX/qqafg6emJmTNn4vr161i6dCk6d+6M/fv3Gx3TP/nkE7Rv3x7jxo2Dp6cnTpw4gVWrVmH79u34+++/4eXlZVTuwYMH8b///Q+vvvoqhg4dahj+4osvIi4uDq+99hqaN2+OnJwcJCQkYOfOnZg0aZJJ65iIHpAgInoAubm5wsPDQwwdOtQwbMuWLQKA+OWXXwzDTpw4IQCISZMmGX0+MTFRABBjx441DFuwYIEAIH777TejaW/evClq1aolIiIiDMN27NghAAgPDw9x48aNYvFlZWUVG5adnS2Cg4NFo0aNjIa3adNG2NnZifPnzxuGaTQa0aFDBwFAvPfee4bhmzdvFgDEypUrjcooKCgQrVu3FoGBgUKv1xeb992KYp83b55ITU0Vtra24sMPPxRCCJGTkyPc3NzExIkThRBCODk5GS13enq6cHJyEvXr1xc3b940Wkf16tUTzs7OIiMjwzC8Tp06AoDYuHGjUQyjR48WAMTp06cNw9577z0BQFy8eLFYzEXjevToYbR8Bw4cEADElClTjKYHYLRtnDlzpsTtYM+ePQKAmDNnTpnr7O4YYmNjRUpKirh27ZrYs2eP6NKlS7Gyc3Nzha+vr+jUqZMoKCgwKqdoO9uxY4dhWEREhKhTp06J861Tp45RHRQpqsfVq1cbhq1evVoAEMHBwSI7O7vE6WvUqGFUR9nZ2UKtVov27dvfdx0IUXzdFg2TJEns37/faPgzzzwjVCqVuH379n3LrVOnTqnrQAghhg4dWmz7+OSTTwQAoVQqRZs2bcS4cePE+vXrxbVr14p9/uLFiwKAeOONN0qdR1pamgAgWrVqdd9469evLzp06GD4e9asWUKtVounnnpKPP3004bhEyZMEJIkiZSUFMOwkuq7rG0gIiKixO107ty5JR6zSlK0/Zb2M2/ePMO0pmxHJR37tm7dKgCIfv36Ge2nx44dE0qlUoSHhxuGFdWHSqUSp06dKhZvUX337t3bqKyDBw8KSZLEk08+aTR9Scfc2NjYEtdb0TL/8ccfRsMzMzMFAPH6668XK4uIzI9dSYnogWzevBkZGRlGV3p79OgBHx8ffPnll4ZhjRs3RuvWrbFhwwbo9XrD8LVr1wKA0efXr1+PkJAQtG7dGqmpqYYfjUaD7t27Y8+ePcXuWRoyZEixliJAvvpeJCcnB2lpacjJyUFkZCROnz6NW7duAQBu3LiB+Ph4PP/880YPybCxscH48eOLlbt+/Xq4uLigV69eRjFmZmbi2WefRVJSUoldGkvj5eWF5557ztAdcfPmzbh58yZeeeWVEqf/448/kJ2djXHjxhld2Xd1dcXYsWORlZWF2NhYo8/4+/sXu4exqPUkMTHR5FgBYPz48UaPsG/Tpg1cXFzuu8zBwcGIiIjA2rVrjbpxRkdHQ6VSGW0H99OtWzd4e3ujRo0aCA8Px/79+zF58mR89NFHhmn++OMP3LhxA1FRUcjMzDSqq2eeeQYADK2l5vD666+Xek9hVFSU0cN9HB0d0b59+3JtNyUJCwtD+/btjYZFRkZCq9Wa/JqR8po4cSJ++OEHPPHEEzh16hQWL16MwYMHIyAgAMOHD0dOTk65yivapov2z7JERkYiPj7e0FV2+/btePzxx9GtWzfs3r0bBQUFAIAdO3agWbNmhlbwB6VQKDBu3LhiMQAoV90tW7YMf/zxR7Gfe/dRoOztqKRjX1FX+WnTphntp82aNUPPnj2xZ88epKSkGH2mR48eZbaO/+c//zEqq3Xr1ujevTtiY2ONuikXHXP1er2hVbR58+Zwc3PDX3/9Vazc5s2bF3sSq4ODA+zs7PDXX3+ZbZslotIxMSSiBxIdHQ1vb28EBAQgMTERiYmJSEpKQvfu3fHDDz8YdZUaMmQIrl69apSwrF+/3pA0Fjl9+jQSEhLg7e1d7OfLL7+ETqcr1gUrODi4xPiSk5MxcuRI+Pr6Gu638vb2xooVKwDA8EqGixcvAkCJ3eBKGnb69Gncvn0bvr6+xWIsuh/vxo0bJqzBO6KionDu3Dns2bMHX375Jdq2bYvHHnusxGmL4m3cuHGxcUXduu5+RQCAYk+FBGDo1pWWllauWEsqy9PT06RyRo4ciRs3buCnn34CID+RctOmTejZsyd8fX1NjqHoxPr777/Hm2++iYKCAmRkZBg9rOT06dMAgFdeeaVYPRV1ZS1vPZVHadslUHp9lLcuTC0XKH89l+Xed9s9++yz+OWXX3Dz5k0cP34cCxcuRK1atfDll1/irbfeKlfZRQlhSfcs3isyMhIFBQXYvXs3cnNz8eeffyIyMhKRkZHIysrCgQMHkJGRgWPHjpXZjdRU/v7+xR788yDrt23btujWrVuxn5KexFrWdlTSuIsXL0KhUJSY6BUdH4qOIabMAyi5S/Vjjz0GnU6HS5cuGYZt374dXbp0gZOTE9zd3Q37282bN5GRkWFS/La2tli0aBFOnDiBunXronHjxhg7diwfwkVkIbzHkIjK7eLFi9ixYweEEKWeVKxfv97w2PeXXnoJb7/9NtauXYsnnngCu3fvxoULFzBnzhyjzwgh0LRpUyxYsKDUeXt7exv9XdoT+p544gmcPn0a48aNQ5s2beDm5galUonVq1fj66+/NrReinseWX8/Qgh4e3vj66+/LnWae++lvJ8nn3wSNWvWxKxZs7Bjxw589tlnZc6/vMq696m85ZVWlinlvPDCCxg3bhyio6PRq1cvfPvtt8jOzsaIESPKFUPbtm0N95o+99xz8PX1xdSpU9GyZUuMGjXKKJ558+YZ7jW7l7+/v0nzK+0l32W9c6+sJ5Ca61UTD1vPDg4OZSY42dnZhulKm3/Tpk3RtGlTDBo0CA0aNMBXX32F5cuXm7zMx48fB1DyRZl7FSV727dvh42NDfLz8xEZGYkGDRrAy8sL27Ztw40bN6DX6yskMazI/chUZW1HpR37KnIepbl3PvHx8XjiiScQFBSE2bNno27dunBwcIAkSRgwYIBRb5H7zXfUqFF4/vnn8fPPP2PXrl3473//i6VLl6J///73fSgRET0cJoZEVG6rV6+GEAJffPFFie+7mz59OqKjow2JoVqtxjPPPIOYmBhkZWVh7dq1UCgUxR4u0aBBA6SkpCAyMhIKxYN3aDh+/DiOHTuGGTNmGJ60WWTVqlVGfxe1spw5c6ZYOSUNa9CgAc6ePYv27dtX2GsxlEolhgwZgo8//hgODg4YMGBAqdMWvQrk5MmThgdwFDl16hSAkluOTFFaAlRR7OzsMGTIECxevBhXr15FdHQ0atasiaeeeuqhyp04cSKio6Mxffp0vPTSS3B1dUWDBg0AyN3bTHlxeFnL7unpifT09GLD722Zre7q1q2LhIQEpKamltjt8vTp03BxcTGpS6a3tzfq16+Pw4cPIzU11eQW4aL9s+iBVGXx8fFB48aNsW3bNqhUKgQEBBguVHXp0gXbtm1DSkoKlEolOnfufN/yzL39W0L9+vXx+++/4/Tp08UeHFV0fCjpHYplOX36dLEuyqdPn4ZSqUSdOnUAAF9//TV0Oh1+/fVXo/Kzs7NLbC28nxo1amDEiBEYMWIEdDqd4YFfEydORJs2bcpdHhGZhl1Jiahc9Ho91qxZg6ZNm2LEiBHo27dvsZ+BAwfixIkTiI+PN3xu6NChyMnJwfr16/Hdd9+he/fuxVpshgwZguvXr5faYmhq17+iK/v3XtU+ceJEsddV+Pr6IjQ0FN9//73RiX5BQQE+/fTTYmUPGTIEer0eU6dOfagY7zVq1Ci89957WLFiBdzc3Eqdrnv37nBycsKSJUtw+/Ztw/Dbt29jyZIlcHZ2Rvfu3R8ohqJEt6QkqKK8+uqr0Ol0mDx5Mv78808MGzbsoVvQbGxs8M477yAtLQ2LFy8GILfC+vj4YPbs2SUuT25urtH6c3Z2RkZGRoktLsHBwUhISMC///5rGJafn49ly5Y9VNxVTa9evQCgxP3v999/x8mTJ/Hss88aLtrk5ORg165dJZZ17tw5nDp1ytCF2xSffvopNmzYgGbNmqF///4mfSYyMhLHjh1DTEyMUatgZGQk/vzzT/z6668IDQ01qWtqWdtAdVFUhx9//LHRcpw4cQI//PADwsPDTa6PInPnzjUq6/Dhw4iNjUXXrl0Nx4zSjrkfffRRia2FpcnJySl2X6pSqTQkueY8NhERWwyJqJy2bt2Ky5cvY/jw4aVO88ILL2DmzJmIjo42XN3t0aMHvLy8MHnyZNy6davEh42MHz8ef/zxByZNmoTt27cjMjISrq6u+Oeff7Bt2zbY29ub9K7ARo0aoXHjxpg7dy5ycnLQsGFDnD17FitXrkSTJk1w+PBho+k/+eQTdO/eHR06dMDo0aPh5uaGTZs2QaPRADBuSSh6RcXSpUtx+PBh9OzZE2q1GleuXMH+/fuRmJj4QC1JtWvXLvbOwJK4u7tj7ty5eOONN9CuXTvD++zWrFmDxMRErFy5sszEsixFrQKTJ0/GoEGDYG9vjyZNmpS7a2xZGjVqhPDwcKxfvx6SJJX6kJ3yevnll/H+++9jwYIFGDt2LNzc3LB27Vr06tULDRs2xCuvvIKgoCBkZmYiISEBmzdvRkxMjOFVB+3bt8dPP/2EMWPGoEOHDlAqlYiMjISPjw/GjBmDb7/9Ft26dcOoUaOg0Wiwbt26CnthfVURFRWFDRs24OOPP8aRI0fQtWtXODg44MiRI/jqq6/g5+eHjz/+2DB9Tk4OunTpgiZNmuCpp55CgwYNIIRAQkIC1q5di7y8PCxbtqxY6//Zs2exfv16Qxnnz5/HTz/9hFOnTqF169bYsmWLyS+3j4yMxJIlS3DmzBmjizWRkZHQaDQ4f/58iQ91KUlZ20BF+vXXX5GQkFBsuJOTE3r37v1QZXfv3h39+vXDt99+i4yMDPTs2dPwugp7e3vDhZPyuHTpEp588kk899xzuHbtGpYuXQoHBwej9wr27t0bCxcuxDPPPIORI0fC1tYWf/zxB44fP16uh/6cPXsWERER6N27N5o0aQIPDw+cPn0an332GerWrfvAr7QhIhNZ9BmoRFTt9e3bVwAQx48fL3O64OBg4ebmJnJycgzDxowZIwAIV1dXo+F3KygoEJ9++qkIDQ0Vjo6OwtHRUQQFBYmXXnpJ/P7774bpSnpVwN2SkpJE3759hVqtFg4ODqJNmzZi8+bNpb6SYdu2baJdu3bCzs5O+Pj4iHHjxok///yz1FcprF27VoSHhwsXFxdhZ2cn6tSpI3r37i2+/fbbMtfL3bHf/Xj60tz7uooimzdvFmFhYYZ1FBYWJmJiYopNV55XLQghxJw5c0TdunWFSqUyelVHWa+yKGkeKOGVCkXWrl0rAIjIyMgSx5emKIb4+PgSx69YsUIAEDNnzjQM+/vvv8WgQYOEv7+/sLGxET4+PiIsLEy8//77Ii0tzTBdVlaWeOWVV4SPj49QKBTFXmexZs0aERwcLGxsbERgYKCYM2eO2LZtW6mvq7j7s0XK2maLXg1gipLWbWnru6x4SpKXlyc+/vhj0bx5c+Ho6ChsbW1FvXr1xBtvvCGuXr1qNG1BQYH48ssvxYABA0RwcLBwcXERNjY2wt/fX/Tu3Vts377daPqi1yMU/UiSJFxcXESDBg1E//79xaZNm4q9WuR+MjIyhFKpFADEP//8YzSuZs2aJb4SQYiSX01R1jZQ2qssipbp7lfalOZ+r6uoWbOmYdoH3Y6EkOtl9uzZIiQkRNja2goPDw/x/PPPFztm3y/2om0yOTlZDB48WHh6egoHBwfx+OOPi4MHDxabPiYmRrRq1Uo4OjoKLy8v0b9/f3Hp0qVyHR9SU1PFm2++KZo3by7c3NyEvb29qF+/vhg/fnyx7Y+IKp4kRDXuM0FEZEb/+9//0LdvX3zzzTdl3vdH5bNp0yb0798fX3/9NQYOHFjZ4RAREREAJoZEZPWEEMjPzzd6FH1BQQG6dOmCAwcO4PLly/Dz86vECB8tEREROHXqFK5cuQI7O7vKDoeIiIjAewyJiJCfn486depg0KBBaNiwIdLS0rBx40YcP34ckydPZlJYAZKTk7Ft2zbs3r0bcXFx+Pjjj5kUEhERVSFsMSQiq6fT6fDqq69i165duHbtGoQQaNiwIUaOHInRo0dXdniPhJ07d+Lxxx+Hu7s7BgwYgMWLF8PGxqaywyIiIqJCTAyJiIiIiIisHN9jSEREREREZOWYGBIREREREVk5q3v4zNWrVy06P7VajdTUVIvOkx4e6616Yr1VT6y36on1Vj2x3qon1lv1VFXrzd/fv8ThbDEkIiIiIiKyckwMiYiIiIiIrBwTQyIiIiIiIivHxJCIiIiIiMjKMTEkIiIiIiKyckwMiYiIiIiIrBwTQyIiIiIiIivHxJCIiIiIiMjKMTEkIiIiIiKyckwMiYiIiIiIrBwTQyKq0nTz3oFu3juVHQYRERHRI42JIRERERERkZVjYkhERERERGTlmBgSERERERFZOSaGREREREREVo6JIRERERERkZVjYkhERERERGTlmBgSERERERFZOSaGREREREREVo6JIRERERERkZVjYkhERERERGTlVJUdwN30ej2mTJkCT09PTJkyBVlZWVi4cCFSUlLg7e2Nt956C87OzgCAmJgYbN++HQqFAlFRUWjRokXlBk9ERERERFRNVakWw19++QU1a9Y0/L1lyxY0bdoUixcvRtOmTbFlyxYAwJUrV7Bv3z4sWLAA06ZNQ3R0NPR6fSVFTUREREREVL1VmcQwLS0Nhw8fRteuXQ3D4uPjERERAQCIiIhAfHy8YXiHDh1gY2MDHx8f+Pn5ITExsVLiJiIiIiIiqu6qTGK4Zs0aDB48GJIkGYbdvHkTHh4eAAAPDw/cunULAJCeng4vLy/DdJ6enkhPT7dswERERERERI+IKnGP4aFDh+Dm5oZ69erh5MmT951eCGFy2bGxsYiNjQUAzJ49G2q1+oHjfBAqlcri86SHx3qrOtJtbAAAnibUB+utemK9VU+st+qJ9VY9sd6qp+pWb1UiMTxz5gwOHjyII0eOQKPRIDc3F4sXL4abmxsyMjLg4eGBjIwMuLq6AgC8vLyQlpZm+Hx6ejo8PT1LLLtbt27o1q2b4e/U1FTzLsw91Gq1xedJD4/1VnXoCgoAmLbvst6qJ9Zb9cR6q55Yb9UT6616qqr15u/vX+LwKtGV9KWXXsKKFSuwbNkyvPnmm2jSpAnGjRuH0NBQ7Nq1CwCwa9cutGnTBgAQGhqKffv2oaCgAMnJybh27RqCgoIqcxGIiIiIiIiqrSrRYliaXr16YeHChdi+fTvUajUmTJgAAKhVqxbCwsIwYcIEKBQKDB8+HApFlchxiYiIiIiIqp0qlxg2btwYjRs3BgC4uLhgxowZJU7Xp08f9OnTx5KhERERERERPZLYzEZERERERGTlmBgSERERERFZOSaGREREREREVo6JIRERERERkZVjYkhERERERGTlmBgSERERERFZOSaGREREREREVo6JIRERERERkZVjYkhERERERGTlmBgSERERERFZOSaGREREREREVo6JIRERERERkZVT3W+CK1euYNOmTUhISEBWVhacnZ0REhKCfv36ISAgwBIxEhERERERkRmV2WJ47do1TJs2DRqNBgMHDsR//vMfDBgwABqNBtOmTcPVq1ctFScRERERERGZSZkthjExMejUqRNGjBhhNDwyMhJffvkltmzZgtGjR5s1QCIiIiIiIjKvMlsMT58+jeeee67EcT179sTJkyfNEhQRERERERFZTpmJ4a1bt+Dt7V3iOLVajdu3b5slKCIiIiIiIrKc+z6VVJKkkj+oUJQ6joiIiIiIiKqPMu8xzM/Px3vvvVfiOCEENBqNWYIiIiIiIiIiyykzMRw1alSZH46MjKzQYIiIiIiIiMjyykwMu3TpYqEwiIiIiIiIqLKUmRheuHABKpUKtWvXBiA/jGbNmjW4fPkyGjRogCFDhsDe3t4igRIREREREZF5lPnwmTVr1iAzM9Pw94oVK3Dt2jV07doVly9fxvr1680dHxEREREREZlZmYnhv//+i0aNGgEAsrOzceTIEYwdOxZPPfUUxo8fj0OHDlkkSCIiIiIiIjKfMhNDnU4HlUrubXru3Dm4u7vD398fgPwew+zsbPNHSERERERERGZVZmJYq1Yt7N+/HwCwd+9eNG3a1DAuPT0djo6O5o2OiIiIiIiIzK7MxHDQoEH44osvEBUVhcOHD6NXr16Gcfv27UPDhg3NHR8RERERERGZWZlPJQ0JCcHy5ctx7do11KhRAw4ODoZxrVq1QocOHcweIBEREREREZlXmYmhXq+HnZ0dAgMDDX8rFHIjY9G9hkRERERERFS9lZkYDhw4sNgwhUIBLy8vdOzYEX379oWNjY3ZgiMiIiIiIiLzKzMxXLp0abFhOp0ON27cwObNm7Fp0yYMGjTIbMERERERERGR+ZWZGHp7e5c43M/PD7Vq1cK7777LxJCIiIiIiKiaK/OppGVxd3dHTk5ORcZCREREREREleCBE8MTJ07A19e3ImMhIiIiIiKiSlBmV9KNGzcWG6bT6ZCcnIwjR45g/PjxZguMiIiIiIiILKPMxDAtLa3YMIVCgYCAAPTt2xcBAQFmC4yIiIiIiIgso8zEcPTo0ZaKg4iIiIiIiCrJA99jSERERERERI8GJoZERERERERWjokhERERERGRlWNiSEREREREZOXKfPjM3Y4dO4akpCTk5eUZDe/fv3+FB0VERERERESWY1JiGB0djf3796Nx48aws7Mzd0xERERERERkQSYlhnv37sXcuXOhVqvNHQ8RERERERFZmEn3GLq4uMDJycncsRAREREREVElMKnFsGfPnli8eDF69+4NNzc3o3G+vr5mCYyIiIiIiIgsw6TEcNWqVQCAw4cPFxu3cePGio2IiIiIiIiILMqkxJDJHxERERER0aPL5NdVmFNqaiqWLVuGzMxMSJKEbt264ZlnnkFWVhYWLlyIlJQUeHt746233oKzszMAICYmBtu3b4dCoUBUVBRatGhRuQtBRERERERUTZWaGH744YeYNm0aAGDGjBmQJKnE6WbNmvXQQSiVSrz88suoV68ecnNzMWXKFDRr1gw7d+5E06ZN0atXL2zZsgVbtmzB4MGDceXKFezbtw8LFixARkYGPvjgA3z66adQKEx6lg4RERERERHdpdTEMCIiwvB7ZGSkWYPw8PCAh4cHAMDBwQE1a9ZEeno64uPjMXPmTEM8M2fOxODBgxEfH48OHTrAxsYGPj4+8PPzQ2JiIoKDg80aJxERERER0aOo1MQwPDzc8HuXLl0sEQsAIDk5GRcvXkRQUBBu3rxpSBg9PDxw69YtAEB6ejoaNGhg+IynpyfS09NLLC82NhaxsbEAgNmzZ1v8XYwqlYrvf6yGWG9VR7qNDQDA04T6YL1VT6y36on1Vj2x3qon1lv1VN3qrUrcY1gkLy8P8+fPx7Bhw+Do6FjqdEIIk8vs1q0bunXrZvg7NTX1oWIsL7VabfF50sNjvVUduoICAKbtu6y36on1Vj2x3qon1lv1xHqrnqpqvfn7+5c4vMrclKfVajF//nx06tQJ7dq1AwC4ubkhIyMDAJCRkQFXV1cAgJeXF9LS0gyfTU9Ph6enp+WDJiIiIiIiegRUicRQCIEVK1agZs2a6Nmzp2F4aGgodu3aBQDYtWsX2rRpYxi+b98+FBQUIDk5GdeuXUNQUFClxE5ERERERFTdVYmupGfOnEFcXBxq166NSZMmAQAGDhyIXr16YeHChdi+fTvUajUmTJgAAKhVqxbCwsIwYcIEKBQKDB8+nE8kJSIiIiIiekAmJYZarRY7d+5EUlIS8vLyjMaNGTPmoYMICQnBpk2bShw3Y8aMEof36dMHffr0eeh5ExERERERWTuTEsOlS5fi0qVLaN26Ndzc3MwdExEREREREVmQSYnhsWPHsHTpUjg5OZk7HiIiIiIiIrIwk27MU6vVKCh8ZDwRERERERE9WkxqMezcuTPmzZuHp59+Gu7u7kbjmjRpYo64iIiIiIiIyEJMSgx/++03AMA333xjNFySJCxdurTioyIiIiIiIiKLuW9iqNfrMWrUKISEhMDGxsYSMREREREREZEF3fceQ4VCgXnz5jEpJCIiIiIiekSZ9PCZRo0a4ezZs+aOhYiIiIiIiCqBSfcYent74+OPP0ZoaCi8vLwgSZJhXP/+/c0WHBEREREREZmfSYmhRqNBmzZtAADp6elmDYiIiIiIiIgsy6TEcPTo0eaOg4iIrJBu3jtIt7EB3pxV2aEQERFZNZMSwxs3bpQ6ztfXt8KCISIiIiIiIsszKTEcN25cqeM2btxYYcEQERERERGR5ZmUGN6b/GVmZuK7775Do0aNzBIUERERERERWY5Jr6u4l7u7O4YNG4avv/66ouMhIiIiIiIiC3ugxBAArl69ivz8/IqMhYiIiIiIiCqBSV1JZ8yYYfTuwvz8fFy+fBl9+/Y1W2BERERERERkGSYlhpGRkUZ/29vbo06dOqhRo4ZZgiIiIiIiIiLLMSkxtLOzQ1hYWLHhf/75J9q3b1/hQREREREREZHlmHSP4YoVK0ocvnLlygoNhoiIiIiIiCyvzBbDohfb6/V6JCcnQwhhNM7W1ta80REREREREZHZlZkY3v1i+7FjxxqNc3d3x4svvmieqIiIiIiIiMhiykwMi15s/95772HWrFkWCYiIiIiIiIgsy6R7DIuSwtTUVJw9e9asAREREREREZFlmfRU0tTUVHz66adISkoCAKxbtw5//vknjh49ilGjRpkzPiIiIiIiIjIzk1oMP//8c7Rs2RJfffUVVCo5l2zWrBmOHz9u1uCIiIiIiIjI/ExKDBMTE9GrVy8oFHcmd3R0RE5OjtkCIyIiIiIiIsswKTF0c3PD9evXjYZduXIFarXaLEERERERERGR5Zh0j+Gzzz6LOXPmoFevXtDr9dizZw9iYmLQq1cvM4dHRERERERE5mZSYhgZGQlnZ2ds27YNXl5eiIuLQ//+/dG2bVtzx0dEVOXo5r0DAFBO+qiSIyEiIiKqGPdNDPV6Pd5//31MmzaNiSAREREREdEj6L73GCoUCiQnJ0MIYYl4iIiIiIiIyMJMevhM37598cUXXyAlJQV6vd7oh4iIiIiIiKo3k+4xXLlyJQAgLi6u2LiNGzdWbERERERERERkUSYlhkuXLjV3HERERERE5cYHghFVDJMSQ29vb3PHQURERERERJXEpHsMiYiIiIiI6NHFxJCIiMgK6Oa9Y+hyR0SPFu7fVBGYGBIREREREVk5kxLDgwcPQqfTmTsWIiIiIiIiqgQmJYYbN27EyJEjER0djXPnzpk7JiIiIiJ6xLH7I1HVYtJTSefNm4ekpCTs3r0b8+fPh52dHTp37oxOnTrBx8fH3DESEREREVkl3bx3kG5jA7w5q7JDoUecSYkhAAQGBiIwMBCDBw/G33//jXXr1mHTpk0ICQlBt27d0LFjRygUvGWRiIiIiIioujE5MQSA69evY/fu3di9ezckSUL//v2hVqvx22+/4a+//sLbb79trjiJiIiIiIjITExKDH/77Tfs3r0b169fR1hYGMaMGYPg4GDD+Hbt2mHEiBFmC5LoUVV0b4Vy0keVHIl14PomIqKqgt9JVNWYlBgePXoUPXv2RJs2baBSFf+InZ0dWwuJzMTqvzhyc4DcbIjzCZDqh1R2NERERNWO1Z9LkElMuilwypQpCAsLKzEpLNK8efMKC4qovPhks4pTldal/ng8cPkCkHoD+nlToT9xuLJDokpQlbZJMh3rje4rJxtIS4Y4n1DqJI/0dpSbA6SnlLn8RJZUaqa3ZMkSSJJ03wLGjBlToQGVx9GjR7F69Wro9Xp07doVvXr1qrRYzIVXeExUXVuVcrKrZ9xmJm7fhPhtM8S2H+4M1OkglrwPfWgnSJ26A8FNIPGBV9Vfbg50mbkA94FHTzU8LvM713L0f+0CrlyUf58zGQh7HIpWHYC6wZBc3c0yz6pUv/r9O+QLnwD0c6cAEU9D0TQU8K8FeHqbdA5elVWldU2mKzUx9PPzs2Qc5abX6xEdHY3p06fDy8sLU6dORWhoKAICAio7tIqVfRvIzoL+3EkoGjQudTJTdkDd+28CudlQjJhY6pd0Re3Iljwg6P8+BFy+CEBA/8k0SBM+gKLBY2afb1lKWn4hBJB6A+LCGeDiWYhTR4FrlwEUfimGNIcU1AjwqwnJtybg6w/J3sGkkyuT6t+EaUR+HnArE9DkP/T8HoS4fQtiawzEjp8BjQZ4rAVw6gggBKCyAZq1gThxEOLALsDbD1J4d0gdukJy9zRtBvdZl+J8AsSZvyE1bFr2iWw1POE1VUUdJ8qaRggBZN2GOB4PXL4IPQTwyTRIL42CVC8YsLUDbGwBW1v595xsIC+nyqxvnvCU/fh8odNB/LbZ+KT3yT5QtGgH+NeCZO8ol2HCtmZyPBVVVm4OkJNVKce/h1GecwDNxPcBdY2HK+sh14E4dQRizeK7Bghg/w7o922X//bygVQ3GKgbDGSmAVpt2edBph6TTfk+rcDt8l4iPQXiQBzEnzuBfy/dGaHXAzt+hn7Hz/Lfdg7yvlKjFuBfG0hPhU6vhTjyJ6QmrSDZ2JZ/2UxcRxV1PlldVfRxKSU/F3jlrWqznkpNDF988UXD75mZmXB3dy82TWZmpjliMkliYiL8/Pzg6+sLAOjQoQPi4+OrXWJ49waIusHAtSsQFxKA8wkQp48B6SkAADF3KnS+/vKB0r8OpJq1gZp17lxVKmGHF3q9PDzrFsSZv+Urc6IweRo2FlLQY4CdvXwAUqlKLeeBmPHEWQgB/HsJ4ni8fGJ5/gwAIY/UFkAseBe64CaQ6jWEVK8hUC8YkpNLuU54MefzhwsyNwfIvg399p+AvFw5GbxwBrh9Ux5vawfcfUVUCODSOYiEY4AQRUsDOLsAWbcBAPq5U4EuT0EKLLyaWvTj7Gra+i6cRn/6OCQXF+DGNYjkq0By4f83rgE30w2T62f/B/ALgFSrLuDtB6h9IXn7yb+bcKJu0vounEYa9Dpw7hTEth8BTR6kNp0hPdsfkl9AsXKEJh/i8D6I3X9AxKyD+H4D0DQUuHIJyboCoOtzgIeXvLz5uUCe/COSrxmfqLZoJy+PrT1gZw9xMwP443sAAkKpAp5+AZLaD9Dr5C/twh+RfPVOOfPegdSzP6Q6QYX70p0f/aczgdxcSMPfghTUqMTWzfKsI/kY0UBOmAs0hf/nAwUF0K+YA+TlQuo1GFJQiLxM9nIcksqm5LICGxS2WGcB2dlAThb0F88YLRuefgGKmnXkpFxlA9jYAEoVcDMDyM+Fft92efsQAoZ9UBT+czNDbg38foMcQ1oyRHoKkJYiH9c0+cYLqi2AWLvkzrZfAv3cKZD6RkGKeAqSrV0ZU5asvOv7fvtSWdt/WRcZhBBATra8j+VmQ+ozBFK9EHnbsbUD7OwApcrQYlBhcZvgYcoRtzIg4rZCxP0OZKTeGaHXA7/+F/pf/yv/7ekNuHsZ70d9h0Gq3whwcAQcHQEHZ0g2NsViQr2G8vafd9e+fT7hzvfb/OlQTPy/csUusm5BnDoqn6wXxTR7MlCvIaTa9eRjn9oHUPsCXj4mX6gw6QR75lggNwfSy6MhBTYoDMh4Gv38aUBODqSXRsr7m04nH5d0ekCnlX/PTAfycqH/4wdI3r4QBQXyeir8Edf/NSxbxvQ3ID03EFKj5nI9uLlDUijvzNDMF770O3+B+OZzwNMHSLshHz9sbCGNnQFJqYRIOgtcOCt/bx7cY/icmDsVOkjyBSMbW/l4ZGMrb19pyXLZcybLdaRUyetGpwO0BfL/ResDhd9vzi7y+Y9N4fFNqZKnLUzY9POmQnohClLbTpDcPMq9nIbvt8GvA+mpEH/tAs6ekJe3XkOg+/NA7A93ln/0O5Bs7SCuXQau/gNx9R+Ik4eBfdvkeABg+Ufy5mFrJ3/3O7vI/wth/P3WuBUke4fC7SBfvuB7+a7W2fohkLxrAE7OgKMz4OgEODpDcnSWE/H8POhjf4Ck9oW4+/tGk2+0LennTQUin4UUUAeSnYN87Cr6/rmVKZdzLB5S/Yby+lUqAYUSUCohSZLJx5v7TSd0Oug/eBPIzYVi5NvlP3bp9UDqdYj4PUbLJr34CqS2EZBcXMtXXl4OxKH9dy58PsBxqbJIQoiyvocBAEOHDsVXX31VbHhUVBRWr15tlsDu588//8TRo0cxatQoAEBcXBzOnTuH4cOHl/m5q1evWiI8A7VajdTU1BLH6c+egPhkmrxDSxJgYwdo8uSRzi6Akytw4987H/D1l3fOu79w7R0AD7Wh5QmSJH/pavLl1ka93rRAlUpAaXNn/pIEPNYSUkAdwNUDcPOQkxE3D+g/nyd/kQ18DVKNACA/T/5cnvy//vJF4KeNcjkqFaRXJkBq2R5SCfeomnxlKjsLUteeQMp1ORksTJhRJwgICJQPnELIB56mrYHUZPngLgqX30N9Z70plUBkT/lKnI2tfOWt8AtGv/4zQJMH97HTcatW/VK7ctwbt9DrgKuXIS6ehTh2ADh2wPgDfjUh1W0on2jUD5GvACadkw/QhV8Kion/B9SqC6RcB67/C3HjX4hDe4F/LpRZdcV4qOUvDQAoCl+jubPO7uXqDvj4Q/KtAZGRBpw6emecTw05vvQU+Yu1JE4u8vpTKABJIf+v1d5Z35IENHhMTrIcneQTPwcniNs3gV//h7vPgqQ2neREy7+2YViZLU/X/4XYGyufiOZklRyfJMkn3IB8Ilmk6Ipr4YmC2UlS4ReiQv5fCHnfKeLoJA8HcOdChw7Iy3m4+SqV8vIrlEDWrYcr62G4uMnHJi9vSJ4+gJca0GggtqwvbBFWQer1MiQvbwiNRj6GFWggThwy3iYBue6CG0Nq3ApS45bQfzEfyMsxOmkQRev39k25dfLcCYjv1gAQ8rpo3QGSnT1EbnbhiXCOfGEk/a7jq629XG9CL8eo18sn4Xd/bXqq5ZNrRyf5pMrRCSIvD/hzhzxeoQAatZDne/umfLJ0+5Z80loWheJOvWXLF4cgSUCNWvKJoEpVmLCrgNxc4HThOlKqIA1+HVJoR0PLXJESezLk5QD/XIC4dN54XUsKoMtTUIR2AuoEQbKzK1aWjY0NdONnAhfOQGz/WT5e6bTAYy0gNWoGsXndnZPeV96EpFJB/PuPfKxMOCavi7KobOQkICf7zjBJMl7/JfH0gdSyHVCrnpzY1agFSaW6c6L+ypuQJAXEycMQJ48ASecMcRodD9w85L/vnv/dio5tPv7yCbaTK+DkDMnJBXB2gX7dcnm7ingKkr29nLzdzIDITJd/z0i13PGnLJICcHOXt2MbW+DcSXm4SgXp9alQNGtT7CMP0mIo9DqITV/KFwCbhkIx8m3o575T5gm/fvNaiKILCpDkWwgC68vrTauVjxH/XACu/nPnQ/61IdWsU3heozIkJOKfC8D503emCwyC5FdLviil1cpJ4Y1/5e/ge7m4AQGBcmIeUBfil01Afj6kF4ZC8qkh13NeLkReLpCfC3HlEhD3m3EZvjUhtYuQf3zkFltTEiP9lvUQP28qXAUS0Ki5vHxZtyGybsnHhxtX7xwnAMDeUf5uL0qib98EUm/cGe/qLh87srPlC6iVQaEwPkf18JLPJ2ztCi+Q2cuJcl4u8PdBeRpJAdSuJ6+H3Bz5+zE3p/iFxlr1INWuC3jXuOuidg3oF7wrHwOeGyjv8/9cgLh8QU6a88pYD+6eQEBdSAGBQEAgxE/fAhoNpOcHQbKzg7hxFUi+CnHjGpB8tfixTaGA9PwgKJ55saTSK4W/v3+Jw016KmlJuWNOTk6lvtC+pJhKOomPjY1FbGwsAGD27NlQq9Vmj+1uKpWq1HlmbbuA7KLlEAKq2vXg+HQf2DRsAqV/LRScOYGMd0bJG6+tHTzefA+2IU2hz74N7T8Xof3nArT/XED+oX0w7FpCQOnoBNvWYVC4uEFydYfC1Q36m5nI+mqpoUueU79hUHp4y1c18vMgcnOQf+IwtGdOGMqRks5CnD1h+OK6d42LZf9X5tV9AIBWC/H5XAiFAgq1L1R+NaEs+vH1x+2sWxC5OXDYFwulpxr67CyInCyI7Czoc7Khu3YZusKrN+K7LwEbW9i1bAfb0OGwax0Gpac3ACB1wj8Q2bfh9tZM2IY0BQDoc3OgPZ+AgjMnkLvzN+iKEhWdDvjje0PsJS1D5gcTABtbKH38oFT7QuHlA6W3r/y72ge3s29Dn3ULqnVLoU9LgfZ8gnzwAuQDcRFJglPfoXB+aWTxmfj6IjWwQbG44V8TaN4aAKBpG260DbhPnQOltx/0NzOgv5kOfWY68vbvRMHfhwzFKl3doKpV986SCUB7JQm6osRQkmDXsSuceg2CskYAFI5Ohs9qEv423uYK4xI6LfRpKdBd/xfZv/wXmr/iDJ9R1QiAKjDIqGWt4NL5O+tbCEg3rkJKS5HrNrfkRMehx4twHfFWseHpha0GniXtR2o10KQ5sjy9kP11YSuvpIBjzxfh2OslSA6OkOwcICkUxZdt1uLCZdNBaPKhOXkENz/6j+EE0XX8DNgGhchfXoVXOSWFAgXnE5D5wUTDdC6jp0BVIwAiL1fen/LykLdvBzQH4gzr26Zpa9g2bCJfldTpAJ0WmrMn7+xvAFQ168CmfkMYsnlJQsH5BGjPFp6kQYJNs9awa9EOUmEXS8nWDvmH9yM/butddRsJ22Zt5NaDvFx5/87LQUHCCWgNiaFcln2bcEjOLlA4uUJydoEu5TpuLZp1Zx2Mexc2tQIhtAWGFojcnb8ib/svd+bX6QnYh3UpDFuOPW//TuTvKjwpUijg1O8VOPd/pcR6Tz36F5CTBdfC49u9NAltjerN+aWR0KfeQP6Rv6DbFG20/+rnTIGyRk2I/Hzob2fKF0RKotcBh/fLx0dHJyicnCG5uUOn00J3V2JoU68BbBo8JidnCgmQFCg4exIFdz0ESeniBqWLq3zsSkuGPjvrTs8AANDrISWdhbJGLSh8akDR4DEo3D2hTUqE5tC+O+sx7HHYNm9TWF+5QH4eRH4eNKePQ1v0YAohoNTroLCxkU9m83IBbQF0GWl31oNOC/HVEoivlkDh5Q1VzTpQ1qwDVUAdZN/KgMjLhW3MWoisWyg4nwD91cuGREtycLxTjtADO36BfscvgEIJVWAQbIIbw6ZhE9g0bILM/Dxor12GYuYY6K5ehuToBIenesPx6T5Q1awj1+3hP4sf3wz1etf+aGMLl1fGQenlC33O3d8BWdD8fQTaxFN36uSxFrBr2Q6Sg5O8f9s7QJd6A1mrF8tlKZRQujhDt+cPeR0CgMoGSp8ahuRBzJ0qD1coYNPgMdj2fwV2LdtDaLXImD76zjFiymzDd64u+Rp0N64hN/YHaA7tN9SHdOMqpJQb0N++KScWKOE75cdvDK08Sk81FJ5qKIIbQZ+ajIKEvw3bgG3rDrBr0dbwNwDkHz0ATfyeO9tJuwjYteskt7go5IQn/6845O38tXAahaEeYGMLydYWko0dtEmJyHhvrGHZXEa+DaWrG3RpKdCnpxj+L7h47k78Wi3Ekg+gd3WHqnY9qOrUg6p2fahq18Ot/FyI3By4pl4rcb8FgPTpbwAAPP9vGfS52bg5/z1oDu2D47P94Tx0DCSlEumuboCrGzzbhZdYhqZzd2T89r/CuG3hETWm7G3J1g4eY6eVciy5Z7rXJt23LJehb8jfaUmJ0F5KhHbnL0bHFbFq/v3PgwA4PNUHLiMnFjtPvd/yA4AmvCsyfvnOsK94vPz6/dfBewuNpik2fuocw3ih08r7W9Zt5Py4Ebm/bZY/dNe2JBUma5Jt4bb07huGstwm/R9UAYGF34Hyd07ujl+Qv+v3wnIk2LYOg22TVvKzAnRaQKuD5uQRFJw8YohR5eYBpU8N+RiYnw9xOxMiLw/6zDSj45IiJwuqWnUhOTpC4SBfkCu4eA4Fx+MNZSnycoBTx6DPkFtbi52/rv5U/sXOHjaBQVB1eRqqesGAJOH28tmG7c158OuAXgdtUqL8E/u9fEHCUM4iQ9kKDy+oagRA2SZcPicQQj4vKTzvdm8bDlsL5yAPoszE8PXXXwcAaDQaw+9FsrKy0LFjR/NFdh9eXl5IS0sz/J2WlgYPj+JN/d26dUO3bt0Mf5fWemcuZbUYisDgO1c/bWyh7zsM2UVXjNLSAHUNKCbPMXRHuqWuARSV5e0v/7QOB5q1Be5qeRKDXoempCtP2342XJnKK6kpvkETo3KksTPkrpi52cDNTOBWBvS7fgPid8sfkCSgdQco2nQu7D4ndyEQyVchPp93576wJ3rLi5lyHZqU68CFs8VaLrJWLzYORlLILSh3XwCQJEhP94X22QHQAsjRw7A+dDa2gLuX8ToCAL/agF9tiIB6xsv2+hT5iltRN4uCAojdWyF23znBRp360Ll5yCeKl87LXePuuSCRH7dV7m4ZFgmpXjCkug3lB6fMnWJY/tz6jyGvlG2g1LiLqGsAAXUN9XY7oJ483McR8Kkp15unL3Di8J36H/gatPd2XTufcGf5VTYoCH8CN928gJxc+aeU+RnFpbAB/AMhHu8JHNh913YbhYKy5mdjC+n1qZDqh0BCYetqXi5Ewt8QK2Ybpslv2qbEfUVXIJ9slbXvitpBd/YllQp5jVsjXy8B2bnyz/2WDQACGxrtb9n1Q2BoJ9Cj8MqmHqgVZFROTkn7kr0TcORPufVEqYLumX7F9jlxPgGYP90wjf6FYcX2W+P1aAPdM/2Qe+809k7A/p2GcgrCnyxW/6WVVSx2b/9i66BYOW27ADt+vbMtdehafHuDAoj73dCKnxsYXOY+YKP2NXkfMCz/84OhSEuG/ttVwNE/C2esh06vl7tvurjKLWsubpCc3SBupkOsX27UQl90hb7owtq9262u18vQ37tswU2Bk0eM9jfdXdMoAOgTT985BhQeS0X9EOgA6O6e1/GDd+qt81Ml11sT45jEsPHFYpLOJ0DctX9Lzw2UP3vtCjTXrwA7f5WvqhfK/eW/cgtI/RBIoeGQateXe1+k3rhTTtFxUi8gLiRAe+EMtDt+vXPSWFR/WbeAJ/tA6tkfGnsHaIA79fjOJ5AA3Lp72F31eve2VtJ+BACiYXPjOnl2YLF9AA2aAH/8eKe7af0QKPQ6ubv8P+eByxegO7zfeJ217QzppVHQOzkjD0BR232p37kunoCLJ4SkBA7/WezYphDiTk+d7CyI7T9C7IktnJkCUo8XIT33EiBJKDySFDsua7s9b7QtAYDw8gOOHriznXR5pvj+JimBXb8Zjn/5zdtB4+Aij9QDyNcANWobls29bbi8bABQt6xtSQVEPA1o8lHw7yUUxP5crHUpY9pouYtr+BOQlEqjcUXH7pQzp6Bf8gFw7TKkQa8jv8vTyM/IMJqm1OP7/Y7bpk5TjrJK3C7bRwIAFDodxH9XQ8QWPhhNkiC1fxxSeHe5B1fhj7j6D8SCd+98v7VoD81d56wGhffolnluWhi3ovBetQdaB6Ysu60DRIv2wO8xJW9LOgHk5gG+AUbrKCuwoTze2Q5wdgcAiLCuQNzWu7btXsW37Xohcg+FonOJASMhSjgOGG2TNrbA8AnFyzqfAJw+ZthPMHyCvF/m58stpanX5fNXQ8ujBKnrs5BejIJeoYQGQFG6f/eyGY41HZ+Qx2kLIL5bDbH9pzvldHkGUp+XIdk7GvbtgqLA4v4ou94qUWkthmV2JT116hSEEPj444/xzjvGjwp2d3cvtVBL0Ol0GD9+PGbMmAFPT09MnToV48aNQ61atcr8XFXqSgrA9Idd3Iel7i8R5xOKdX8sabr7lpOTDbFlvfyQEUDeuSJ7Qnqyj9zV0M4ekiSZPD9T3G9dG83L1g6KCR8YTSe0BUBmOsQv/4XYXXglrJTuASb3m6+gm/wteQ8SYNp2a8o0FflAJHE+AY5XLiAnoF6VeLhSRa2jipqmPNPdjyn1Zuq8irok6kt4iIkpynOMqGp1UpH1dr97GkXMujtd8iQFpF4ld2sqs5zCLvP677++k4xboItURWy3FfldYur2b8r8LL0tAfc/Lylt+YReD2SkQmzZAFHUVbqIgxPwWPPC7t2tIHmq5XJuZcgXYIWAYtR/ID3W0nhe1fCBdxV1HlQephwn77cOTF1Hlrxf2VLHwKLxFXEMEOcToL/rou79yrnf/lZZHigxLJKfnw+7e+4vqAoOHz6Mr776Cnq9Ho8//jj69Olz389UtcSwOjLphN/EE+eK+uKsKEXzMrqi+oBxV5Sq+AQ8SyrP8t/3hKcanoQ86h42MQQse4yorir6Ipslj4EVxdJPUqyq2+XDHifvrX+pRz+5tfnEYfnBJQCg9gNSrxs+I42YCEW7iHLPy1SWPiZbum4tmRg+yiqq3iryQkxleah7DJVKJWJjY5GUlIS8vDyjcZX5HsNWrVqhVatWlTZ/ayXVD7nvjmDKgUeqH2LUZF9amabMr6IUzctWrS61yd/UuCuKNR/EiUxhyWNEdSXVDzHqSvYw66uoLEU1ewy7csYii86vum6X9/vOKW1bEkLIT9M8cQii6B5jQL41pPCpoY+K6li3PJeouHqrjvVvKpMSw6VLl+LSpUto3bo13NzczB0TWZHqunNV17iJyIo5OAIOjhVz7HJwhNLVrdj9jmQlStiWJEkCataBVLMORNBjd1oVVSpIDUt+QA2TFaKqxaTE8NixY1i6dCmcnJzuPzERURXFkxAioof3oK2KRFS1mZQYqtVqFBQU3H9CIiIieuQpJ30Ezyp67wxVERXZQm3luL+RpZiUGHbu3Bnz5s3D008/DXd3d6NxTZo0MUdcRERERFRNsYcGUfVjUmL422/yTcTffPON0XBJkrB06dKKj4qIiIiIiIgsxqTEcNmyZeaOg4iIiIiIiCqJSYkhIL9Q/syZM0hPT4eXlxeCg4OhVCrNGRsRERERERFZgEmJ4b///os5c+ZAo9HAy8sLaWlpsLGxweTJkxEQEGDuGImIiIiIqBS8p5MqgkmJ4apVq9CtWzc8++yz8ntqAPzwww+Ijo7Ge++9Z9YAiYiIiIiIyLwUpkyUlJSEnj17GpJCAOjRoweSkpLMFRcRERERERFZiEkthp6enjh16pTRqylOnz4NDw8PswVGRERERHQ/7EZJVDFMSgwHDhyIOXPmoHXr1lAXvmDz8OHDGDt2rLnjIyIiIiIiIjMzKTEMDQ3FnDlzsH//fmRkZKBWrVro168f/P39zR0fERERVQC2qhARUVlMfl2Fv78/XnjhBXPGQkRERERERJXApMQwJycHv/zyC5KSkpCXl2c0bvr06WYJjIiIiIiIiCzDpMRwwYIF0Ov1aNu2LWxtbc0dExEREREREVmQSYnhuXPnEB0dDZXK5J6nRESPLN6rRURERI8ak95jGBISgn///dfcsRAREREREVElMKkJcPTo0fj4448RFBQEd3d3o3F9+/Y1R1xERERERERkISYlht988w3S0tLg7e2N3Nxcw3BJkswWGBEREREREVmGSYnhvn378Omnn8LDw8Pc8RAREREREZGFmXSPoa+vL5RKpbljISIiIiIiokpgUothp06dMHfuXDz11FPF7jFs0qSJOeIiIiIiIiIiCzEpMfz9998ByPca3k2SJCxdurTioyIiIiIiIiKLMSkxXLZsmbnjICIiIiIiokpi0j2GRERERERE9OhiYkhERERERGTlmBgSERERERFZOSaGREREREREVs7kxPD27duIi4vD999/DwBIT09HWlqa2QIjIiIiIiIiyzApMTx16hTefPNN7N69G//73/8AANevX8cXX3xh1uCIiIiIiIjI/ExKDNesWYM333wT06ZNg1KpBAAEBQXh/PnzZg2OiIiIiIiIzM+kxDAlJQVNmzY1GqZSqaDT6cwSFBEREREREVmOSYlhQEAAjh49ajTs77//Ru3atc0RExERWQnlpI/g+X/LKjsMIiIiq6cyZaKXX34Zc+bMQcuWLaHRaPD555/j0KFDmDRpkrnjIyIiIiIiIjMzKTEMDg7GvHnzsHv3btjb20OtVuOjjz6Cl5eXueMjIiIiIiIiMzMpMQQAT09PPP/88+aMhYiIiIiIiCqBSYnhkiVLIElS8Q+rVPDy8kKbNm0QGBhY0bERERERERGRBZj08BlHR0fEx8dDCAFPT08IIXDw4EEoFAr8+++/mD59Onbt2mXuWImIiIiIiMgMTGoxvHbtGqZOnYqQkBDDsLNnz2Ljxo149913cfToUaxZswYRERFmC5SIiIiIiIjMw6QWw3PnzqFBgwZGw+rVq4fExEQAQPPmzZGWllbx0REREREREZHZmZQYBgYG4ptvvoFGowEAaDQabNy40XBfYXJyMpydnc0WJBEREREREZmPSV1J33jjDSxevBhDhw6Fs7MzsrKyUL9+fYwbNw4AkJWVhREjRpg1UCIiIiIiIjIPkxJDHx8f/N///R9SU1ORkZEBDw8PqNVqw/j69eubLUAiIiIiIiIyL5MSQ71eD0B+l6Gnp6dhmEJhUk9UIiIiIiIiqsJMSgwHDhxY4nClUgkPDw+0a9cO/fr1g729fYUGR0REREREROZnUmIYFRWF+Ph49OrVC15eXkhNTcUPP/yAVq1awd/fH9999x3WrFmDUaNGmTteIiIiIiIiqmAmJYY///wz5syZA0dHRwCAv78/6tevjylTpmDJkiWoXbs2Jk+ebNZAiYiIiIiIyDxMSgxzcnKQn59vSAwBID8/Hzk5OQAAd3d3w6ssymvdunU4dOgQVCoVfH19MXr0aDg5OQEAYmJisH37digUCkRFRaFFixYAgAsXLmDZsmXQaDRo2bIloqKiIEnSA82fiIiIiIjI2pn09JiIiAj83//9H2JjY3H06FFs27YNH374ISIiIgAAx44dg7+//wMF0KxZM8yfPx+ffPIJatSogZiYGADAlStXsG/fPixYsADTpk1DdHS04SE4X3zxBV577TUsXrwY169fx9GjRx9o3kRERERERGRii+HgwYPh5+eHffv2ISMjA+7u7njyySfRrVs3AEDjxo0xa9asBwqgefPmht+Dg4Px559/AgDi4+PRoUMH2NjYwMfHB35+fkhMTIS3tzdyc3MRHBwMAOjcuTPi4+PRsmXLB5o/ERERERGRtTMpMVQoFHjiiSfwxBNPlDje1ta2QoLZvn07OnToAABIT09HgwYNDOM8PT2Rnp4OpVIJLy8vw3AvLy+kp6dXyPyJiIiIiIiskUmJIQBkZmYiMTERt2/fhhDCMDwyMvK+n/3ggw+QmZlZbPiAAQPQpk0bAMDmzZuhVCrRqVMnADCax91KG16a2NhYxMbGAgBmz54NtVpdrs8/LJVKZfF50sNjvVUd6TY2AABPE+qD9VY9sd6qJ9Zb9cR6q55Yb9VTdas3kxLDAwcOYMmSJahRowYuX76MWrVq4fLlywgJCTEpMXz33XfLHL9z504cOnQIM2bMMDxExsvLC2lpaYZp0tPT4enpWWx4WloaPD09Sy27W7duhi6vAJCamnrfeCuSWq22+Dzp4bHeqg5dQQEA0/Zd1lv1xHqrnlhv1RPrrXpivVVPVbXeSns2jEkPn9m4cSNGjx6NuXPnwt7eHnPnzsXIkSNRt27dhw7s6NGj+P777zF58mTY2dkZhoeGhmLfvn0oKChAcnIyrl27hqCgIHh4eMDBwQFnz56FEAJxcXEIDQ196DiIiIiIiIislUkthqmpqQgLCzMaFhERgZEjR2LIkCEPFUB0dDS0Wi0++OADAECDBg0wcuRI1KpVC2FhYZgwYQIUCgWGDx8OhULOY0eMGIHly5dDo9GgRYsWfPAMERERERHRQzApMXR1dUVmZibc3d3h7e2Ns2fPwsXFxfD6iIexZMmSUsf16dMHffr0KTa8fv36mD9//kPPm4iIiIiIiExMDLt27YqEhAS0b98ePXr0wKxZsyBJEnr27Gnu+IiIiIiIiMjMTEoMn3vuOUM3zoiICDRu3Bh5eXkICAgwa3BERERERERkfvd9+Ixer8fLL7+MgsInAwLyE3aYFBIRERERET0a7psYKhQK+Pv74/bt25aIh4iIiIiIiCzMpK6k4eHhmDNnDp5++ml4eXkZ3jUIAE2aNDFbcERERERERGR+JiWGW7duBQB89913RsMlScLSpUsrPioiIiIiIiKyGJMSw2XLlpk7DiIiIiIiIqok973HsIhWq8Xp06exb98+AEBeXh7y8vLMFhgRERERERFZhkkthv/88w/mzJkDGxsbpKWloUOHDjh16hR27dqFt956y9wxEhERERERkRmZ1GL4xRdfoH///li0aBFUKjmXfOyxx5CQkGDW4IiIiIiIiMj8TEoMr1y5gk6dOhkNs7e3h0ajMUtQREREREREZDkmJYbe3t64cOGC0bDExET4+fmZJSgiIiIiIiKyHJPuMezfvz9mz56N7t27Q6vVIiYmBn/88Qdee+01c8dHREREREREZmZSi2Hr1q0xdepU3Lp1C4899hhSUlLw9ttvo3nz5uaOj4iIiIiIiMzMpBbDW7duoV69eqhXr5654yEiIiIiIiILMykxHD16NBo3bozw8HC0adMG9vb25o6LiIiIiIiILMSkrqTLly9Hq1atsHXrVowcORKLFi3CwYMHodPpzB0fERERERERmZlJLYaurq548skn8eSTTyI1NRV79uzBt99+i88++wzR0dHmjpGIiIiIiIjMyKQWw7tlZmYiMzMTt2/fhpOTkzliIiIiIiIiIgsyqcXwypUr2LNnD/bu3QuNRoOwsDBMmjQJQUFB5o6PiIiIiIiIzMykxPDdd99Fu3btMHLkSDRp0gSSJAEA9Ho9FIpyNzoSERERERFRFWJSYvjFF19Apboz6T///IOdO3di7969WLlypdmCIyIiIiIiIvMzKTFUqVS4desW9uzZg127diEpKQmNGjXCsGHDzBweERERERERmVuZiaFWq8XBgwexc+dOHDt2DH5+fujYsSNSUlLw1ltvwc3NzVJxEhERERERkZmUmRi++uqrUCgUiIiIQL9+/VCvXj0AwNatWy0SHBEREREREZlfmU+OqVOnDrKzs5GYmIjz588jKyvLUnERERERERGRhZTZYjhz5kykpKRg165d+PHHH7F69Wo0a9YM+fn50Ol0loqRiIiIiIiIzOi+D5/x9vZG37590bdvXyQkJGDXrl2QJAmTJk3C448/jsGDB1siTiIiIiIiIjITk55KWiQkJAQhISGIiorCgQMHEBcXZ664iIiIiIiIyELKlRgWsbW1RXh4OMLDwys6HiIiIiIiIrKwMh8+Q0RERERERI8+JoZERERERERWjokhERERERGRlWNiSEREREREZOWYGBIREREREVk5JoZERERERERWjokhERERERGRlWNiSEREREREZOWYGBIREREREVk5JoZERERERERWjokhERERERGRlWNiSEREREREZOWYGBIREREREVk5JoZERERERERWjokhERERERGRlWNiSEREREREZOWYGBIREREREVk5JoZERERERERWTlXZART54YcfsH79eqxatQqurq4AgJiYGGzfvh0KhQJRUVFo0aIFAODChQtYtmwZNBoNWrZsiaioKEiSVInRExERERERVV9VosUwNTUVf//9N9RqtWHYlStXsG/fPixYsADTpk1DdHQ09Ho9AOCLL77Aa6+9hsWLF+P69es4evRoJUVORERERERU/VWJxPCrr77CoEGDjFr94uPj0aFDB9jY2MDHxwd+fn5ITExERkYGcnNzERwcDEmS0LlzZ8THx1di9ERERERERNVbpXclPXjwIDw9PREYGGg0PD09HQ0aNDD87enpifT0dCiVSnh5eRmGe3l5IT09vdTyY2NjERsbCwCYPXu2UaukJahUKovPkx4e663qSLexAQB4mlAfrLfqifVWPbHeqifWW/XEequeqlu9WSQx/OCDD5CZmVls+IABAxATE4Pp06cXGyeEKLGs0oaXplu3bujWrZvh79TU1HJ9/mGp1WqLz5MeHuut6tAVFAAwbd9lvVVPrLfqifVWPbHeqifWW/VUVevN39+/xOEWSQzffffdEof/888/SE5OxqRJkwAAaWlpmDx5Mj7++GN4eXkhLS3NMG16ejo8PT2LDU9LS4Onp6d5F4CIiIiIiOgRVqn3GNauXRurVq3CsmXLsGzZMnh5eWHOnDlwd3dHaGgo9u3bh4KCAiQnJ+PatWsICgqCh4cHHBwccPbsWQghEBcXh9DQ0MpcDCIiIiIiomqt0u8xLE2tWrUQFhaGCRMmQKFQYPjw4VAo5Dx2xIgRWL58OTQaDVq0aIGWLVtWcrRERERERETVV5VKDJctW2b0d58+fdCnT59i09WvXx/z58+3VFhERERERESPtCqVGBIR3Us56aPKDoGIiIjokVcl3mNIRERERERElYeJIRERERERkZVjYkhERERERGTlmBgSERERERFZOSaGREREREREVo6JIRERERERkZVjYkhERERERGTlmBgSERERERFZOSaGREREREREVo6JIRERERERkZVjYkhERERERGTlmBgSERERERFZOUkIISo7CCIiIiIiIqo8bDE0sylTplR2CPQAWG/VE+utemK9VU+st+qJ9VY9sd6qp+pWb0wMiYiIiIiIrBwTQyIiIiIiIivHxNDMunXrVtkh0ANgvVVPrLfqifVWPbHeqifWW/XEequeqlu98eEzREREREREVo4thkRERERERFZOVdkBVDepqalYtmwZMjMzIUkSunXrhmeeeQZZWVlYuHAhUlJS4O3tjbfeegvOzs64ffs2FixYgMTERHTp0gXDhw83lDVz5kxkZGTA1tYWADB9+nS4ublV1qI90iqy3rRaLaKjo3Hq1ClIkoQBAwagffv2lbh0j66Kqrfc3FzMmDHDUG56ejo6deqEYcOGVdKSPdoqcn/bs2cPYmJiIEkSPDw8MHbsWLi6ulbi0j26KrLe9u3bh82bN0Ov16NVq1YYPHhwJS7Zo6289Xb8+HFs2LABWq0WKpUKL7/8Mpo0aQIAuHDhApYtWwaNRoOWLVsiKioKkiRV8hI+miqy3r755hvExcUhKysL69atq+Qle7RVVL3l5+djwYIFuHHjBhQKBVq3bo1BgwZV9uIBgsolPT1dnD9/XgghRE5Ojhg3bpy4fPmyWLdunYiJiRFCCBETEyPWrVsnhBAiNzdXnD59Wvz+++9i1apVRmW99957IjEx0aLxW6uKrLeNGzeKb775RgghhE6nEzdv3rTcgliZiqy3u/3nP/8RJ0+eNHv81qqi6k2r1Yrhw4cb9rF169aJjRs3WnZhrEhF1dutW7fEqFGjDPW2ZMkScfz4ccsujBUpb71duHBBpKWlCSGEuHTpkhg5cqShrClTpogzZ84IvV4vPvzwQ3H48GHLLowVqch6O3PmjEhPTxeDBw+27EJYoYqqt7y8PPH3338LIYQoKCgQ7777bpXY39iVtJw8PDxQr149AICDgwNq1qyJ9PR0xMfHIyIiAgAQERGB+Ph4AIC9vT1CQkIMrYJUOSqy3nbs2IFevXoBABQKBVsvzMgc+9u1a9dw69YtNGrUyPwLYKUqqt6EEBBCID8/H0II5OTkwNPT07ILY0Uqqt5u3LgBf39/w7GxWbNm+Ouvvyy4JNalvPVWt25dw35Uq1YtFBQUoKCgABkZGcjNzUVwcDAkSULnzp0Nn6GKV1H1BgDBwcHw8PCohKWwPhVVb3Z2doYWX5VKhbp16yItLa0SlsgYu5I+hOTkZFy8eBFBQUG4efOmYaf08PDArVu3TCpj+fLlUCgUaNeuHV544QV22bCAh6m37OxsAMDGjRtx6tQp+Pr64pVXXoG7u7u5w7Z6FbG/AcDevXsRFhbGfc1CHqbeVCoVXn31Vbz99tuws7NDjRo1MGLECEuEbfUept78/Pzw77//Ijk5GV5eXjhw4AC0Wq0lwrZ65a23v/76C3Xr1oWNjQ3S09Ph5eVlGOfl5YX09HSLxW7NHqbeqPJUVL1lZ2fj0KFDeOaZZywSd1nYYviA8vLyMH/+fAwbNgyOjo4PVMa4ceMwf/58vP/++0hISEBcXFwFR0n3eth60+l0SEtLQ8OGDTFnzhwEBwezP78FVMT+VmTv3r0IDw+voMioLA9bb1qtFlu3bsWcOXOwcuVK1K5dGzExMWaIlO72sPXm7OyMESNGYNGiRZgxYwZ8fHygVCrNECndrbz1dvnyZWzYsAGvvvoqALmFnizvYeuNKkdF1ZtOp8Onn36Kp59+Gr6+vuYK12RMDB+AVqvF/Pnz0alTJ7Rr1w4A4ObmhoyMDABARkaGSd0Li5qWHRwcEB4ejsTERPMFTRVSby4uLrCzs0Pbtm0BAO3bt8fFixfNG7iVq6j9DQCSkpKg1+sN3UDIfCqi3pKSkgDILVCSJCEsLAxnz541a9zWrqL2t9DQUHz00Uf48MMP4e/vjxo1apg1bmtX3npLS0vDJ598gjfeeAN+fn4A5BbCu7uypaWlseu2mVVEvZHlVWS9rVy5En5+fujRo4flFqAMTAzLSQiBFStWoGbNmujZs6dheGhoKHbt2gUA2LVrF9q0aVNmOTqdztDMrNVqcejQIdSqVct8gVu5iqo3SZLQunVrnDp1CgBw4sQJBAQEmC9wK1dR9VZk79696Nixo1lipTsqqt48PT1x5coVw7Hy+PHjqFmzpvkCt3IVub/dvHkTAJCVlYXff/8dkZGR5gmayl1v2dnZmD17NgYOHIiQkBDD9B4eHnBwcMDZs2chhEBcXBxCQ0MtuzBWpKLqjSyrIuvt22+/RU5OTpV6QjpfcF9OCQkJmDFjBmrXrm24R2ngwIFo0KABFi5ciNTUVKjVakyYMAHOzs4AgDfeeAM5OTnQarVwcnLC9OnToVar8d5770Gn00Gv16Np06YYOnQoFArm6uZQUfUWEBCAlJQULF26FNnZ2XB1dcXo0aOhVqsrc/EeWRVZbwAwZswYTJ06lcmFmVVkvW3duhW//vorlEol1Go13njjDbi4uFTm4j2yKrLeFi1ahEuXLgEA+vbtywsyZlTeevvf//6HLVu2GLVcFL0u6/z581i+fDk0Gg1atGiBV155hfdjm0lF1tv69euxZ88eZGRkwMPDA5GRkejXr19lLdojraLqTavV4vXXX0fNmjWhUsmPfHnqqafQtWvXSlmuIkwMiYiIiIiIrBybp4iIiIiIiKwcE0MiIiIiIiIrx8SQiIiIiIjIyjExJCIiIiIisnJMDImIiIiIiKwcE0MiIqoSJkyYgJMnT5p9Pps3b8aKFSvMPp+KdvLkSYwaNaqywyAiokeUqrIDICIi6/Dyyy8bftdoNFCpVIZ3t44cORILFiywSBx9+vSxyHweVr9+/bB48WKj91+VV1xcHDZu3IisrCzUrFkTEydOhJeXVwVGSUREjwomhkREZBHr1q0z/P7GG2/gtddeQ7NmzSoxokdbXl4ePvvsM0yZMgVNmzbFhQsXYGNjU9lhAQB0Oh2USmVlh0FERHdhYkhERFXC3cnipk2bcOXKFahUKhw8eBDe3t6YOHEi/vrrL/z888+wsbHBqFGj0Lx5cwBATk4OvvrqKxw5cgSSJOHxxx9Hv379DC2Sd9u0aROuX7+OcePGITk5GWPGjMHo0aOxceNGaDQa9OjRo9RWxWXLlsHOzg7Jyck4ffo0AgMDMXHiRGzZsgW7du2Cm5sbxo8fj7p16wIArly5glWrViEpKQmenp546aWXEBoaalRWSkoKTp8+jYCAAIwbNw5+fn547733AACTJk0CALz++utwc3MDAPz444/4/vvvoVAoMHDgQDz++OOlrlOFQgEfHx8oFAoEBQWVuf4zMzMxZswYfPbZZ3BxcQEAXLhwAR9++CFWrlwJlUqF7du348cff0RmZiaCgoIwcuRIeHt7AwBWr16NAwcOICcnB35+fhg2bBgaNWpkWOeXL1+GjY0NDh06hCFDhqBr165lxkNERJbFewyJiKhKOnToEDp37ozVq1ejbt26+PDDDyGEwIoVK/DCCy/g888/N0y7dOlSKJVKLF68GHPnzsWxY8ewbds2k+eVkJCATz/9FO+++y7++9//4sqVK6VOu3//fgwYMADR0dFQqVSYNm0a6tati+joaLRv3x5r164FAGi1WsyZMwfNmjXDqlWr8Morr2Dx4sW4evWqoay9e/fixRdfxOrVq+Hn54dvv/0WADBr1iwAwLx587Bu3Tp06NABgJy85eTkYMWKFRg1ahSio6ORlZVVYpwqlQqBgYFYuHBhqdPczd3dHY0bN8b+/fsNw+Li4tCxY0eoVCocOHAAMTExmDhxIlatWoWQkBB8+umnhmnr16+PuXPn4ssvv0R4eDgWLFgAjUZjGH/w4EG0b98eq1evRqdOne4bDxERWRYTQyIiqpJCQkLQokULKJVKtG/fHrdu3UKvXr2gUqnQsWNHpKSkIDs7G5mZmTh69CiGDRsGe3t7uLm5oUePHti3b5/J83rxxRdha2uLwMBA1KlTB5cuXSp12jZt2qBevXqwtbVF27ZtYWtri4iICCgUCnTo0AEXL14EAJw7dw55eXmGmJs0aYJWrVphz549hrLatWuHoKAgKJVKhIeHIykpqcw4lUol+vbtC5VKhVatWsHe3t4o0bzbl19+iTp16qBjx4744IMPDMnhN998Y0he7xUREYHdu3cDAPR6Pfbu3YvOnTsDAGJjY9G7d28EBARAqVSid+/eSEpKQkpKCgCgc+fOcHFxgVKpxLPPPgutVmsUW3BwMNq2bQuFQgFbW9syl5OIiCyPXUmJiKhKKuo6CQC2trZwdXU1dA0tSizy8vKQkZEBnU6HkSNHGqYXQpTrISvu7u6G3+3s7JCXl2fStLa2tsXiLPpsRkYG1Gq1UXdWb29vpKenP9B8ARgSr/t9Ji8vDzt27MCiRYvg6+uLrKwsfPDBB3j33Xdx9uxZPPfccyWWHxoaii+++AI3btzAtWvX4OjoaOiCmpKSgtWrVxsllUIIpKenw9vbGz/++CO2b9+O9PR0SJKE3Nxc3L592zAtH3pDRFS1MTEkIqJqzcvLCyqVCtHR0VXqgSYeHh5ITU2FXq83JIepqamoUaOG2ecthIBerzesj0GDBiE7OxvTpk2Dk5MTWrRoUeLnbG1tERYWht27d+Pq1auG1kIAUKvV6NOnT4ndQE+fPo3vv/8eM2bMQEBAABQKBaKioiCEMMvyERFRxWNXUiIiqtY8PDzQvHlzrF27Fjk5OdDr9bh+/TpOnTpVqXE1aNAA9vb2+OGHH6DVanHy5EkcOnQIHTt2NOnzbm5uuHHjxgPN28HBAS1atMCqVauQmZkJrVaLJk2a4MaNG1CpVNDpdKV+tnPnzti1axcOHjxolAR2794dW7ZsweXLlwHID/wpuh8xNzcXSqUSrq6u0Ov1+O9//4ucnJwHip2IiCoHWwyJiKjaGzNmDDZs2IAJEyYgNzcXvr6+eP755ys1JpVKhf/85z9YtWoVYmJi4OnpiTFjxqBmzZomff7FF1/EsmXLoNFoMHLkSKMuq6YYO3Ys1q1bZ3iyaVBQEGbPno3o6GgsX74c48aNK/FzISEhkCQJdevWhY+Pj2F427ZtkZeXh0WLFiE1NRWOjo5o2rQpwsLC0KJFC7Ro0QLjx4+HnZ0devToAbVaXa54iYiockmC/TyIiIjoLrNmzUJ4eDhfKUFEZEXYlZSIiIgMEhMTcfHiRcMrMoiIyDqwKykREREBkN8HGR8fj6ioKDg4OFR2OEREZEHsSkpERERERGTl2JWUiIiIiIjIyjExJCIiIiIisnJMDImIiIiIiKwcE0MiIiIiIiIrx8SQiIiIiIjIyjExJCIiIiIisnL/D09ph/TF089zAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.style.use('ggplot')\n", "fig, ax = plt.subplots(figsize=(15,5))\n", "ax.errorbar(monthlyreturn_ts.index, \n", " monthlyreturn_ts[('monthly_return_USD', 'mean')],\n", " yerr=monthlyreturn_ts[('monthly_return_USD', 'std')],\n", " marker ='.'\n", " )\n", "plt.xlabel('Time in month & year')\n", "plt.ylabel('Averagge montly return in USD')\n", "plt.title('Average Monthly Return in USD with Errorbars', fontsize=18)\n", "fig.savefig('avg_monthly_ts.png')" ] }, { "cell_type": "markdown", "id": "43a952ea", "metadata": {}, "source": [ "### 4b. Understanding the Matplotlib Interface" ] }, { "cell_type": "markdown", "id": "b0207445", "metadata": {}, "source": [ "1. `plt.subplots` create two objects commonly named `fig` and `ax`. \n", " - The `fig` object is the container that holds everything on the plot.\n", " - The `ax` object is the part that holds the data that we want to plot. When used the quick way these objects are created by pandas by default. But we can specify them as well. \n", " - Inside the `subplots` method we can specify an argument for `figsize` parameter that allows us to control the length and height of the plot.\n", " \n", " \n", "2. The `ax` object can be used to access many methods to provide data to plot, titles, labels for axis, etc.\n", " - The `plot` method plots the data to the `fig` object. Additional plots can be added to the same figure by adding another line of `ax.plot` on another data. It also takes additional parameters that controls the style of plot. For example, `marker` and `linestyle` can be changed for a line plot to display two lines on the same figure differently. \n", " - The `set_xlabel` and `set_ylabel` methods to display labels for each axis. \n", " - The `set_title` method to give a title to the entire plot. " ] }, { "cell_type": "code", "execution_count": 36, "id": "10b64e19", "metadata": {}, "outputs": [], "source": [ "equity_ts = etf_ts[etf_ts['Asset_Class']=='equity'].resample('M').mean()\n", "realestate_ts = etf_ts[etf_ts['Asset_Class']=='real_estate'].resample('M').mean()" ] }, { "cell_type": "code", "execution_count": 37, "id": "25e6b9ac", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtkAAAFUCAYAAADxiyAFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADjKUlEQVR4nOyddZhUVRvAf9PbyzbdtaQgvSCChIICAgaCgoSEgkpJKNhgICpKiCjCh2KtIJgoIaxBg3TXwgbbOXm+P4YZGHZmdnbZ9vyeZx7YG+e+99x6z3veUAghBBKJRCKRSCQSiaTIUJa2ABKJRCKRSCQSSUVDKtkSiUQikUgkEkkRI5VsiUQikUgkEomkiJFKtkQikUgkEolEUsRIJVsikUgkEolEIilipJItkUgkEolEIpEUMVLJljjlxRdfRKFQcO7cOY+2VygUjBgxolhl+q/wzTff0LJlS7y9vVEoFGzdurW0RSoUI0aMQKFQlLYY5YrFixfTuHFjdDpdgZ4/G86e25UrV5br+6gk+a/cs+fOnUOhUPDiiy8WedvF1YcWi4UXX3yRunXrolar/xPXSVL+kUp2CbB161YUCgUKhYKnnnrK6TYJCQlotVoUCgV33nlnicn14osvkpqaWiLHKy3279/Piy++WGCFpTQ4ceIEQ4YMITAwkA8++IDVq1cTGRlZ2mKVadatW1csykJx8O6777Jy5Uqn67Zs2cKTTz5J48aNWbp0KatXryYsLKxkBfwPUJ7uF8l1PvvsM1566SW6devGihUrWL16tcttc3NzWb58Of3796d27dp4e3tTt25dhgwZwtGjR53uo9frmTNnDnXq1EGn01GvXj1effVVjEZjnm03bdrEuHHjaNu2LV5eXm4HsbYBjbNfs2bNPDr3c+fO8eKLL7J//36Pti8oe/fuZerUqbRu3ZqgoCCCgoJo27Ytixcvdnr+AP/88w89evTA39+fgIAA7r77bqfyFaTtwly3Mo+QFDtbtmwRgPDy8hJBQUEiNzc3zzZvv/22UKvVQq1Wi65du5aIXHPnzhWAOHv2bIHWOQMQw4cPL1L5iopPP/1UAGLLli2lLUq+LFu2TABiz549pS3KLTN8+HBREq+YkjpOUVCrVi2Xz/fMmTMFIJKSkgrdvrPn1mQyiZycHGE2mwvdbkXC3f1Snu6lW8FisYicnBxhNBqLvO3i6sMhQ4aIwMBAYbFY8t326NGjAhCdO3cWL7/8svj444/FrFmzRFBQkNBqtWLz5s159unfv78AxMiRI8Xy5cvFyJEjXX7Xhg8fLjQajWjVqpW47bbb3H5fzp49KwBx//33i9WrVzv8NmzY4NG523SITz/91KPtC8pDDz0kQkJCxKhRo8TixYvFokWLRO/evQUgevXqlafP//rrL6HT6UTdunXFO++8I9555x1Rt25d4efnJw4ePFjotgtz3co66pJU6P/r3H///XzxxResX7+eBx980GHdp59+Sp8+ffj9999LSbryQU5ODhqNBrW67Ny6GRkZ+Pv7F0lbcXFxAAQHBxdJezaMRiNmsxkvL68ibVeSP2azGb1ej4+Pj9vtiuvaq1QqVCpVkbZZlinK57GiYesbhUJR7t4FcXFxVKpUySM3kbCwMPbt28dtt93msHzo0KG0atWKadOmsXv3bvvyH3/8kfXr1zN58mQWLFgAwOjRo6lUqRLvvPMOTzzxBJ06dbJv/9prr7Fs2TJ0Oh1vv/22RxbmFi1aMGzYMM9OtoSZOHEiK1eudLgnnnrqKYYNG8aaNWv44YcfuPfee+3rJk2ahFar5Y8//qBatWoAPPjgg0RGRjJlyhR+/fXXQrVd0OtWLihtLf+/gG0U+tZbb4mWLVuKu+++22H9P//8IwDx3XffCV9fX6eWru+++0506tRJ+Pr6Cl9fX9GpUyexbt26PNvZLGVHjx4Vffr0EX5+fiIgIEAMGjRIXLlyxb6dzdpw82/u3LlCiOsWsWPHjomZM2eKatWqCa1WK1q0aCF++OGHPMflhhG/Xq8XoaGhIioqyml/vPHGGwIQf/zxh9t+s8mYkJAgHn/8cREeHi4UCoXdSpeamiqmT58u6tWrJ7RarQgNDRUPP/ywOH36tL0N23nc/LPJ6s5i78zqaNv3t99+E1FRUQ7Xy9O+d4UzOWvVqmVff/bsWTFs2DARHh4utFqtqFu3rpg5c6bIyspyaMd2TocOHRLPPvusqFatmlAqlW4t+RaLRSxcuFA0b95c+Pn5CX9/f9GwYUMxcuRIYTAYHLbdtWuXGDBggAgJCRFarVY0bNhQvPrqq3msYq4sWpcvXxbjxo0TNWrUEBqNRlSpUkWMGTNGxMfH59k2LS1NzJo1SzRu3FjodDoRHBwsoqKixBdffCGEEKJr165O+y0/i4/tWu3Zs0d069ZN+Pr6iqCgIPHYY485lSMxMVFMmDBBVK9eXWg0GlG9enUxYcIEcfXqVYftbLMmmzZtEi+//LKoW7euUKvV9uXOfjZL182/G++9AwcOiAEDBojg4GCh0+lEZGSkeOONN4TJZHI4vrP72dVMjqfn5A5P5Jo+fboAxIEDB/Lsn5qaKry8vET//v0dlm/atEn07NlTBAYGCp1OJ5o3by6WLFmSZ3/bddy7d6/o1auXCAgIELVr13Ypb373i+2eTU1NFePGjRNhYWFCp9OJTp06ib///jtPexaLRSxevFi0bt1aeHt7Cz8/P3HnnXd6bHG78X6ZO3euqFmzptBqtaJ58+b2e/xmPH3+unbtKmrVqiVOnz4tBg0aJIKCguzPo+2es73vbRiNRjF//nwRGRlpf94GDBiQxzophBA5OTli6tSpokqVKsLLy0u0bdtW/PLLLwW2ZC9fvly0atVKeHl5iYCAANGzZ0+xfft2+3rb99PVO7ygtG7dWuh0OodlQ4cOFYC4cOGCw/ILFy4IQIwfP95le2+99ZZHluy5c+eKnJycPO/r/HD17rjx/ZCZmSlmzJgh6tatK7RarYiIiBCPPvqoOHfuXIGOdTPff/+9AMS8efPsy06ePGm3+N/MyJEjhUKh8Oh756xtdzi7buWBsmMO/I/w+OOPM3nyZC5dukT16tUB+OSTTwgPD3cYKd7I4sWL7b6azz//PAqFgpUrVzJgwACWLVvGE0884bB9bGwsd955J/fffz9vvfUWBw4cYNmyZaSnp9tHmGPHjiU9PZ3vvvuOhQsXEhoaClhH2zcyfPhwNBoNU6dOxWAw8O677zJgwABOnDhB7dq1ncqr1WoZPnw4CxYs4NixYzRu3Nhh/aeffkrDhg3p0qWLR33Ws2dPKleuzAsvvEBWVhZ+fn6kpaXRqVMnLly4wMiRI2natClXrlxh8eLFtG/fnt27d1OrVi0GDhzIlStX+Oijj5g1a5bdv7levXoeHdsZu3fv5ttvv2XMmDEMHz7cYZ0nfe+K1atXEx0d7XBN/Pz8ADh//jzt2rUjLS2N8ePH07BhQ7Zu3cq8efOIiYnh999/z2PdHzp0KN7e3kyZMgWFQkGVKlVcHvvVV19lzpw53HfffYwbNw6VSsXZs2f5/vvv0ev1aDQawGrxuf/++6lfvz5TpkwhODiYv/76izlz5rB//36+/vprt+d44cIFOnbsiMFgYNSoUdSrV49Tp06xZMkStmzZwu7duwkMDAQgNTWVzp07c/jwYQYPHsz48eMxm83s27ePjRs38vDDDzN79mwsFgvbt2938NG80erkikuXLnHXXXcxaNAgBg8ezN69e/nkk0/YvXs3u3btsluebffaqVOnGDlyJK1bt2bfvn0sWbKEzZs3s3PnzjyW06lTp2I0GhkzZgwBAQE0atSI1atX8+yzzxIaGsrs2bPt24aFhbF69Wo++ugjh/OIiIgArPdb165d0Wg0PPnkk1SuXJkNGzbw3HPPceDAAdasWZPvud5MYc7pZjyVa/jw4bz55pusWrWKt99+26GNr776itzcXIfn6KOPPmLcuHF06NCB2bNn4+vry6ZNmxg/fjynT5/mrbfecmjjwoULdO/enQceeIBBgwaRmZnpUmZP75fevXsTFhbGnDlzSEpK4p133qFPnz6cO3fOoV8effRRvvjiCwYPHszjjz+OXq9nzZo19OzZk+joaPr16+e2D20899xzZGVlMX78eBQKBZ9++ilDhgwhNzfXIaC8oM9fZmYmXbt2JSoqitdee42EhAS3cgwdOpSvvvqKnj17Mn78eOLi4vjwww/p2LEj27dvp1WrVvZthwwZwrp167jvvvvo3bs3p0+fZuDAgdSpU8ejc7ad95tvvkm7du14/fXXycjI4KOPPqJbt26sX7+ePn36EBkZyerVq3nttde4evUqCxcuBAr3DrdYLFy5csX+bNnYtWsX1apVo0aNGg7La9SoQdWqVdm1a1eBj3UzCxYs4OWXX0YIQfXq1Xn88ceZPXs2Op3O7X533HEHs2bN4vXXX+eJJ56wfzdt52AymejduzcxMTEMHjyYKVOmcPLkSZYsWcKvv/7K7t277bpGQbl06ZLDsQB7X3Ts2DHP9h06dOCTTz5hz5499O3bt8Btu8LVdSsXlLaW/1/gRkv21atXhVarFa+99poQQojs7GwRGBgopkyZIoQQeSzZycnJwtfXV9SrV0+kpaXZl6elpdl9oFJSUuzLa9WqJQDx5ZdfOsgwYcIEAYijR4/al3nik923b18Hn6mdO3cKQMyYMcNhe26yLBw/flwAYtq0aQ7b7dixQwDijTfecN9p4rpVaejQoXnWTZo0SXh5eYn9+/c7LD937pzw9/d3kMWdT3ZhLNlcszw5297TvneFK3keeeQRAeSZRZg6daoAxMcff5ynja5du3rsc9mqVSsRGRnpdpucnBwREREhunTpkqfdd955J08fO7No9evXT4SFhYmLFy86LN+1a5dQqVQOlrXx48cLQCxbtiyPLDf6FxfGB9R2rRYuXOj0PG60rsyaNUsA4sMPP3TY9oMPPhCAeP755+3LbPdaw4YNnVqs3PlkuzqPTp06CZVK5WAJtlgs4oEHHhCA+O233+zLPbVkF+ScXFEQudq0aSOqVKmSx/LeuXNnERISIvR6vRDCOsuh0+nEkCFD8hxv0qRJQqlUilOnTtmX2a7j8uXL85XXhic+2TdbLr/66isBiKVLl9qXRUdHO70/jUajuP3220Xt2rXz9R+2XZuaNWuK1NRU+/LU1FRRs2ZNERQUJLKzs4UQBX/+bFb72bNn5zmuM0v2r7/+KgDx4IMPOsh94MABoVKpROfOne3LfvnlF6fW5O+++87+jsyPY8eOCYVCIaKiouzXXwghYmNjRWBgoKhVq5bD/WKzzN8Ktvv7hRdecFju5+cn2rVr53Sftm3biipVqrhsMz9L9vnz50X37t3F+++/L9avXy8+/vhj0atXLwGIHj165HkmnOHOJ/ujjz5y+q3duHGjAMSwYcPybd8ZGRkZok6dOiIwMNAhTuTtt98WgPjxxx/z7PPDDz+4fGd70rYrXF238oDMLlLChISE0K9fP3uGgejoaNLS0hg5cqTT7Tdt2kRWVhaTJk0iICDAvjwgIICJEyeSmZnJb7/95rBP1apV8/h8d+/eHYBTp04VSN6nn37awQeubdu2+Pv7c/LkSbf7NWzYkK5du7Jq1SpMJpN9+YoVK1Cr1XkswO6YOnWqw99CCNasWcMdd9xBtWrVuHr1qv3n6+tLhw4d8rUa3wotW7akR48eTtcVZd/bsFgsfP/997Rq1Yo+ffo4rJs5cyZKpZLvvvsuz37PPPOMx77rgYGBxMbGsmPHDpfbbNq0ifj4eB5//HFSU1Md+t0ml7t+T0tLY+PGjfTr1w8vLy+H/WvXrk39+vXt+1ssFtauXUtkZCRjxozJ05ZSeeuvroCAAMaPH++wbMKECQQEBDj053fffUdYWFieGaOxY8cSGhrqtO/Hjx+frw+2JyQkJPDnn3/Sr18/h1kmhULBrFmz7PIVlMKc063INXz4cK5cucKmTZvsy86ePUtMTAxDhgxBq9UC1vSVer2eUaNGOdwfV69e5b777sNiseSJWwkODubxxx8vcB+449lnn3X42/YM3/je+9///oe/vz8DBgxwkDM1NZX77ruPc+fO5fuetDF+/Hj7DA5Yn8dx48aRkpJiz1pR2Ofv5venK2zXa/bs2Q7v/BYtWnDvvfeyY8cOEhMTAWuGFoBp06Y5tDFgwAAaNWrk0fHWr1+PEILp06fbrz9Y36EjRozg/Pnz7Nu3z6O2POHPP/9kypQptGjRwn6P2sjOznZpUfby8iI7O7vQx61Zsya///47EydOpF+/fowaNYpffvmFMWPG8Ntvv7F27dpCtw3W66ZUKpk5c6bD8r59+3Lbbbexfv16LBZLgdo0m80MGzaMs2fPsmTJEoc4EVtfOOsvm9+1u/5y17Yz3F238oBUskuBxx9/nJMnT7Jjxw4++eQT2rVrR5MmTZxue/bsWQCaNm2aZ50t/c+ZM2ccltetWzfPtiEhIQAkJSUVSFZnbQUHB3vUzhNPPEF8fDwbN24ErFOXX331Fffee2+Bpn0aNmzo8HdiYiJJSUn8+uuvhIWF5fnZPkbFxc3y3EhR9r2NxMREMjMznd4DwcHBVKlSJc89kJ+cN/P666/j5eVFly5dqFatGkOHDuXzzz/HYDDYt7GlUBo5cmSePre5BLnr9+PHj2OxWFixYoXT63b8+HH7/levXiUlJYXbbrut2PLh1q1bN8+HQqfTUbduXYf+PHv2LI0aNcozYFGr1TRq1OiW+94d7p7/Jk2aoFQqnR7fk3YLek63IteQIUPQaDSsWrXKvmzVqlUIIRwG3LZ7rEePHnnuj549ewJ577F69eoVeWDnzc+xs2f46NGjZGRkEBERkUdWW4pAT99DztJ02r4Jtn4szPMXFhZGpUqVPJLh7NmzKJVKp7LYvjW2637mzBmUSqXT+9zTlKOF+bYVFpv7QtWqVfnxxx/zBH36+Pig1+ud7pubm1skA+absbmM/fDDD7fUztmzZ6latSpBQUF51jVt2pSMjAyuXr3qcXsWi4WRI0eyfv16XnvtNYYMGeKw3tYXzvorNzfXYZuCtn0z+V238oD0yS4FevfuTbVq1XjppZfYsmULS5YscbmtEKLA7bv74BS0PVdtedLOoEGDmDRpEitWrGDAgAGsXbuWrKwsRo8eXSAZbn5gbcfu0aMHzz33XIHauhl3CtyNFnh38txIUfb9re5XkA9Dx44dOX36NL/88gtbtmxhy5YtfP7557z66qvs2LGD4OBguxxvvfVWnuhvG1WrVnV5DNv+w4YNczmT4e3t7bBtcRaccNV2Yfv7Rorqo1wUshQHBZUrJCSEvn37sm7dOnuGi//9739ERkbSpk2bPO2uWrXKZQzBzQpwcShAnrz3hBCEhYXx+eefu2zH0zzIzu7Fm/u4MM9fQfqmINfU3baetlNS9/bevXvp2bMngYGBbNmyxZ4N40aqVq1KbGys0/1jY2Od7nOr1KhRA5VKVSAF2BlF2Y9CCEaPHs2qVauYO3euU8ux7R5z1l+2Zc76y5O2b8ST61YekEp2KaBSqXjssceYN28e3t7ePPzwwy63tQV3HD58mLvuusth3ZEjRwDn1lNPKO6KWTqdjscee4z333+fy5cvs2LFCqpVq8bdd999S+3arDPp6eku3TZuxN152qaqkpOTHQI5c3NzuXLlCvXr178lWYuC8PBw/P39OXz4cJ51KSkpXLlyxeVHtyD4+fkxaNAgBg0aBFwPuF2xYgXTpk2jQYMGAPj6+nrU7zdTv359FAoFBoMh3/3DwsIICgryKDVWYe/j06dPYzAYHKaq9Xo9Z8+edQjWrVu3LsePH8dkMjlYfk0mEydOnCjQ81dQWW1tO7v2x44dw2KxFOr5v9VzKoxcw4cPZ926dXz99dc0atSIU6dOMX/+fIdtbPdYaGhooe4xTyiq916DBg04ceIEHTp0sAcoF5YjR47kCZK0Wa5t/Xirz19+1KtXj19++YWjR4/mCYC3fWtsQY316tXj119/5cSJE3ks0ceOHfP4eGC9h24OYrzVb5uNffv20bNnT/z9/dmyZQu1atVyul3btm1Zs2YNFy9edAh+vHjxIpcvX/Y4gLUgnDlzBrPZ7NGsrrt7tl69evz888+kpqbmmbU4cuQIAQEB9sQG7rApwZ9++inPP/+8y4JNbdu2BeCvv/7KYzD7+++/USgU3H777YVq24an1608IN1FSolx48Yxd+5cli5d6uCLdzM9e/bE19eXRYsWkZGRYV+ekZHBokWL8PPzs0+jFhTbhyE5OblQ+3vCmDFjMJvNPPfcc/z999+MGDHilqd2lUolQ4cOZefOnXzzzTdOt7kxit7dedqmO2/2a1+4cGGB/diKC6VSyX333ce+ffv4+eefHdbNnz8fi8XC/ffff0vHcGZNad26NXC933r37k14eDjz58932pc5OTkO9+jNhISE0KdPH6Kjo/n777/zrBdC2H0+lUolQ4YM4ciRI6xYscLptjYKex+np6ezePFih2WLFy8mPT2dAQMG2JcNGDCAxMREPv74Y4dtly9fTmJiYoH63s/Pr0ByhoeH06lTJzZs2MChQ4fsy4UQzJs3D6BQ1/5Wz6kwcvXt25fQ0FBWrVrFqlWrUCqVefIGP/jgg+h0OubOnUtOTk6e46alpbmc1veUonrvPfbYY1gsljy+sDYK4rK2ZMkS0tLS7H+npaWxdOlSKlWqRNeuXYFbf/7yw3bPz5s3z+H5OnToEN9//z2dO3e2VyDt378/QJ5ML+vWreP48eMeHa9fv34oFAreeusth8p/V65c4dNPP6VWrVoO2UwKyr59++jRowe+vr5s2bLFbdYTm9vCu+++67Dc9vfQoUMLLYczN0GLxcLzzz8PwH333ZdvG+7u2QEDBmCxWPIMWH/66Sf27dtHv3798o1hEUIwZswYPvnkE2bNmsUrr7zictv69evTpk0bvv76ay5fvmxffvnyZb7++mu6d+9O5cqVC9U2FOy6lQekJbuUqFmzpkelfStVqsSbb77Jk08+Sfv27e3pnFauXMmpU6dYtmyZWyXdHR06dACsaZSGDh2Kl5cXzZo183iK0xMiIyPp3Lkz//vf/1AoFC4DPAvKa6+9RkxMDA8++CAPPvggHTp0QKvVcv78eX788Uduv/12e3Bp27ZtUSqVvPbaa6SkpODr60udOnVo3749PXr0oHHjxvZUXXXq1GHHjh38/fffHo3+S4rXX3+dTZs2MWDAACZMmED9+vX5448/+PLLL7njjjsKFEjqjMjISDp06ED79u2pWrWqPe2hVqu1z7T4+vqyatUqe3DTyJEjqV+/PqmpqRw7dsyefvDOO+90eZwlS5bQuXNn7rjjDh577DFatWqFxWLhzJkzrF+/nscee8z+XLz66qts3ryZ0aNH8+uvv9K5c2eEEOzbtw+TyWRPwdahQwc++OADJkyYQN++fdFoNLRv3z7fl3O9evV46aWXOHToELfffjt79uzhk08+oXHjxkyaNMm+3fTp0/n666958skn2bt3L61atWLfvn2sWLGCRo0aMX36dI/7uUOHDqxYsYIXXniByMhI+wDK19fX5T7vvfceXbt2pUuXLvZUeRs3buSXX37hkUceyTPD5QlFcU4FlUuj0TBkyBA++OAD9uzZQ48ePfJMAVevXp0lS5YwevRoIiMjefTRR6lVqxaJiYn8+++/rFu3jiNHjrhMH+oJhb1fbsaWtu+DDz5g79693HvvvYSGhnLp0iX++usvTp065bFPcWhoKO3bt2fkyJEIIfj000+5cOECH3/8sd3loyieP3f07NmTBx98kLVr15KSksK9995rT+Hn5eXF+++/b9+2d+/e3HfffXz22WckJydz9913c/r0aZYtW0azZs0cBl6uaNSoEdOmTePNN9/kjjvu4KGHHrKn8MvMzGTNmjWFNsicP3+enj17kpKSwqRJk/jzzz/5888/Hba5//777c9d3759uffee3nnnXdIS0ujY8eO/PXXX6xYsYJhw4bRuXNnh30PHjzI999/D0BMTAxgTcFqCxyfOHGi/bs8ZswY0tPT6dSpEzVq1ODq1at8++237Nmzh/79+zN48OB8z6dJkyb4+/uzePFifHx8qFSpEuHh4XTv3p0RI0bw2Wef8cYbb3Du3DnuuOMOTp06xeLFi4mIiOD111/Pt/1p06axYsUKWrZsSWRkJP/73/8c1terV88hZd97771Ht27d6NKlCxMnTgRg0aJFWCwWezGfwrRd0OtWLijO1CUSKzem8MsPV8VooqOjRceOHYWPj4/w8fERHTt2FN99912e7VylCHOVAuiNN94QderUEWq12iGlU2GLtDhj1apVAhDdu3d3ut4V+aVmy8rKEi+//LJo1qyZ8PLyEn5+fqJx48Zi9OjReQpHrFy5UkRGRgqNRuM03WDv3r2Ft7e3CAwMFA888IC4dOlSgc+zoH3vDHf9fubMGTFs2DARFhYmNBqNqFOnjttiNM7acMW8efNEly5dRFhYmNBqtaJ69epi8ODBTsu7//vvv2Lo0KGiatWqQqPRiPDwcNGxY0fx8ssvO6RjcnX9EhMTxdSpU0WDBg2ETqcTgYGBolmzZmLSpEni8OHDDtumpKSIadOmiXr16gmNRiOCg4NF586dHdIkms1mMWXKFHvRHU/6+uZiND4+PqJSpUpi2LBhIi4uLs/2CQkJYvz48aJatWpCrVaLatWqiQkTJojExESH7dylixRCiPj4eDFw4EARFBQkFAqFw3Vyd7/v379f9O/f315euHHjxrdcjMbTc3KHp3LZ2L17tz3F2//+9z+X7e7YsUMMGDDAfq9XqVJF3HnnneLtt98WOTk59u3cpUR0hbv7xd01cPXsr1q1SnTu3Fn4+/sLnU4natWqJe6//36xdu3afGW5sRjNnDlzRI0aNYRWqxVNmzYVa9ascbqPp8+fu5R3+RWjady4sdBqtSIoKEj079/faTGa7OxsMXnyZBERESG8vLxEmzZtxM8//1zglJofffSRuO2224ROpxP+/v6iR48eTguVFSSFn6sCNjf+bn4/5uTkiNmzZ4tatWoJrVYr6tSpI15++eU8xbiEcF0gxlnbH3/8sejatauIiIgQGo1G+Pn5ifbt24sPP/zQIRVpfvzwww+iVatWQqfTCXBejKZOnTpCo9GIsLAwMWzYMI+L0bgq0mT7Obvv//zzT9G9e3fh6+sr/Pz8RK9evZx+LwrSdmGuW1lHIUQZjayRVBi++uorHnroIT7//PN8o4klkpKgdu3a1K5d254eTSIpDVauXMnjjz/Oli1bCm2BlkgkZRfpky0pdj788ENCQ0MZOHBgaYsikUgkEolEUiJIn2xJsZCQkMDvv//O9u3b+eOPP5g3b16+5WMlEolEIpFIKgpSyZYUC0eOHOGRRx6hUqVKjBs3jilTppS2SBKJRCKRSCQlhvTJlkgkEolEIpFIihjpky2RSCQSiUQikRQxUsmWSCQSiUQikUiKmArpk31jFaKiJjQ01Gl1PMmtI/u2+JF9XLzI/i1eZP8WL7J/ixfZv8VLafVv1apVXa6TlmyJRCKRSCQSiaSIkUq2RCKRSCQSiURSxEglWyKRSCQSiUQiKWIqpE+2RCKRSCQSyX8FIQS5ublYLBYUCkVpi1MqxMfHo9fri6VtIQRKpRIvL68C9a9UsiUSiUQikUjKMbm5uWg0GtTq/65ap1arUalUxda+yWQiNzcXb29vj/eR7iISiUQikUgk5RiLxfKfVrBLArVajcViKdA+UsmWSCQSiUQiKcf8V11ESpqC9rNUsiUSiUQikZQY0dHetGsXTvXqVWjXLpzoaM+n3yUVm7i4OMaMGQPAoUOH+P3330tZoltDKtkSiUQikUhKhOhob6ZPDyQ2Vo0QCmJj1UyfHigVbQkAlStXZvny5QAcPnyYzZs3l7JEt4ZUsiUSiUQikZQI8+f7k5PjqHrk5CiZP9+/lCT67+G3eDHamBiHZdqYGPwWL76ldr/99lv69u1Lz549mT59OmazmS+//JLOnTszaNAgpk2bxuzZswF45pln2Lhxo33fBg0aAHDx4kW6d++OwWDg7bff5vvvv6dnz56sX7+eqKgokpKSAKsPelRUFMnJybckc3EjlWyJRCKRSCQlwuXLzrM/uFouKXoMLVsSNG6cXdHWxsQQNG4chpYtC93myZMn+f7771m3bh2bNm1CpVLx7bff8vbbb7N+/Xq++OILTpw44XF7Wq2WqVOn0q9fPzZt2kT//v0ZNGgQ0dHRAGzfvp0mTZoQHBxcaJlLAhmKKpFIJBKJpESoWtVMbGxe1aNqVXMpSFMxCZgzB82RI263MVeuTMgjj2COiEAVH4+xYUP8Fy6EhQudbm9s0oT0l1922d6OHTv4999/6dOnD2BNKbh79246duxISEgIAP369ePMmTOFPCt46KGHGDlyJGPGjGHt2rU8+OCDhW6rpJCWbIlEIpFIJCXCjBkZeHs7pkHz9rYwY0ZGKUn030QEBmKOiEAdG4s5IgIRGHhr7QnBAw88wKZNm9i0aRPbt29nypQpLrNx3JgOTwiB0WjM9xjVqlUjLCyMHTt2sG/fPrp3735LMpcE0pItkUgkEomkRBg4MAew+mbHxqqoXNnC7Nnp9uWSW8edxdmGzUUk45ln8Fm1ioxnn8UQFVXoY3bu3JnHH3+cMWPGEBoaSkpKCs2aNWPOnDkkJyfj7+/Pxo0badKkCQDVq1fn33//pV+/fvzyyy9OlWw/Pz8yMzMdlg0ZMoRJkyYxaNCgYi08U1RIS7ZEIpFIJJISY+DAHHbuTCA29gp79sRLBbuEsSnYKUuXkjFtGilLlzr4aBeGhg0bMn36dIYMGUKPHj0YMmQI8fHxTJkyhX79+vHwww/TvHlz+/ZDhw7lr7/+om/fvuzbtw8fH588bXbq1ImTJ0/aAx8BevXqRVZWFg899FChZS1JFEIIUdpCFDWXL18utrZDQ0O5evVqsbX/X0b2bfEj+7h4kf1bvMj+LV5Ksn9//13HtGmVeP/9FDp3NpTIMUub4uzf7Oxsp4qqM/wWL8bQsqWD5VobE4P2wAEyJ0woFvkAvvzySw4ePMhrr71W6DYOHDjAiy++yHfffZdnnVqtxmQy3YqI+eKsn6tWrepye+kuIpFIJBKJpEQ5dUpNfLyKd9/1p3PnpNIW5z+FM0XaEBV1S+4iJcEHH3zAqlWr+OCDD0pbFI+RSrZEIpFIJJISxWCwBsTl5Mhy4P8VHnrooVty83jqqad46qmnilCi4kf6ZEskEolEIilR9Hqrcp2ZKZVsScWlTFiyr169yocffkhqaioKhYIePXrQp08fMjMzWbhwIYmJiYSFhfHss8/i5+dX2uJKJBKJRCK5BQzX3LDT0qStT1JxKRNKtkql4tFHH6Vu3brk5OQwY8YMWrRowdatW2nevDkDBgxg3bp1rFu3jmHDhpW2uBKJRCKRSG4BX19rzoWUFCVCgIt0yhJJuaZMDCGDgoKoW7cuAN7e3lSrVo3k5GR27dpF165dAejatSu7du0qTTElEolEIpEUAU8/ncmOHfF8/XUSFS/HmURipUwo2TeSkJDA2bNnqV+/PmlpaQQFBQFWRTw9Pb2UpZNIJBKJRFIU1Kljpl07A8oyp4lISoP27duTnJx8S22kpaWxcuXKItvuVikT7iI2cnNzWbBgASNGjPA43yPAb7/9xm+//QbA/PnzCQ0NLS4RUavVxdr+fxnZt8WP7OPiRfZv8SL7t3gpyf6dN0/Jzp1KBg+20KOHhYiIEjlsqVKc/RsfH49aXXZUOiEEQgiUBRhBKRQKVCrVLZ1HVlYWq1atYvTo0UWy3c3odLoCXcMyc0VMJhMLFiygS5cutG/fHoDAwEBSUlIICgoiJSWFgIAAp/v26NGDHj162P8uzmT6shhC8SH7tviRfVy8yP4tXmT/Fi8l2b///BPETz958+OPSj7/PImuXfUlctzSpDj7V6/XF6jMeHS0N/Pn+3P5soqqVc3MmJFxy5U3L168yLBhw+jUqRN79uzh7rvv5rfffsNgMHD33XczdepUAEaOHMnly5fR6/WMGjXKHmsnhMBsNucpKJOdnc3zzz/PsWPHMJlMTJkyhd69e3P8+HEmT56MwWBACMEnn3zCvHnzOH/+PN26deOOO+5g8uTJPP7446SlpWEymZg+fTq9e/fmlVdecdjuhRdeYMmSJWzYsCGPvDei1+vzXMMyX4xGCMHSpUupVq0a9957r315mzZt2LZtGwMGDGDbtm20bdu2FKWUSCQSiURSFOj1Cry9LeTkKElNlVGPJUl0tDfTpweSk2O1MsfGqpk+PRDglhXt06dP884773D33Xfzww8/8MMPPyCEYMSIEfz999906NCBBQsWEBQURE5ODn379qVPnz4EBwe7bPO9994jKiqKd955h7S0NPr27UuXLl1YvXo1o0aNYuDAgRgMBhQKBbNmzeL48eNs2rQJsBpwV6xYgb+/P8nJydx333306tUrz3bbtm3j7NmzTuW9FcqEkn38+HH++OMPatasybRp0wAYMmQIAwYMYOHChWzevJnQ0FAmT55cypJKJBKJRCK5VfR6BRERFs6dU5KSIp2yi5rBg0PyLLv33hxGjMhm3jx/u4JtIydHyZw5AQwcmENyspInnghyWP/NN55V5axevTq33347L7/8Mtu2baNXr16A1Rp99uxZOnTowCeffMJPP/0EwOXLlzl79qxbJfuPP/5g06ZNLF26FLBak2NjY7n99tt5//33uXLlCvfccw8NGzbMs68Qgvnz5/PPP/+gUCiIi4sjMTExz3bbtm1zKe+tUCaU7MaNG/PVV185XTdnzpwSlkYikUgkEklxYjBA5cpmzp1TSyW7hLlyxblbSVFcB1s8nRCCp556ikcffdRh/Z9//sn27dvZsGED3t7eDB48GL3e0VVo5cqVrFmzBoDVq1cjhOCjjz6ifv36Dts1aNCAVq1a8fvvvzN06FDeeecdqlev7rBNdHQ0SUlJ/PTTT2g0Gtq3b5/neO7kvVXKhJItkUgkEonkv0ONGmZ8fASHD2ukkl0MuLM8V61qJjY2r/pXrZoZgOBgi8eWa1fceeedvPXWWwwcOBBfX1+uXLmCRqMhIyODwMBAvL29OXXqFHv37s2z74gRIxgxYoT9765du/Lpp5/y6quvolAoOHToEM2aNeP8+fPUqlWLUaNGcf78eY4cOUKjRo3IzMy075uRkUFoaCgajYaYmBguXboEgK+vr8N2ruS91UBVqWRLJBKJRCIpURYtSgXgsceyCA+3lK4w/zFmzMhw8MkG8Pa2MGNGRpEdo2vXrpw8eZJ+/foBVgv3okWLuPPOO1m9ejU9evSgbt26tG7dOt+2nnnmGebOnUuPHj0QQlC9enVWrVrF999/T3R0NGq1mvDwcKZNm4a/vz9t27ale/fudOvWjSeffJLhw4dzzz330LRpU7s1PDg42GG7F154wam8t6pkK4SoeGngL1++XGxty+j24kP2bfEj+7h4kf1bvMj+LV5k/xYvxdm/2dnZBUp9XBzZRUobtVqdJzNJUeOsn8t8dhGJRCKRSCT/HR57LJg2bQw0b27k6lUlDzxQvhW88sbAgTnlXqkuD0glWyKRSCQSSYmyf7+GqlXNHDum5sABrVSyJRUSqWRLJBKJRCIpUQwGBVqtICgIUlNl4KOkYiKVbIlEIpFIJCWKXq/Ay0ug1QrS0hSYzVCAgoWSm6iA4XVlkoL2sxw+SiQSiUQiKTGEsFqydToICrIghIK0NKmO3ApKpbLYg/7+65hMJpTKgt2n0pItkUgkEomkxDCZoF07PTVqmFBf00JSUhS4KfonyQcvLy9yc3PR6/UoFP/NMvU6nc5poZmiQAiBUqnEy8urQPtJJVsikUgkEkmJodHAd99Zi51kZirYvTtO5sq+RRQKBd7e3qUtRqlSFlNQSiVbIpFIJBJJqeDnJ/Dzk/7EkoqJdIKSSCQSiURSYly5oqRr1zB+/tmLjAwFCxf6sX+/prTFkkiKHKlkSyQSiUQiKTGysxWcOqUhO9uaVeTttwPYuVNb2mJJJEWOVLIlEolEIpGUGAaDNTBPpxMEBAiUSiFzZUsqJPKulkgkEolEUmLo9VYlW6sVKJUQGGghJUWqI5KKh7yrJRKJRCKRlBg3WrIBgoKEVLIlFRJ5V0skEolEIikx/PwsdO+eS1iYNW1fUJC0ZEsqJvKullRYoqO9adcunOrVq9CuXTjR0RUzh6jf4sVoY2IclmljYvBbvLiUJJJIJBLXNGliYvXqZCIjrRUKP/88ic8/TyplqSSSokcq2ZIKSXS0N9OnBxIbq0YIBbGxaqZPD6yQirahZUuCxo2zK9ramBiCxo3D0LJlKUsmkUgk+ePnJ1CpSlsKiaTokUq2pEIyf74/OTmOt3dOjpL58/1LSaLiwxAVRcrSpQSPGEHwo48SNG4cKUuXYoiKKm3RJBKJJA8//ujF7bdHcP68VbPevFnHCy8ElLJUEknRI5VsSYXk8mXnZhFXy8s7hqgohI8PXps3k/3YY1LBlkgkZZaMDAVxcSq79frffzV88okfen3pyiWRFDVSyZZUSKpWNRdoeXlHGxODMikJi58fPqtW5fHRlkgkkrJCbu71FH5gDXwEZK5sSYVD3tGSCsmMGRl4e1sclnl7W5gxI6OUJCo+bD7YKJUocnNJWbLEwUdbIpFIyhK2PNm2FH6VKlnf1TLDiKSiIe9oSYVk4MAc3nwzzf53aKiZN99MY+DAnFKUqnjQHjhA6jvvoDCbUZhMmBo3JmXpUrQHDpS2aBKJRJIHW55sacmWVHTUpS2ARFJc3HVXrv3/r76axn335brZuvySOWECqvPn7X8r4+IwREVJv2yJRFImqVvXRN++Oeh01r+DgixoNILMTEXpCiaRFDFSyZZUWOLirgc52qYlKyrK5GT7/1UJCZhKURaJRCJxR58+ufTpc93o0bSpibNnr6CQOrakgiGVbEmFxaZkR0dfpX17QylLU7w4KNnx8aUoiUQikRQMqVxLKirSAUpSYWnWzMiKFck0bmwsbVGKnRuVbKVUsiUSSRlmzpwAoqLCHZZNnx7IV19VvGJhkv82UsmWVFhCQizcfXcuzz1XiRkzAktbnGLFpmQLnU5asiUSSZkmM1NpzzBi47ffvNi5U1tKEkkkxYNUsiUVll27NMTEaLl6VcmJExXbM0qZnIxQqTDVri0t2RKJpMzit3gxpthEhzgZbUwMIZZEmcJPUuGQd7SkwrJ4sR9z5wYSEmLh6tWKfasrU1KwBAdjrlwZVUJCaYsjkUgkTjG0bIn45wBe5iwwGu15/iuFKctlCj+/xYvz1CTQxsTgt3hxKUkkKUuUvztaIvGQ+HgVERFmQkMtJCVVzHLqNpTJyVhCQrCEh6OKiyttcSQSicQphqgoMpq3wffyGarUrUvwmDGkLF1KYC3/cmnJNrRsaS3+tXkzisxM+6DB0LJlaYsmKQNU7Dl0yX+auDgVkZFGQkPNpKYqMRpBoyltqYoHZXIylqAgzBERKBMTwWIBZfn7YEkkkopP5/6+WLIPozhmQd+mDYaoKKr+YnZIu1peMERFkbJ0KSHDhmEOC0ORk0PK0qWyToEEkEq2pIJiMkFiopLKlS00bmyiV68ccnMVaDQVM1+2MjkZU8OGWCIiUJhMVqU7NLS0xZJIJJI8TIj8leBL4wHQxcSgjYnh5ZfLr1JqiIrCEhSEOjaWjIkTpYItsSNNXZIKSWKiEotFQUSEmXvuyeXTT1Pw96+YCjZcs2QHB2OOiLD+LYMfJRJJGUQbE0Pg2PFkDx0KgLFePau7xU1+zeUJbUyMdQYR8F21qlyfi6RokUq2pEISEmLhp58SufvuillK3QGL5XrgY7g196xM4yeRSMoi2gMHuM3/FEO3TwJAdeUKKUuW8M/36QwZEkxcXPlSS2w+2DayHn203A8aJEVH+bqbJRIP0WqhRQsj4eEWLl5U0apVBOvXe5W2WMWCIjUVhcWCJTgYS+XKAChlhhGJRFIGyZwwgVy1HxphrcKrSk7G1KgR8d3u548/vEhMLF9+2doDB0h7800UFgsACqORlKVL0R44UMqSScoCUsmWVEj279fw+ec+GI3g728hIUFFfHz5enl7iq0QjYMlW2YYkUgkZRS9HnRCb/9bfewYQUFWJTUlpXzVWM+cMAFT7dr2vzVHjmCIiiJzwoTSE0pSZpBKtqRC8tNPXsycGYhKBYGBArVakJRUMW93VUoKYFWy0emwVKok3UUkEkmZxWBQ4EUO4loGJM2xY1SqZFOyy9972labwFivHurDh0FU3PgfScEof3ezROIBcXEqwsPNKJWgUFh9tCuqkn2jJRvAXLmydBeRSCRlFr1egc6SiyUsDHNICOrjx2+wZJe/97Qt0Fx/552okpNl4LnETvm7myUSD4iPV1G5ssX+t7XqY8V3FwEwh4dLS7ZEIimzPPZYFncG7UN4e2Nq3Nhuya5Xz4i3d/mzAtss2fquXQGry4hEAlLJllRQ4uKUVK5stv/dp08O7dvr3exRfrlZybZEREhLikQiKbPMnJnBfYFbET4+GBs3Rn38OFq1hT/+SOShh3JKW7wC882fdailOE/Y8GHU5izffV1Bq55JCowsRiOpkMTFqejS5bpS/eyzmaUoTfGiTE5GeHkhvL0BMEdEWC0rsuqjRCIpYwgBGRkKAjL1qHx8MDVqhDI7G9WlS5hr1ixt8QpMdLQ303c8So6wZq86T20m/VCZ3OgcBg4sfwMGSdEiv8CSCsmOHQk8/bSjYm0ylZIwxYytpDoKa1S+verjtYBIiUQiKStkZiqIjKzCh+f6YblmyQZrhpHp0wOZPTuwlCUsGPPn+5NjdkwPm2P2Yv58/1KSSFKWkEq2pEISGmohNPS6T/ZHH/lSu3YVcnLKV3ooT7BVe7RhS+OnlGn8JBJJGcNgsL6Dvc1ZCB8fTA0bAtYMIxcuqDl4sHy5Wly+7DzWx9VyyX8LqWRLKhynTqlYsMDfoXKYv79ACEWFzDCSR8m+VlpdJTOMSCSSMkbutSK8OmMmwscH4e+PqXp1e4aR8pZdpGpVs9Pl1UKlq4jEQ5/svXv3cuzYMTIzM/Hz8yMyMpJWrVoVqSCLFy9m7969BAYGsmDBAgAyMzNZuHAhiYmJhIWF8eyzz+Ln51ekx5VUPP79V8s77/jTv38OYLVmh4RYX4RXryqpXt35S7G8okxOxlCjhv1vyzUlWwY/SiSSsobdkm1It8eRmBo3RnP8OEHtyp+SPfPZRKZPDSAbX/syH7KY02ML0Lr0BJOUCdzezSaTiVdeeYWFCxdy/PhxsrOzOX78OO+88w4vv/wypiJ0cr3zzjuZNWuWw7J169bRvHlz3n//fZo3b866deuK7HiSiovNgh0RcV2ZtrmOXL1avl7gnqBMScESEmL/2171USrZEomkjKHXW5VsL0M6wscHwJph5NQpggKNpKUpsFjctVC2GNzuFIt4yv53QICFZdqnGOIVXYpSScoKbjWOjRs3kpGRwcKFC3nppZd45plneOmll1i4cCFZWVls3LixyARp0qRJHiv1rl276Hot72TXrl3ZtWtXkR1PUnG5ckWFr68Ff//r+VZtSnaFcxcxGlGmpTm4i+DlJas+SiSSMklwsIUpk9NpZthnV7JNjRqhMBpp6B9Lx44GcnPLT+yMKiGBrvxh/7tbt1webHGoSHJlR0d7065dONWrV6Fdu3Cio71vuU1JyeJW4/jnn38YMWIEoaGhDstDQ0MZPnw4f/31V7EKl5aWRlBQEABBQUGkp6cX6/EkFQNrIRpHl5CwMAujRmVSt27FSjGiTE0FsGYXuQGzzJUt+Y8gFZHyRXi4hSkTEmnCUQdLNsBD1f7g66+T8PEpPwVplAkJhJPAZ68cpGlTI0ePajA2aWJVsm+hvHp0tDfTpwcSG6tGCAWxsWqmTw+U93c5w61P9pUrV6hfv77TdfXr1yeujGQv+O233/jtt98AmD9/fp5BQVGiVquLtf3/MkXVt2lpamrUIE9bixcDaG+5/bKE4lpwo1/t2vjccL6q6tVRJSfn6QN5/xYvsn+Ll5v794svlDz3nIrsbKvlMzZWzXPPVcLf358hQ8qRz0EZoSTu35wcSLmShBE1PmFheIWGQvv2CJWKwAsX8Ctnz48yKws1mTw8OpyjWUreeksJ4zugXLWK0MxMqFPHvm1B+vettzR5smHl5Ch5661KPPGEr4u9/tuUxfevWyVbCIFW61wpcbW8KAkMDCQlJYWgoCBSUlIICAhwul2PHj3o0aOH/e+rV68Wm0yhoaHF2v5/maLq288/h5wcBVevOloRcnMhN1dBpUrlx0qSH9rTpwkFUtVqDDf0XaWgILRHj+bpT3n/Fi+yf4uXm/t39uxwu4JtIztbwezZ0LOnvA4FpSTu382bdTz6aBX+pjUNhSDn2vHC6tbl4PZkBjdSMm9eKnfcYShWOYoK/7NnuaRpzp5NaiIjU7nnHh/Oh9ajCZAZE0Ou//V82QXp34sXq7hYXrw6TnmmtN6/VatWdbnOrZJtMpnYsmULwsWUh9lcvFka2rRpw7Zt2xgwYADbtm2jbdu2xXo8ScVAqQRf37z37KBBoVSqZGHNmuRSkKp4uLmkug1z5cqoEhNl1UdJhUbmKC5/2AMfybVnFwFrhhGfvSc4F6smIaH8XD9VfDxrvEYyb0QI585doUcPPYrsugiFAvWRI3D33YVqt2pVM7GxeVU0VykDJWUTt0p2gwYN+OOPP9yuLyreffddjhw5QkZGBuPGjePBBx9kwIABLFy4kM2bNxMaGsrkyZOL7HiSiklqqoJXXgngkUeyuf12o8O6kBAL8fEVS+F0pWRbwsNRGI15Mo9IJBUJqYiUP2xKtg49wve624OxUSPCN3wCUK7S+KkSEriirUWotwXVtbFBrsoHc506txT8OGNGBtOnB5KTc70vvL0tzJiRcasiS0oQt0r2iy++WEJiwDPPPON0+Zw5c0pMBkn559IlFWvX+tK9ux5wVLJDQy0cPly+qonlhzIpCXAe+AjWXNlSyZZUVF5sE82kxIHkGK5/yry1Jl5sEw10Lj3BJC7R663/epFrD3wEqyU7iBQUCkFqavlRspUJCVxRViUszBoD8MgjVoPHT02aoPn330K3O3BgDikpShYs8CctTUmVKiZmzcpg4EBZ5KY8UeA7+eDBg2zcuJETJ04UhzwSyS0RF2c1JdycXQQgNNRMUpLyVgK+yxzK5GQsfn6g0zkstxWkkWn8JBWZAUMVLNNMIMg3FxBUD81imWYCA4aWnxRw/zUcLNk3KNnGxo1RIqjknVu+LNnx8cRbwggPt35zwsMt9gwj6vPnUWQU3vK8eLEflSubGTYsiw0brkoFuxzi9k5+9913+f333+1/r1u3jvnz5xMTE8Mrr7zi1pVEIikN4uNtSnbezAIhIRaMRgXp6RXnA6xMScnjKgI3WLJlaXVJBcYQFUWbd+9lU04X0lpHcc5Sk3s+7YkhKqq0RZO44PbbDbx0/58EkuagZJtr1sTi5cV9NXbToIHRTQtlCL0eZWoq8YZguyU7MtJIQoKKKzWs1R41R48WqukrV5TExakYOjSbN95Io0oVmS2nPOJWyT5+/Dht2rQBwGKxsGHDBiZNmsS8efOYPHkyGzZsKBEhJRJPiYtToVAIu1XhRjp2NDB7dnqFigNUJic7V7JtVR/LSJpNiaS4+DGlM20su0jZG0vWo49JBbuM07SpiYmd/8aHHAclG5UKU8OGLIt4nscfzy49AQuA6lomiy9GrefJJ60W68hIay2Gf1W3AViDHwvB/v3WDG633WbAbK6Y1Yr/C7i9atnZ2QQGBgJw7tw5jEYj7dq1A+C2224jMTGx+CWUSAqAwQDVqpnROHG9btHCyIQJmQ6VIMs7rpRsWfVR8l8h5c/TALRlF4s+CkYbE1PKEknccfWqkjMXvAAclWysftma48dLQ6xCYSv41aSVgvr1rYadyEirFf5IQgSWSpUKHfy4f78GtVrQtKmR0aODePhhGVtTHnGrZPv7+5Nwbbr50KFDNGzYEOU1M6Ber7f/XyIpK8ycmcHffyfgt3hxno+t8o8/SXhtLSkpFchdJDk5T9CjDXN4uHQXkVRotDExpP+4hwDS0GDkSGQ/gsaNk4p2GWb5cl86LBoLgMXbsXqhsVEjpsTPoNsdTgwHZRBVQgIJhPHZ3tu5csWqD4WFWXjqqQyatzBdr/xYCPbt09KkiREvL2jQwMSpU2oM5SN1uOQG3GrJ3bt3Z/78+Xz22WesX7+eO++8077uyJEjVKtWrbjlk0gKjEIBhpYtHT622pgYjOPn0mrxZDZuLN6ytCVZ5tmlJRtr8KN0F5FUZLQHDhBbP4pwEqjPKc4mBZGydCnaAwdKWzSJCwwGBV4qI0KhAC8vh3Wmxo1RIMpNnnNlfDz/0pwp7zXl3LnrGW5mzsygfXuDNfjx6FEoRE2RSZMymDLF6oLSpIkJo1HBqVNuE8JJyiBur9jAgQMJDg7mzJkzjBgxgs6dr6dESk9P57777it2ASWSgvDEE0H07JnLAw9EkbJ0KcGjRmFs1Aj1mTMYFi+DR4rXty062tsht2lsrJrp060uV0UeGZ6TgzI726WSbQ4PR3vmTNEeUyIpQ2ROmEDCVxYiOEc9xWl+jG+BISpK+mWXYfR6BVql0eoqonCcVTQ2bkwwR8nM0WAwQAkUlr4lVAkJXMFamTEs7LoirdfDqVNqWkU2wy83F/XZs5jq1y9Q2507XzdbN2lyzQXliIYmTUxFILmkpMhX27jzzjsZOXIkXbp0ybPc5p8tkZQF9Hr44QdvLl2yWkEMUVGYw8LQ7d5NzoAB0LUTgYEWkpKKT8meP9/foXgAQE6Okvnz/V3sUXiUKSlA3kI0NsyVK6NKSKBC5SyUSG5iVqdfeJk51K2eS3xuEJmZFccdrCJiMICXTcm+CUtEBMHeVmNEWlrZd0dVJiRwxbceYE3dZ2PdOm969QrnZKXbAVAfPlygdo8eVbN9u9ZuAK9b14ROJzhypGLVefgv4NaSvWjRIhQ3jTRVKhVhYWF06NCB6tWrF6twEklBsJXitaXv08bEoD57FgCftWvJvftuQkLu5+rV4puKLMkyz66qPdqwRERcr/roYhuJpLzT2XcvftoYDJ0HM+GLDzFc7Ql+fqUtlsQFer0CndLgVMlGoSCgmhecslZ9tKXFK6uoEhKI8+qBl1k4BNTbMowcym1AB7UazZEj5Pbv73G7//ufL998482RI1Z3P7UaXnopjcaNpRW7vOF2qFi5cmUiIiIcfkFBQVy+fJnZs2ezd+/ekpJTIsmXGwvRaGNiCB47FsU1K66pTh2Cxo0jTJtSbO4iSUlKe1ndmymOMs92JdtFRUdbGj+l9MuWVFBMJvj5QE3OBzWn7X1BfMhTVL64r7TFkrhhyJBsXqr3iXMlG6gfqeRxzWq8dIVTsEs0JiYhgSvq6oSFmR08Xxo0MKJUCo6e8sHUoEGBgx8PHNDQvLnR4Xvy6KPZtG0rIx/LG24t2Q888IDLdQcPHuTzzz+ndevWRS6URFIY4uKsynPlyma0Ww6QMXYsgfPnY7j9djT795O8fDnP/vQzhvv6FMvxfX0ttGhh5PBhjb2qGYC3t4UZMwpf9csV+bmLWCpXBqzWFlOTJkV+fImktElIUPJgzHN8WN3A/S1aYEJFzt9HUd3k3igpO3TqZCAk8GdElnPlN7KjN59seIw49U4sFCy5QonGxGB9t77R6UsuTGnhsNzbG+rUMXHsmBpjZCS6P//0uE29Hg4f1jB6dKbD8qwshV35rkhpaCs6hTbpNW/enHiZg1dyDWcp87QxMfgtXlyictSubSIiwkzmhAkoTNaptYwpU1CYzSizs+ny7l3cdZe+SI+ZnKwkJUWBlxds2HCVt99OpVo1EwqFoFo1E2++mVYsL/j83EXslmz5nEoqKDbXr7BgIyIoiLqq88z+ulMpSyVxx4kTak4kh7m0ZJsaN0YAiiMnCtx2ScbEYDajTEykUg1f6tTJO1MZGWmylldv2hRVXJz9fZ0fR49qMBgU3HabY9XLAwc0PPBAKHv2lPFoUIkDhVayU1JS8HHxkEj+ezhLmRc0bhyGli1LTIb77sslJiaB4GDrKF/z77+Y6tZF36UL5rAwvH79latXlfz9t7YwGZWckpKi4KGHQhgxIsQeXzhwYA7/+18yzz6byZYticWiYAOokpMRCgWWawWjbsZe9VEq2ZIKSmKi9RMWGm59+GpWSuVsQkBpiiTJh5kzA5l4djoWF/pDWo3GaDDy0eqCF18p6ZgYhdnM28cG8PffeRXfMWMyef31NIzXZhE9DX7cv98a3HjbbY6uIfYiNzL4sVzhVsmOj4/P87t8+TL79+/n3XffpWPHjiUlp6SMY4i6ljJv9Gj833yToHHjSFm6tFRTaWkPHsTQogUoleT27IluyxY2rtMwaFAoKSmF98u+0eevVavKHD+uZvLkDAefvNOn1bzzjn+x5jVVJicjAgOtUTHO8PbGEhgolWxJheWqTcmualWi6tQ0cMpYS8YhlGH0egVeIselJdurSiBKLKReLLhxwlXsS7HExMTHY0TNy792488/8yrZbdoY6dpVj6lpUwCP/bIfeSSbX35JoGpVR5/0oCBBlSpmjh6VubLLE26v1qRJk/IsUyqVhIaG0rFjRwYPHlxsgknKH5bAQJTp6fi/9x4ZzzxT4gr25MmVCAiw8OKL6SivXkV15QrG5s0ByO3ZE9/PPyci6SjQmatXlYSGFjyw5mafP6MRtFqRJy1g/fpWV5WTJ9W0bGnM005R4K4QjQ1zRIR0FylG/BYvxtCypcO9ro2JQXvgAJkTJpSiZP8NEi9arX2h1TUIoFZTHXH7qmD45zfU/SuXrnASp+j1CnRm10q2QgEh2gxSEwuuGE+fnsEzz1RCiOKPibFWe7TOFjrLgmI2w7ZtOiIiIgiLiPBYydZqoVkz51lEmjQxSkt2OcOtkv3ll1+WlBySCoD3Dz8AoG/XDp9Vq9B36lSiivbOnVqaN7cqtJqDBwEwtrAGpOi7dMHi7U3V4zuAzoXOle3M589gUDB/vr+DW0jt2ibUalHsluz8lGxLeLi0ZBcjNjcp26yNYutW+9+S4ufBTmfo/u5QvKoNJAeo0S4Y/gcX/7hMHc8zpklKEL0edJZsl0o2QJCvnpQ0tVVTdZWyyQmDB+egVMK8ef5cuaKialUzM2ZkFE9MTGIicVgHcjfmyLahUMC4cUEMjfyHrlWqoDlyBFu4oquBeHq6grff9ueRR7Kdputr0sTItm06ax/qivyUJMVA2c/2Xo4pK8GAJYE2Jgbf5csBEP7+pCxd6uCjXdwIYc0uUrmy1fphV7KbNbNu4O2NvmtXqu39GSh81UdPff40GqhVy8Tp08WrZJulJbtUsbtJjRlDROvWqB98sNTdpP5LVFfE0oPfMYeGAtCqvYJXwxcScXZXqcjzX3rnFxa9XoG3Kcu9kh1sIdlSCdW1OgeeIoQ1JmbXrgTuvjuXxo1NxRcTEx9vV7JvrPZoQ6mExo1NHMquh/rYMdTHj4PB4DZe6cABDStW+NlrPtzMww9ns27dVZcegpKyh1Syi5GyEAxYUmgPHGBV7VnU5iw+v//Kbc/ez/KhP6A9cKBEjp+eriAnR0lExDUl+1rQowi4HgSV26sXVRKtwSdJSYULhCmIz1/9+iYuXCi+wjeeuovIqo/FiyEqClOtWtYZg8xMlKmppS3Sf4ZffvdlG3dgCQsDoHp1M8/03EPdY7+BpeQLmfyX3vmF5dW5VxnPYpdKtt/ixTzQ4hAP8hWa48cBzwYq2dkK2raN4JtvrKkBw8Mt/PWXFmPxeOuhTEjgsndd+7Gc0bixkSOXQ8l4YiwKsxnVM8+4jVfav9/q292ihfN82LVrm2nVylgQ476klJFKdjFiiIoiZckSgkeOLDPBgMXFqspTePL4FM5TG4GS2Fg1kz9ux6rKU0rk+LZCNFWqXLdkG1o45i7V9+hBkCKVVfd+Ro8euYU6zowZGehuKpLgyufvvfdS+emnq4U6Tr4I4Zm7yA1VHyXFg3bHDuugrkYNUCgIeuIJfFesKG2x/hO8Fn077zPJrmQDXKgTxcm0iAJbQYsC+8zGqFFUmjixQr/zC0uvDlfpwD8ulWxDy5ZM3PoI41mC+vhxjwcqW7fquHJFZf8GdOmiJztbyb59xZPyThUfz/Bqv3Do0BX7MW+mSRMjqalKzvYagQBUK1aQ/dhjLu+H/fs11K1rolIl10aRH37wYtMm6StSXpBKdjGjMJtRZmbi/957bh+u8s78+f5kWxyLCxRbflInWCzQsaOe2rXNKJOSUF++bA96tG8TEoK5bWsePvsWNWsWLtp84MAceve2KujO8mDfOF3s7y9QKotnuliRlYXCYMjfki1zZRcJrqrIaWNiCB4zBoUQZEyZgik6GjQaAufMIeCVV0rFmvpfIj7dh3BFApZKlezLRq5/mDEsL7FZtJsxREUhvLzwiY6u0O/8wrJjm4Yz1HGtZEdFkbj4I+IVlfH+5luPByo//eRFsHcWXcxbAev3QKkU/LkmvljcdVQJCYiIcIKChEvLsq28+rGYDNBoEP7++Kxa5dKNcv9+bZ7UfTezeLEfy5f73ZLsZZGSrNRZkhRIyU5LS8uT0k/iHt2PPwJgaN3a7cNV3inJ/KTOiIw08c03SbRsacwT9Hgjub16sfewL7s2pBb6WGazglq1TFy6dIWdOxMcfP5s08VeGzeSmKhk+qO5HBq1ssini/MrRGPDXvVRPquFxpZRJjZWjRAKexW56GhvtAcOkNujB0KlIveuuxC9e5O0ejWG22/Hb+lSQnv3Rrt1q0N70ke3aDAaITnXj3CfTKsD7DVqNdZwigZo9u8vFbm0MTEor1pnsHxXrqyw7/zCIAQ8NLEhn/K4yzzZAIv+7UUVcQXD+QRy7747XwVbr4dNm7y4u0MCYU+ORRsTQ6VKgpZ1UohZl1Es7jrKhASWZj7Kxx/7utymRQsDW9/6lf5LHyDj6adRZGSQOXq003iltDQFFgu0auXev8WaYURdoTwA3b1jyzseKdn79+9n7NixPPHEE0yaNMnhJ3GNNiYG36++sv4hRIkHA5Yk1cKdV1Esjvyk+ZEn6PEGcnv1YjavMe/1wlvYDxzQ0KKF8xehISqK9OefJ2jsWCpPn8iazXXZfN+8Irdm2ZXsoCC325kjIqzbSyW70LirIpc5YQKao0cxtGuHuDbgMXTpwtX160mfORPtkSOEDB+O7tdfAemjW5TYMgSFBzgGttWua+EKVTDuOVbiMmljYggaOxbFNQ0oa8iQCvvOLwwmEwihQIce4e1agQpNslZ7TNJWwefrr/Ptv5gYHRkZSnqPCLC6aI4YQaUnn2RK3HM8MFpV9LMJQqBKSODL+O78/LOXy828vaFV6h9kLVtE5lNPIapUQbd7NylLl+aZaQkMFOzdG89jj2W5PXSTJkZSUlTExblW38qbVbhEK3WWMB4p2StWrGDQoEGsXr2aL7/80uEncY32wAFMVasCoDl0CGPr1k4frorA8/134oPjy6G48pM649VXA7jvPmuGAc3Bg5jq1HEIerRhrlePEL9ckhILd5ykJCWXLqndTumpkpJQABG/fkMV31SOGesX7mBu8NSSLas+3jruZmlU58+jOXqU3N69HVcqFGQ+9RQp770HFgvBo0cTMHeu9NF1QWGUAluGoNBgxwFvnTrWKfrzh/UUW9SbC7QHDpD+wgv2v1Xx8RX2nV8Y9Hpr/movcl26i2hjYqixZhEAFx59BoXRSPDo0W4V7Zo1zTzxRCadO+vRHD+OMjsbn3XrGMIXjFKuRH3iRJFmflFkZKDIzSXeEEx4uHtD0o/NnmXB3t6g0WAZMQLdli2Ya9VymkdfobheW8yVvK2PfwO4rvxYHq3CpT0TXpx4pGRnZmbSs2dPtNriCSCoqGSOHYv6yhWM9eujMBrR7N+PISqqQhap6Oy3l3b8g6+PGRDU5BxvvZpQbOmTbubsWRXZ2dYXuLOgxxsJruNLYo4/irS0Ah/n8GHri81dgRmv9esBECoVkfr9nNlfDDlaPVSyZdXHW8ddRhmvX34ByKtkXyNn8GCS1qwBhQK/jz+WPrpOKKxS0KCBiQMR3bmj3nmH5TYl+7SxJppjJWvNzpwwAcu1ga2penV0O3Zg6NSpQr7zC4PB4IGSfeAAmqkjALh8x/2Yw8IwVa+O1o37T/36JubOTcc34QL+r76K0GjI6dsXhcFA8pIfONvtObzXriV4xAh0P1vTuN7KrJIqIQGAhCx/p4VobiQmRsvbb/tjMID58ccB8Pn88zzbTZ5cibfeum65dZWppmF3qzHp5EnnefzKo1W4JCt1ljQeKdndu3dny5YtxS1LhUN19iwKvZ7soUMB0O4qndytJcFfe/zYSne+W3eVpBWfcp46PNhwd4kdPy5ORUTEDUGPbpTsoBaVSaMSbPqjwMe54w49e/fG0bq1c0u2bvNm66xF/foozGbqNVFx8pQGzY6inS72WMnGas1WXvsoSAqONaOMowOkbZbG69dfMUZGYq5Z03UD16KizJUrV+i4jMJSWKVApxU0T/sL/6qOPrH16pn5YM5J2vNPqfhlqy5dAiDngQdQJSSgPnmyxGUoq+ReS+qkQ+9Syc6cMAH/LtZS5MnZ3mQ8/TTaI0fyBLLbOHVKxd9/azGbBEFjxqAwGEh57z1SPvqIpDVrGKVaychK34BOhzI7m+BRowgZMOCWZpWU8fFk4kumXusyfZ+NyEgTJpPCWjOhVi303brhs3at1XfmGhYL/PijF8nJ158DQ1QUqe++S8gjjxD0+ON2eb17tWPPnjjGjnXuVlIercIzZmSg0Th/x5Z3PFKyT548yccff8zTTz/N3LlzHX4S19hyfBo6dMDYqFGFVrL/ORVBgDKDxo3N6CObkoMXmkOHSuz4cXEqKle2XPfHdvFCBghqbvVTzvxhZ6GOFRFhcVlty+uHH1AA6XPnYg4Lo5nlICERCnJ2Hi/UsVyhTE5GqFSIwMB8t7VERKCKiyvS4/+XGDgwh7ffTqVaNRMKhaBqVWtGmcF3xqL95x+XVmy4bn3K7dYNRW5uhY7LKCyFVQr+2WJmUe4YjKHhDsu9vQX3P+FDlaDs0lGyY2MRKhXZgwYBoNuxo8RlKKsEBVn4akw0vfnFbTGaKlXMTJ+eTqNGJrIfeQRTtWr4v/GG03z/n33my9ChIShWf4P20CGyxowht7+13KchKopODwZzJLUGh9f8TsKvv2KuWRPdrl1kDxtW6FklVUICSYTgpTU7LURzI40bW2c9jx61zoJmDxuGKj4er99+A6wzOW3aRJCRoWTDBi+HGRztnj0oTCa8f/2VnIED7fJWrmxBocAp5dEq/FjcAnq1umT/OzzczDujd/JY3IJSlKpo8NiS/cQTT3D//ffTrVs3h5/EtT+h5tgxhEKBqUEDDG3bot29u8Km9PorsSHtQ6yKZJM+bXlJ9xqaw4dL5NhmMyQkWAvReKJk9+hl4Pcec6j25/dgcJ8u6UaEgKlTA9m82XWOUuHvj9Dp0HfsSO499/DU6WnEbI9HPXmk5yfkAfYc2a7etDcgLdm3hl4PvXrlsnNnApcuXWHXLqsblO6331BYLO6V7AMHrNayjh1RpqZijIyUPro3UVil4JcNKmYyD8JC8qw7dlzDjzVGl0o/q2JjMVepgrlOHUy1aqGVSrYdb2/oWesoNbnoVskODBQ8/XQmjRqZQKcjY/JktPv3292zbFgtwN50bZ9G1TdeQN+xI+lz5jhs03FYFcAaHKlMTbXPAvp+9lmhB7vK+HhqcYHT+08yeLB7d8B69UxoNIJjx6zuHbl33WWd1frf/+yuUvHx1gFlSorK7iqlio3Fb/FihFqNUKnwvWEWbNcuLZMmVSLHyaFnzMjA29tRz1AqRZm2ChtatsRv/3Wj10sP7WbMmr4VIkDcIyX7zjvvdPn7r+POn1B97Bjm2rUR3t4Y2rZFmZ5uLa1awUhNFhw2NKJjncuoVFYrxEHv9iWmZOfmKhgwIIdWrQzWoiC1azsNerQREWGh5dC6+GReRfv33x4f5/JlJV984cv5864tbLo//kDfvj14e5PTty/KnBx0xeBqpUxJ8chVBKxuCq6qPsoy0PmzbZuOZs0qc/CgBrMZ3nrLn2++8cbr118xV6nidkCXOWGCtSJknToAqM+erbBxGYXFnTuOO67GWahMnEMhGhvLlvkx9vRs1MePo8hyn62hqFFdvoy5WjUA9J07o/vzTwfXgP8yKSkKNu6tTTzhbpXs6Ghvbr/9uuFqjfoxTHXr4v/WW1aryjUOHNAQF6fiwavLwGgk9e23HdI5AjRrZqRSJQsx36QSNG4caS+9BEDWo48WelZJlZCA8PKCAP+bD5cHjcbqM26fmVGryR4yBN3Wrbzxmo9LV6nAZ58Fo5GU998n49lnURgMBI8ahTYmhvh4Jd9+68OJE3mDHzt10vPGG2n2mbeICDMLFqSWWHxUYTBERfH6MiX/qm9DozByevk/FSZA3OXt8ccf1/1VN2/e7PL3X8edP6Hm2DGMjRsDYGjXDgDtzsK5KJRlrhxMpS6nadfS+lFs3NjIIVNjNEePlsjHxddXsGhRKr166dEcPOjWHxtA9d5HfPl3A/7VtsLrhtRq+SmWBw5YA39dBT0qr1xBc/w4+q5dAaubkDkkhDEvRrJwYdEWD/Ck2qMNS3g4CoMBhZOqj7IMdP5s3eqFWi1o1Mhazvi333R89qk3uq1bye3Vy7PZhLrW8svqc+eKWdryx8CBOTz88HVFuEoVxwJPrkhMUBJBPObQ0Dzr6tQxcSUrkGyLF5p//y1ymd2hio29rmRHRaHMyLDPsJU1SnqQffq0mkejh7Kf26xKqhNshqu4uBsMVzOC+eSOpWiOHcP7WmA5WAvQqJVm7j88n4znnsNcu3ae9lQqq+K5Y28QyUuWkjN4MEKnQ2E0FnpWSZmYyHq/ITz9TJA94N4dY8ZksnOnFi8vDe3ahfOJ/1P8zN3ExjlPJnH5sgqvmBhyBg4kt39/MsePtxqPfH3R7tlDkybWb9DNGUbMZhg6NIRffvGyz7zt3RvPgw/mkJmp4Phx58GSZQGfFrVoZjpApDjCgco9PFawb/QkaNBAU+ayqLhUsmNuePC2b9/u8vdfx216r3PnMF1Tss01amCOiLC6jFQwWnod5zT1ad/N2heNG5u4mBlCWq4OdQmUNrZYrEZaZXIy6thYt5lFALKbtOTJZVH8GP4YXr/+inbHDo8UywMHNKjVwv6CuxndtYGp/o47rAvUanLvvpuLcV7881fRvtyUycn55si2YcuV7SzDiL0M9MiRVJo0SaaYc8LWrTqiogx2P/y+fXPZu9+L2JwQcu++26M2TDVqIJTKEnkeyiMhIdct2YsXe2Z1S0zREEG8U0t27drXMoxQr2T9ss1mVFeuYL6WutXQuTNQNH7ZxZH7+OZBtmLr1mIdZNtS+Gm05LE423BluHp5UzeMTZrgv2CBPTVjzFYV3ZTb8G1dl6xRo1wed+bMdNZvzcXYOQrUaoyNG6M5fLjQs0qq+Hh2aqKIjvbOMwtzM9HR3sye7Tjb/czLdegjfsRfke50nxrqK5gjIkibP9+6wMuLtNdft8bWWCzUrm3Gx8fC0aOO35Wvv/bm2DEN992X9/kZPTqYESOCycrKf1BQ0iQnK1kwMY1jNKKZ5hgnLvh5NMNwsyfBhQuKMpeu0KWSPXPmTPv/bw52lIGP13HlN1gtLBeFxYKxUSPrAoXC6pddAS3ZqvPWFFrmWtYMC5GR1hfgIZqVSPDjqlU+NGxYmbQdVlccd9P3ANoe7dFpzCTFW1DHxhI8ZoxHiuWBA1oiI424MMCg++MPa7qpyEj7stx77yXScphTR4q2PFeBLNk2JduFX7YiNxdlZiY+336LvksXqWDfwNmzKs6fV9OtW659Wd++1g/Yt7pH0Hfo4FlDOh3matVQSSXbKadPXzdWnDvnWRaExHRvwklw+hzUqWN9Lx8L7uA29VtRo4yPR2EyYa5eHQBLSAjGJk1uWckurtzH9kH26NEEP/ww6qFDi3WQbUvhp3Ndv8Wt4Sp9+nTU587hc61Gx7baQ/lUMZLUBQtwWdscqFvXTETEdT9lY5MmqA8fdupC5wnKhASuqKsRGmpxd1jA+aABFIT65/C+mIi31tFo460x8rpxKunPPYfwvZ45R9+1Kzn33ov/okVoLp6ncWOTgyU7O1vBW28F0LbaBQYG/e7QpjYmhtl1VnHxoqpMpvI7/c0x3v6zGxepwXvGJ/lz6VaPXHnKQ7rCApVVl+TFWZCBt7eFF3ptBXBQuAxt26K+dAnl5cslKWKxkpsLLecOZ6VihH2KtEULI89MSiVCk1wiftlxcSr0egXhZ6yzBPkp2QoFhIQJLtfrBFirJnryUREC2rRxEShpsVj9se+4w8F9QN+xIw29znMlxZfMzCKyIFgsBfPJtlV9dJJhRHXhAkHjxyNUKszh4XivX4/v0qX5tvlf8eXeutVqvu7a9XpF03q1DbRQHeJr3+FQgNoBpjp1SsySXd4qvp0+raZTJz23327Ax8czxefgfZN5Neit69U7bsBmyT7p2xLNDe4AN96jxdFHqthYAPu7EKx+2drdu3EapeYhxaVMKDIz8fr5ZxTp6Xht346lT59iHWTbLNlab9eqhyvDVViYBc2JExgbNsR/4UK81q8n4Id1VBrYwZ6pwx3ffuvNhx9a3faMTZuiSklBeeVKIc7CarCIo3K+ObLB9aAhKdOLYVV+Y3Hd+Xb/6WpVjSzzfYYHmh8i54EH8uyT9uKLCJWKwOefp0Vzg0MehWXLfImLUzF37CmCx19TUI1Guwvg7fdWYuTILD75xI+//y5bNU/O7UwFoCEnCCUJbZCPR6485SFdoVSyb5GBA3N48800qlY1AQI/PwtvvpnGI37fI3Q6TDf4iNn9sitQKr9//9VyMSOYgBCVNcID68tw2nPZ1GqsLhFLdny8ivBwC16HD1r91jxIaxfmlU7y6XT0UVGoz5/HZ9WqfPf58sskXnnF+fSe5vBhVMnJ6G8OBtZoqNfW+mI/daRoMsso0tNRmM23bsnOzSX4kUdQZGeT8u67JPz+O+YaNQh45RV8V6xw22Z58+Uu7KDgzjv1vPZaqt0yCqDdu5dh5s8IqaUrUMiB2aZkF9J65inlseLb558ns2BBKt9/f5V7783NfwegUvolKkU4r3rn7y/Y8PJmnrg6H/WFCyiTkhzu0eLqI9U1A8rNSrZCr7+l935xKBO6338nrFs3fD/5BHQ6hEKB0oMS5reC/tpYVefjWvVwZrjS6QQvvJCO4bbbWHLuXurF/UXIhHGEKJOJ3hjg0Xvnzz+1LF7sh9kMpqbWPNyaI0cKfhI5OSjT0og3huRb7RHcZ8/JeuQRRhybw56vd3Hp0hWODJ3No6mLSX/xRafuNJYqVciYMgWvzZt5u8tXREcnWZdb4KefvOnTJ4dWoxqT9sYbhAwbRpW6dQkeOdI+OzFjRga1apkYOzaItm3LziD8aM0eeClyiWgVhh4tc96uxsas7vm68lT3Ty3Q8tJAKtlFwMCBOezalUCXLgaqVjUzcGAO6uPHMdWv72BlMTZpgsXHp0Ip2Tt3WkfE7eo5+vumpyvYW63PLU3JeUpcnJLKla3p+/KzYoNVuapycQ9XarYhecUKLL6+BM6Z49HHxVWMm27bNgD0XbrkWVevfz3uZAvqPfvybd8TClKIBuDbn4KppThPpfmvOwSGBL7wApqzZ0mfPp3cgQMRwcFc3bABS5Uq+L/6qltfVkPHjmSOGUPII48QcfvtBI0dW6Z9uQs7KKhTx8yIEdkOy7x++YWpmvdY9oXJmRHVJaY6dVCmp6N0EoDqjMJaWsvDFOrNhIRYqFnT8zy+ly6peH7fEE74uL5+rUc1Rjvd6qcbOGuWQ7yBuz66lVka9bVCNDcq2YYOHRBqNbpbUF5vJffxzeejTEoi+KGHCHnsMVAoWOM1kpr+SaiEidqGE/z0+KZiU7S7dDHw220TqRng+hmwGa7s1t1qJt5+2+qn//pfvXna8DbnqQ0oSLYEMda4mLXxPfI9dufOBlJTlRw6pMF4bYa5MDOtqsREALx9FB7ds65mu2fMyCD74YcRSiU+n3+OMi4Ovw8/JKdPHwxu3NCyRo7EGBlJ4JwXUGRb301KJWzcmMgbryfjs3IllaZMAZMJhcWCIisL5bXqxj4+gv79s0lOVnL5ctkZhJ8+oaCBOIHxzjtQhQfxxd7m/PabG5+ia8wafhwfHN/PPmQza3jZyeImlewiZOLEDObMSUcI0Bw9et0f24ZajbF163yV7PI0Fb9zp5bGyhME1Xe0Hr/xRgC9tryEMjnZqZvCjdiUCVvkdUEe9uhob/78U8e+fRrqX9rOGuWwfPfRHjjAawsNfPylAeHvT9bYsSiMRrw2bXK5z5tv+vPoo8Euxwu6bdswNm3qNAir2qCW/B54P52PfebxebmjIEq2zWJ3QdREcD0wZOO0ffh+/jkZkyaRNWmSfXtLWBiJ33+PpXJlQgYNwvum8r/arVupNHYsYd27E/jGGwgvL1RxcViCgzF07Fgk51cc2H1Pn3iC4GHDPArwPH5czcaNXvYqdQAIgdfPP6Pv1Anh709CguevUFsaP9WZM/lueyuW1vIwhXojx4+rWbjQj8REJQsX+hEVFZ7vPqdOqXkn/jGu+NZ1uc2+fRreExOx+PvjvXEj2Y8+ar/e7vroVmZpVLGxWCpVQvhdzyYkfH0xtG59S37ZM2ZkoFYXriKe/Xx27MD7228J69QJ3Y4dZA8ezMpWb/OEZRmXrvoiUHLBXJ2xhg9Zt6Z4DCPBwRY6a/7B28/9czNwYI49O8bOnQn2QNgvv/QBHC0dOQa1RwPIzp2tZvQdO3QIf39MtWsXSslWXgsg//6lrbz+elq+2zsbNNiy5/isW4ehdWt81q4l4LXXUJhM5Nxzj/tvvUaDoW1bvrjcjTqNa1GtWhXatg1n0/RdNL67DZVmz8ZUqxbC35+MCRNApSJo7Fh01zJpffutDxbLTX14wyC8NFzN4i+YaMgJjE2aYGrWlObqoxw75nyW6kb6zajJnMePXvtLUFNxgQUTD9JvhpsKvCWMx1+I7OxsTp06xaFDhxx+kutERRno1k2PMi0VVVycgz+2DUO7dmiOHEGRmemynfIyFW+xwJ5dGjpbtuVJndS4sZEMvY7z1HLrMnIryoRtX5NJASg4T20m/TQw330zJ0yg8v2tqFLFal3IHDkSi6+v24Itf/6pJSND4dSSrcjKQrtrF7nXUvflQaslt3dvdL/8WqDiN64oiJLtymL32ufN0HfuTMbUqXn2sVStStKXXyJ8fKg0fTreX32FIj2dwOnTCRk2DJ+NG0GjIWPiRIRWS+4dd6A5fZrAyZNv+dyKE0OHDgiNBq8tW0Ctxly5stvtv/rKh4kTgzCbr1909alTqM+eJbdXLz77zIfbb4/wWNG2uY554pddWGt0fLzSZbYDb29BYqKyzPlr//OPlrffDsBgsLq4nzunJiPDffxCYqK1b0Iru95u2zYdc18OIctstYj5rlhhf6dWruzaMmwfkI0ZQ8jAgQXKuKOKjbVnFrkRQ+fOaA4eRJGWv1LmjPvuy0GnE3h5WeyK2pAh2dSqlb+/kiEqirQ5cwgZNoygSZNQ5uaSumABqe+9x4v7BpNjcJyOyTFqeHH3wELJmR/Hj6tZc7kHei/XdQzcceVK4QeQYWEWIiONbN9ujbMwNmlyS5Zsc3j+g0EbtkFDbq7RYdBgaNkSzfHjqK5exSc6mty77yZw7tx8v/WrA8czjmXozRpAweXLap75ugdfpN9L+tNPo4qNJXn5cjJmzyb5449BqSR4zBh0mze77KvYWBWrV5eOq9m2sctZxWMYmzTB2KwZzXN3cvy42qNJ8ErtrcaLnbTjzJRFZUrBBg+V7K1btzJ27FjeeOMNlixZYv8t9SBA6r/Gv/9qWPeRdfoijyUba/CjwmJBu3evyzbsL/lRowi9554ym1YtN1fBA90vMYB1mGrVclhnyzDyL83dvshuZWrb6b4eWjWOHFGzaJEfOTkKRFAQWSNG4P3996hOncqzrclkva4tWjhP3af96y8URuP11H1OeCblRW7P2IauCNJeFkTJdvVCvUgNUhYvdhmRb65Zk6vr1vE/r5Hc9uwAqkU2pOmaV1lVbRpJn39O2ty5+KxZQ8rSpSR//jm5d9yB79df4/fuu4U+L0+4lVmegBdfRJWYiOG221AmJhLWowc+n3/u0p1p61Ydbdsa8PW9vt5WcS63Vy86dDBgsSj46af8pzXB2qeepvErjDX62DE1990XitkMWq3jOalUgpwcBZ07hzNtmvOPqCd9WxwK+unTary9LVSpYrErje4KPgEkXrYOkMNquLZ2NTBa3zt7567C2KgRws/PbryoUsUMOPaRQiF49lmrZdjQrp3VxeOff8i5/36P372q2FjWKIfl6SN9584oLBZ0f/3lUTs3o9HAr78m8uuviVy6dIVt2xLYtMmLiROD3AZUK7Kz8Z83j6Bp0+y+bplPPknOww8DJT/rsXmzjlGxr6P3KpzrUrWQ7AItv5k77tBjNFofeWOTJqjPnXNr8HKGMiGBU9Rj0Asd2b07f2urOwxRUSQvX45QKrF4e6Pdvt2jb/2r0W3IxtdhWTa+zKy0GPz8HNrQ9+xJ8kcfYQ4NJXj0aDd9pWDGjEql4mqmPXIYL18l5po1MTZrRgtxkMxMJZcu5X8f7l6XhA9ZNI+IQ7lyZbHGFBQGj5TsL774gsmTJ7N8+XI+/PBD+++DDz4obvnKHWvX+jB1cQty0dkL0dyIoXVrhFKZbyo/Q9u2oFCgPXgQc7VqZU7BBqt/17x7fqUvP+ZRshs3tn4s91fq6lbJvpWX/K3se+iQhvnzA4iPtz4CWWPGgE6H/4cf5tn2xAk1ublKbrvNdX5si5eX9Zq5QFevCodpinrDz/nKlh+qAijZLgNDfJOxhOQtR30jXx9oxljLMi5QG4GS89RmfNI8vki6G+3Bg9df5AoFyZ98grFePfzefRf1iRMFPidPKewsj9ePP+L76acYmjfn6saNpCxZgsJiodK0aQQ98USeQj1Xrig5dkzjkLoPrEq2oWVLLFWr0rChifr1jfzwg4eKplaLuUYNj5RsV762Wq01reDNbNumY8CAUEwmBRs2JLFgQarD9PS776aybVsCGo0gN9f5RzS/vi2uYMEzZ9TUqWNGqbyeFeTcOffO7lcv6vEmG+9qroOcG6ZbYyBOBrcjfcYMVHFx5AwezPefC/bu1XHvvTn2PgoLMyOEtfS2EBA4ezaqJGtQmc9XX3n84f7ybEcmHJ2cp4/Wnu+Mxdv7lgbZtWubqVfPel94e8N776Vy8aKKuXMD8g6QhMDvrbeIaN0a/w8+sLo3+fiQ8cwz+Kxebd/WZQrays7fdbdKbu617CJ+hVNO50b9gLfW0XrvrTUxN+oHj/Zv1szIxYsqatSoQtNP57KGIaiPHs1/xxtQxcdzTlmXHTv9MRpvPWOUoUsXsh9+GGVODtnDh3v0rXf57buitleZvRF9794kbtqEqW5d5iWNw1vjOKPqrTUxs4vrDC2efFP9Fi/m+/kXHAaY38+/kK8BZNcuDWM3DOZ8/TtAqbQq2Rwk3C/L/n12hTYmhj2bsumg+AfTgL6Y1qwpdBXP4sIjJdtisdCyjLkqlFW6dcsl26hlm8/dWJxMGwo/P4xNmuTrlx0wfz7K9HRMNWqg/fdfAspgTvILF1RYzl4L9KnpOEXj5yeoUcPEQZ92bpXsWwnouZV9Q0OtlrCkJOsjYAkLI2voULyjo1FdvOiw7fVKj85dPXTbtln9kV0l0AbqNxaY0BD780l7IYXCokxORuh0bssS23is70VU5J1SHtAjMd9958/3J0fv+HK1KWR5XuTe3iStXYuoVIngxx9HkZqab/uFwRAVRfrs2YQMG0bgzJkez/L4vf8+KJWkfPABKBTk3ncfSWvWkNO9O16bNhHRoYND6sJt26xTyvfErbIrMMr4eLR795LbqxfamBj8lyymb99c/vpLy9WrHrqM1KnjUa5sa6lxx2ApjUYAgh49wnnyyUr2j1mLFhEMHRpM9epmNmxIpHlzo1Of1nr1zKSmOpfz8mWVg5tE5chIgkeNcujb4gqoPHNGTb161nu0Vi3rs3v+vHslOyPRRATxiLC81R5tREy7H7Aq7PqePTHcfjtJ3+1i8uZBtG5t4MMPU+19tH9/PFOnZnDggJbcz3/CZ80aDE2aAJA9YIBHH25FejrP575AjlnnsDwnR8n8t4MwdOyIthB+2TExWkbfmUbShj0Oy7uYtvBsh22sXetLdG4fu4zqEycI7d2bgHffxRISQtorr6D591+SP/qIjGnTSFm61L6t06A8splzp+v4lFtBr1egwoTKz7PZn5vps7gzby7IcPRvXpBBn8Wd89335kHipSQ/nmB5gf3PlQkJXPFvAEBYmOfBuq7QxsTg9fPP1gHQqlUeKYiF+faJ4GCSvvySh6ttZblxBDUCU1EoBNVDs1immcDkiSlUq1b4b+rn6fcyZVELhwHmlEUt+Dz9Xrf77dunYU1SX1SNrW4f5ho1aOd3mDMDJ9CmjftvpXr/QRo0VdBPrMfQvj3izjsLXcWzuPDoy9C/f3++/fZbLJaiSUFWkYmKMqBT6PnB/yGXqSgM7dqh2bvXpbKl3bYN3+XLMdavT0JMDIZWrfD9+GN8P/64OEUvMA89FMK4z+/BHBSECMjrY/f662lM6rUf9fnzKNKdp76bMSMjz9S2pwE9M2ZkoFIVbt+blWyAzHHjQKHIM/IOCTFzzz05DmncbKhiY9GcOuXWVQSgfn2rEnEioyq6P//MVz532Ks95lPO22yGH481xtvLQnXFJRRYqMEF6kSkE9k7It/jFHSmwFK1KinLl6OKjSXoqaesAhQxXuvXE/jCCygMBnxXrfJoKl/7zz9o//2XT+5awe2PdLJbWdYm9CRl9Wqufv89wt+fgFdeodKECaiPHePf7y5TRXGFBj0i7BZev2tKuDkiwm7hvffeHCwWBT//7JnSYKpTx1paPR9nw4EDcxgyxDqta1Mm3nknlZiYBBo0MLJunY/9Y5aUpEKphJEjM6lWzf072tXHUqcTnDqlZm18D+pkHUadnkKdjH/5ZldDwJoPvzhcC0wmq3+1Tcn29xc89FA2deu69zVe9MjvHKOx00BjGwEBgpAQs7W4jUJB+syZvJv4KMYcM++/n5InM8ykSZn8/HMiNT9+E6HVkvLpp5gjIlDm5nr04VZdvswFnPuDXr6sQh8VhebUqQLnZv74Y192xdeh7syxaHfsQHXpEt5ffEHw6NHM6Pwbt9VKYPKSVsT2fIiQRx8lrHt3NEeOkDlqFAl//IHimvy258Q2mNIeOMA99zgG5dWsKVhWaTqD45fw2Wc+RZ4YymBQoEOP8C787IeroMj8cDZIzMaXV34o2CyxKiGByz7WgNvw8FvTiWyzRSlLl+YZALnj+YG7nWbVeH6g+4rSlpAQrm7YwENVt3E+LYjMQQ9yzlKTez7taU/xd/OgC6wz0/mpf1YXFkfDTzY+vBrdxu1+Zw/qCSaJgNbXZsOVSkzNmnqU/jf7yfEsv+dznuZ99NdmkgtbxbO48EjJ/uGHH4iOjmb48OGMHz/e4SdxxNvLQlfVdn7OcREEBxjatEGZne0yR6fv//6HwmIhfe5cUKlIWrPGmlbtjTfsxQ5KmytXlFy4oKaDaleeoEcb3bvraXKX1aXB1bkOHJjDqFGZ6HSWPJHX+TFwYA5Vq5rRaUwosFA9NMvjfUNCrMrG1avXFQRL1apkP/ggPmvXOmRE6dVLz8cfpzitAmwvpe4q6PEaNiX7iKYlXj94NrXpCk+rPa5a5cO+fVreWJDFkfHzsKDi7NRFbN+TSf/++eciDvNx7qvoLgepoW1bcnv0wGvLFvzfeMO+/Jaz4xiNBLz4IsETJmCuXh2Lvz9Cq8X300/x+tmNC47RSOCsWayu9CQT/3jUqauDsUULEv74g9y77sJn/XrC77qLT3Y0Y5+4jbCHHyJ45EgAfJcvxxIYSMDrr9uVlshIE4sWpdCnj2e5nc116qDMyEB5zRXBHX5+Ao1GcObMdWWiShULycl5b0SzWcG77+ZvUXb2EVWrBUJAv36hTJ/sxwVTNWumCWrxzFuN6NszgKioiFuaOXKFWg3HjsXx1FPXB8bvvJPKPfe4709lYiI6DJhDXVuyATZtSrRngDB07MjLXX9ks+5u6gYn59lWpYLgmF8wnrjI7HY/khlSHVPDhqhPnPDow62KjaUmF5yuUyjglTPD+ZDxtO3ZwGOf9nPnVGza5MXQx43kLHuPkOHDiWjfnqCpU1GmpxP65musPd+FD7JHsf3LVGrrj6ESJmr5JrLytrdApXLqPmCIiuLEgKdo2zYCrVbYldaTJ43cf3823/xRg1mzKvH220Xri6vPtuBFrkezcEWNq8HgpWz3bnM3o4qPJ05bAy8vgb//rY1CtAcOuBwAueORgI0smHjQwaK/YOJBHgnYmO8xLeHhXN2wAVGpEj7ffIOlcmVMDayWeWeZULp0yeX3372YOLGSPc+5Mwo7CD9z1GzPLGLD2LQp7x3sxeMjgtzum52tQPvPP9aYCw9T2pY0HinZEydO5IUXXmDmzJlMnDjR4SdxRBkXR1/T91zODXU5hWzz3XXqMmIwoPn3XwytWqHv1g0AERhI0tq11lQ8o0ahuIXKYUUVuLRrl9WFonP2r5hqOrfepKUp+DY2iliqunUZef75DM6ciWP5cjO1a5u5/37Pzk+3aCkJcQqeaPUnFlTs3HaehyN+80iZCwmxKho3X6PMJ58Es9lutTSZcJvpQLdtG+bKlTE1bOj2eP7+gjG3/02j+rl4/fQTtiomhVE+lcn5+1PHxiqZNy+AO+/M5YHQ3/BZu5aMZ55BuXIluj9jEALWrPFh3Trn1z862puELL9rLgrX8fa2MP019/JlPf444pp/u9f69becHUeZmEjIkCH4LV9Ozt13o7x6leQVK0j64ovr6al+/93pvr6ffILm2DFmqeaT48IXGUD4+JCyahVZQ4YAoO/RA68548h49lmyH3oIfc+emOrVQ5mWRvZjj9k/igqF9cMUHOyZRasgGUamT89g+/aEPEUl8/uYuQtgdPYRXbjQ6jahRU+O0dFXVo8XB4940//uVJ5+2nW+31tBqbT6GN9IVpb7WZrJn3fhKx7Ako+SHRFhQa2GixdVpKQoyJk1jfaZW/BbsiTPtorsbAJfeIE/qw9i/o67aNmyMt7bt9Hg4PdEf6tz0rojqkuXeI1ZqJSOz4xWK4iMNLJgTV0msYhLKQEe+7SvXOmLSgWPPZaFoVMnxLWCXzl9+5L0+eckrl9P0OalpL78CmO0q+zxExczQ5g+xd9t2wsW+JOVpaRlS8cZ1dzevRltWsqwLsd5911/Jk8OLLJg16dHxbGNrqWiZLsaDNbgIgWpKqVMTCSwkqBNG0N+k4n54moAlN+ALnPCBPrNqOlg0e83o6bHFlz16dMIhQJ9mzaojxwhvGNHq7ucwZBnpuCLL5KZNSud48c15OYq8ugQS5f6kpGhKPQg/MwlHxpy0iEbm7FZM9JMvvy+2cutYj98eBCDtj9nL/RXFslXybZYLCxZsoQGDRrQpEmTPD+JI5rjxxnFCo5/9oPdJeFmLFWrWn2tnQQ/+nzzDeqLF8mYPNnBHcBUvz4pixahOXSIwGnTClXgpSgDl3bt0uLtbaF1wibMNwU92khIUDF2Rh1+8+vvcuonIUFpV2IzM62BR7Gxnk0/Hw6NQm9UcXvSb5hq1UJz+LDHypyXF+zdG8f48Y7WWnOtWuQMGIDP6tUok5L4918NkZGV2bLFyUfWbEa3fXueUuqueP25i9x/cTGq5GS0f/1VaOVTmZyMOZ9R+7x5AZjN8Pbg3wkef3060hYYot4RwzffeDNjRmCeCO4ffvDimWcq0amTgTfesAbQgUCtFh7NFBiiokj69FOEWk3QU08RMnQoWY8+irFVK8C9EnjzOs2ePYR164Zm1y5S3n8f4+232y0/hg4dSP7oI7BYrDELN6VHVMbF4b9gAbnduxOb7BiJb+NGhVUbE4PXL7/wRtdoxv3xOPomzciYOpX0l18me9AglMnJTv0mv/nGm6ZNI6hWrYpDsR9nFCRXtkoFNWrk/UDl9zHLL4DR2XR7aKiFq2nOXV4ECt47fh9DB6faFXQQKJWC+fM9mzlyxfr1XszsexnlH9ddqN5/34/GjSqjXbTM6T5mM3x2sD0HdW3zLWu/YIEfDRtWpkOHcG67rTJfHm9Ldv/++H78sT3fsQ2/995DfekSpwZNRK0WZGUprbnlRU2mT6+U73tSdfkyPdVbEYCf3/WZuQULUvn116tERFiw4DzGwRmZmQrWrvXh3ntzqFzZgvfatSgzMsjt0QPtX38h1GqMbdpgatSIee9XzpuKz6DmjZec98/x42q++sqH4cOz8txjhg4dEIGBfBjxIk2aGPjyS58iC3at7JNGMw6XipLt1P9cY+R1ZqL24HkEwGxGefUqU7r9zZdf5j8bVRaxu6gsW0bS+vWkvPsuCrOZwFdeIaJNG3xvMvro/ozhOcWbbNyYyO+/e+XRIV55JYBp0wJ54d4/8SHLYd/8XFiMRggkjcjgyw4uRMZmzWjOv5jNCk6dch6fYTTCvj0aGpiPuS3eU9rkq2QrlUqUSiXGWwzW+q+gPnYMX7JRNmvgdjtD27Zod+92VJYNBvzef9/Bin0j+p49yZg+HZ/vviNgxgyHdZ5YRIsycGnnTi23N8lAa9HnySxio04dEzqdYH/QHS4t2QsX+tOhQwRGI7RpY+2LAwc8izwP6tWSBU/spvuZlQittsCpDiMiLLZK8A5YQkNR5Obi+9FHHDigQQgFTdP/ytO/mn//RZmaSu7NpdRdoO8UxZF5K7FgrbZY2CqJypSUfN1FZs9OZ8mSFBpc+cvhGLbAEO9/D/Dee6kIAY88EuwQRDduXBCtWhlZuTKZhx6yKmQLF6ZiMilcDhxvxtC1K1mjRqGwWBBaLQHvvUdEixYEjRsHubkEjR3rVAk0tGzJT49von3LQKpXq0Kbfi1Ym3IPaa+/Ts6gQWROmMDa+B52eVs+P4zlQzagOXuWoKefdvADD3j5ZRQmE6kvv0JAgPNBaUSExUGGlKVL+SqjL4dq9SZkglVRdec3GR1tHaikpqrghmI/rpQQc40aCJUqX0t2QoKS6dMDOXo07wfmxTbRTjMsvNgmGmViIqrLlzFGRhLy0EOEDB7s8XNRPSDV6fJqQZno/vqLSlOnMvD+bHbuTOCjj1Jo08ZAly5uzEwesH27jp/ONiPsyev3Q/WMY1iEgtNVnH84k5OVWISSMH/3aduio7354AOrtRYUmEwKnnsukJUt30BhNOL/3nv2bdUnTuC3dCnZDzzAq9+0vpZ7/zo5uap835Oq2FhW+j2JxaJgw4areXyGXeVTdzUzIQSMG5fJE09koY2JIfCFFwBIfeONPL67sVedK62ulr/+egB+foJJk5zMQmg05Hbvju/mX68FyrouXFJQft/szVoeKhUl+8ZZHBBotYIFU44xlC88Lq+uvHoVhcVSoBzZZY2bXVRyH3iApDVryHrwQVCrCXztNUL690d1/rzDu9nLy7kOAQp279Yy4tAsPmIM1UKzAYG/KjtfFxaNBg4G38HTUY5xSqYGDWimOQbA0aPO9YFDhzTk6FV0Zgf68mzJBujTpw8LFy7kyJEjxMXFER8fb/9JHNEcO4Y5IoJf91Th3ntDceXZYWjblrXx3Wl/e4h92uWHWYecWrFvJHPiRPQdOuD7v//hey3dnKcW0aIMXHrxxXSm9rFGu7uyZKvV0KCBkX8VLaxp3W6yNFos8PPPXkRF6dFooEULqw/qwYOeKdkhIRaGTPKmhriI5uRJh2l8T/jyS29WrMhr4cy96y7QavH9+GMO7IKwwFyazR6ep39127YhFAoMTkqpO2P1ah+aTxzEhci70Jw8iTI7G69Nm1CdPu15+iOTCWVqqkslW6+3fpyrVLHQq5fe7XRkzZpm+vfP5vRpjUMQnRDw4INZDvmh+/fPITLSSEqKZ/Oj38+/QNPls1FioU7OUT4e+A05DzyA9s8/CViwAEVODiHDhhFy//2EPPYYxubN8V25kh9eOMq47HevVaBTcIFajNF8xruZT3DypJpFi3yZOrWSgyXlmei7+XjAV3h//z1Bo0eDEGi3b8dn/Xou3/0wY0YFkpamRKm8WdEWpKUp+P13nf3DExfZmf37NXS9T2v3jXTnN1nggatGY03jd+6c2/47cEDDmjW+ZGTkfUUPGKpgmWYC1UOzrNkBAlP5SIxm+L8zqXzbbQQ98wya48exBAej++svcvv0yf+5yMnhNfNz+CgdfaG9vS0897KZ9OnT8YmOptK16qB9++by3XdJ1Di1/ZZ87U+fVlO3sYKUpUsJefRRgocNo/nqFwE4FeL8w2lTVsOD3Cv48+f7YzDkVRBfX1GP7CFD8FmzBtW1INTAWbMQfn6kv/BCod+TykuxrMgdRps2Bho2zOt+4C7oNDs773Pl7y945plMWrY0oj1wAFPNmhiaN8dSuXIe392qrrJCOFl++rSK33/X8eSTmQQHOx985vbqhSo5+ZaKvzhj9XfhvMFzpaJkw/VZnHfeSWXKlAz6j7XGdqg9LEqjulawrOfHo1i2zPnsWFnH1TchbeFC4v/6i6xHHkG7ezfh3boR/MQTDu8+V9c9Lk6Fds8e7h+Qw84DqWzvPoOLAY3pN726WxcWRXo66gsXHPyxAdBoqN1IhVZhcFn5cedO6yxNh6pnnWZyKyt4pGR/8sknHDx4kJdeeomnn36aSZMm2X8SR9THjmFs3Bi1Gvbt0/L33859+b5Iv5cnWM6leK/rysLa7nxWa6ZTK7YdhYLk1asx16xJwLx5BMye7bGlqigDlzp2NNDVx+ru4sqSDdao5MNpNVEYjXnyJ+/ZoyUhQWUPGtPprJUi9+93PwVs448/tMQvsZaKzb7/fo/TH9n4+Wcvvvgi78veEBVF6quvoszN5dAPCbTJ2kbq0iV5+lf3xx8Ymzf3KAgRrJZ9gJOX/MgeNAiEwHfFCiLuuIPvPjN6lP5IeS013s3HtPnJ1a1bhXr1qvDNN55N527dmtdFQAgF773nqCTqdNYgMk8CJr+ff4Epi1pwwVLDqihbavB09D2sDhxP/N69XP3iC3IGDgSFAt3OnSCEtZLi6dPMOjOObOF4TXKMal5+OZA77wxn/vxA9Pq8itPcnfeT068f0b+G0KGBhvCHH6CW8gLdvp/Nz6cimTMnjffec8wd/cIL6dSubeaxx0J4Pv05Pr/Sg65dw7FYFKxe7cPa+B5kTpjgdqBSGIXMVLduvmn8Dh/WoFAImjTJO4NoiIrink97cl5fBbPWm4tpQQw1rcISEkL69Okk/vQTKR9+iMJiweLlhc/atWjzyc/s8803PJq1nAVPHXBa/jlz0iRy7roLn+hoAl5+GbAO7i1PzCQ9spXbtt1hS99naNMGjEa8tmyh6sPWmBVXBWlswcphoe7fW+6ujSUoCKFQ4P/223h/8w26v/6yBj1/+WWh35N/na3OidxaPPJIltP1zmYgNGozubnwwAMhDpmO9uzRsGGDl91VOOvhh9GcPIn+rrvs29zou+sqK8SDD+a19terZ+aXXxIZNcp1ERZ9t24IjYbqvnkDRKHwwa76XIEOPZZbyC5SFDz0UA5PPZUJWi3Ghg09rvyojI/HiJrdZ8LzjRsol+h0pL31FlkjRqDQ6xFKJcYWLeyrXV336l6JIAQZM2cC0PS+KgSmXER97Jjbw322QE8PNpEb2SzvyuaNGaj+3mWaxJ3/aKmvPENwxzoenlzp4JGS/eWXX7r8lQT79+/n6aefZuLEiaxbt65EjlkozGY0J09iatSIDh30eHlZ2LzZuZL92qrGeSs2CR+ez5yVr3+v8PEh6auvQK3Gb+VKjy24znLvFiZwaft2Ldu26VBfuIDQ6bC4KU8dGWkkLs2PJILzvMh+/NELrVZw113XFbeePfUelQoWAsaPDmDxMmvqwPSXXvI4/ZGN0FCLw4ftRnKGDiWpzZ0cM9ajnekvAl55BZ9Vq/BbuBBtTAyKzEy0u3ejv+MOj4MXm6Zaq73tfWAOqe+/T9L//ocICCDroYeYc2WiR+mP7NUeg65HXd/oaw8K9HoFM2Z45jdZECVRobDGBx065D6H8eufNXJ6Lq9/1gjUagx33MHqkInUNp5EiYVaxpOMa7aF7mEHuGx0NQ0rWLw4mZur9N0ob6cLXzNSsZKLOeHW7BiWGlxQ12XipEzGjs3K44s8blwWGzYkMmRIFosW+TN1aiWSk63nnZio8sj3tDAKmal2bau7iJu4isOHNdSubcbPz/k2prp1URgMKPR6cvr0Ie7QIZLWrSPz6adRZGQQNH48ycuWkfbmmyhMJoJHjnT9XJjN+C1bhqFlS/pNr+48PZpCQcqKFRhatsR32TKCxowhdvS7VM84wYZ0N0YBN6SlKbh6VUXduiZ81q61uhap1dT55gN8dCaXBWlycxUEKVIIqeL+8+Xu2ug7dwaVCp/vviNw7lyMDRrg/c03GFq2dKqw+ihy3L8nTSY6JP/MirtXcd99zgeithmIGro4ezakFbrxrJ7+J0JYq3LaBsv9+oUyYUKQ/f7z2roVhcVCbo8eTtu+OaC1alUTjzySyZQpjoq0zWLetKkpT7DpjQh/f/RRUbzm9XKRBrvqcym17CI3k56u4MwZFaam19LFeRDnpEpIIAHrOyosrGKmNNbGxOD9/ff2OJSQoUOx5e9z6teuMzEv5xkyx4zBXL06AJebdOUFXubENyfdHmvfLiUnaYClWWSedcZmzfjC+ADj73Ve3OzhO87wguXFMu2PDR4q2aWJxWJhxYoVzJo1i4ULFxITE8OlS5dKWyynqM6dQ5Gbi7FxY7y9rTmzN292HkzkSrlxFaCV51gXLoBKhVAo8PWwlOiAATn4+oprD4m1sMVLLxU8cGnRIn/mzfNHdf48pho1cJrb7hoPPJDD3zGXqeSd66BkCwE//eRF5856hzRIU6Zk8OabafnKEBurIjVLS/NaKZirVMESEuJx+iOwKqYbNniTkKB0GjGvjYlBdfoMb3b5mn5ev6DMyKDSzJn4vf8+IY8+SsDcuShMJiwhIR4HL9a48A9+3kaOC2smEkNUlLXcbf36XLRUc7rPzfeJs5Lqt+JrX1Al8fXXA+jfP9St28iljEpOl19Mr8TgwSE81EvFpEWt7Zbui5YarPilPkcOCAJ8nBf8qR6aTf/+uS6LJfj6Wt2MDMJxFkRvVPHVV64/6N7e8PbbaYSEmPNUb/OkD519dHQ64VYJMdepgzIrC2Wi64JAhw5paNbMRRyMxULwiBGg15M5fDjav/92eLZudG/JGTjQGjNgsdjTTd6M16+/oj571p4n3iUaDUlffYUlLAzvH3+kifdZwgJyCh0Ed/Wqktq1TUSaDhLw6qsAKEwm0ufO4QXlq3QP3ed0v953ppEsgu3VD13hVCG4piAaoqJIWbwYoVCgSEtDlZBg77M8CqtPCpHiCI0bunZPUcXH423JZmD3eHx8nCtrthmIc5oGWFBx3lCVez7tSfen67Jx41U2b/ZyGCxbLApmzbIO9HS//445NBSjm/fMjYPIXbsSeOutdBQKOHVKzYMPBtO2bTgNGlSmcePKHl2z3F69ePTq+yx49iiBgdZ+rFLF8xSrTvvAgDVPdhlQsh95JISpUythbNIEVVISymuuIO5QxscTh9WodKs5sssiN8afpL7/PlmjRqHds8fuJuYsO9GSai/xcOgmMp96yt6OqFqZV3mBLb+5n5U+c8mbBuqzTg11xqZNAVAfOuw0R3d/zY88xuoy7Y8NHirZc+bMYe7cuU5/xc2pU6eoXLkyERERqNVqOnXqxK58qiWWFprjxwEwXSun3r17LufOqTlzxlFREsJNuWs3OYht2B+EBQtAqUTfubNHFtzt23UkJ6tYsCCVrVsTWbw4hYEDPcvva8NohL17NbRrZ0B9/nyeSo83ExJioUZtMDeJdFAEFApYvTqZ555zXqQmvzjbQ4esflqt9P9gbHZ9qsmT9Ec2y6/V3zVvxLw2JoafHt9Ec9URpu14iP5+v/HF1V6kvv46OYMHIwDf/7d33+FRVVsDh39nWjqphN57Db0FpCoqelVQr9goYvkEu5QL135FREWRIqKggqhYwK4oqJQgXUBAeg0lIb1MnznfH0OGhLQJmckkZL3Pkwdypu2zc2ZmnX3WXvuzz1B1OkLnzPF48mLu+Idp0Vrl0KGLOWZ57a1Tx7Ngt6gguzy59iUFIkW57TYjZrOGZcuKPxksLkAPDlax2RQ27quJjUs/fBWCFRNvXP11icsmF9feGTMyix2I8qQfiqo97cljL/3SadhQ5fXXMxg+3MTChSHs3194NDavwkhxkx/NZtd5a3FBdo2pUzHs2UPugw+SdaFmd/73f4H0FkUh85VXgAufT0V0UuiCBdgbNMB8/fUl7iuAftcucDgwDx6M7nwS96TP4Y/VOmz3Ty2UklLaFZ5mzRwkJCRzg3YV1u7dUfMC/IAAxn3Ujus1q4p8nCYlBaDEhWig6IAgf4BoGToU0y23oOAqO5n/PZw/YN0w9VOO0JQZzxUfMHz9qcIMJmOtU7/ENlnj48kdNQoAR5067tfUaEo+WQ78/XcsgwaVOKBRnPnzQ0hICOTMGVfwnp2t8egqjfmaawC4y7GUd991fe689VZGuarJuBejqQRBds+eVv76y0BW8w4AHqWMaM+f50xIc8A7qz1WNpfOP8l64QVXmtjKlQRdyCLI/97Y/dwHjDr6P7InTkQNuzggERWl0rLGaTYfr1tseURVhcMZsTSPSSvy5N7eti2b6Enz//s3mzcXfO8dPKjjn1VJ2KNjcDRr5qW99w2P3rGDBg1i4MCB7p/OnTuTkZFBhw4dfN0+0tLSiM5XEzg6Opq0tKLzxPxNt38/qqK4ayYPGmQhLs7KiBEx1K9fh+7dYxkxIppZs8KYOupAoRWbgjAyddSBUl8n741gvvlmTP/6FwG//07GG2+UOoL78cfBREY6uPZaMy1a2LnpJjNBQZ6XAlyxIoju3WthMmlYuTKI5Yd7uOv+luSTT4L5IOBB14dYvi/5Fi3stG9f8A2oqhAfH8vLLxdeQTK/vXv1aDQqnU//VCDI9kRxX2ZTp4bz2GMR3P9sa8ZZ3nFNvlMVElNCeNA2ny83NyPztddI2rUL8+DBKHZ7mSdbPvhgDqNGFczZtNkgXJvDpakQweTyzLCCJ05FBdnlybUvLRC5VJs2dvr1s/DBByHFngjdeKOp0L4EBTl59dVMvvkmBZWiR0tPZ0eUumxySe2tF110tYnitudX3j7Mv5jH8OEmMjIU3n03lFtvjebtt0MKTGhdfsiVc6wtZvJjYCAkJCQzfnzhnFndnj2ELFuGpUcPsi5UmyjtCo6jYUOyJ04k8NdfCy2EpN+6FcO2beQ+8ACFlkC8RP5RrrQlS0hdtoyRQSuxo+f7H0OIvvNOwqZPB5utTOUpcx5+GO3Zs1j79kXV6dDv3UtW13h2DHm0yBOnufNq8Ahv4yglyIaSVwc0JCQQ8McfpS5nHdqpEf/hFdZsimLTpsKBtqrC7M+asILh0KDkCViGhASCP/0Ua+fO6A4cIPD7i5UXSjpZ1mRmuiZkX4YNGwqnLHpylcZZp46rqsQvv9CixYX5JIdKPkZK8/ndn/IuD1aKILtXLwtWq8JWexeg+AXT4GLZUU1yMkFRAfTrZ6HR6U3lW2CrEio0/0RRSH//fSw9ehDx1FPod+++eJvFQo2XX8bWujXGO+4o9Fzd22fxp6MH2r+K/lxKS3aS4ahB0yZFf5GoISHUaaQh0xJUaLBi/vxQ/vX7f1z1sctbrNzX1Mt09uxZ9Zlnnrnch3ts48aN6jvvvOP+fe3ateqiRYsK3OfXX39VJ0+erE6ePFlVVVW1WCw++3E4HMXfNny46mzWzP37hx/a1OBgp+r6GM77cao33eR6jo+e3KY25Jiq4FAjSFcXPvl3mdtj3bxZVUG1vfxyifc7ccKi6nRO9fHH7e5tu3db1CVLbB69TlH7EkyOumTkd6U+dmDTY2r3WsdVFVTLP/+oFotFfWLEMfW3cUuK7NtevRxqfHzx/WyxWNQbbnCorRrmqiqo1s8/L1OfKcqlf5OLf5v69Yu7TVUbNnS6+nzVKtUZE6Pap05VnTExqnXVqss+nkwmi3rXXXYVVHXMtSfVhg2dKrja8CzPqY527VSL2ey+v+3FF139mJlZ4G8TFHTJ3ybYqX74YeG/bUnHr6c/X39tVUEt8tjZs8eihoc71QYNHGr9+k5VUZxqw4YF2+Lax+L793J/lty2Ug0OsBfshwC7uuS2lZd3fBfThyX95O/fvXstalTUxb+n+3mDnOrHyt2qfdKksu1jerrqbN1addatq1rOnCnbY3NzVUenTqqzdm3VkpR0sb033aQ6IyNVS2pqqc9he/nlQse6ddUqtUPtc2rP5udVR5Mmqgqqs149j94X48fb1bFj7aolJUV1Kopq/+9/VUf79qrj2mvV2bNtKqjqsWOF+/fqTufUHmxSrevXX/axkvcezmvjpb8X+ElNVY0EqvVqZKo9ezpUs7ng7evWud4PCxmnWtLSPHvNfftUJ6jO4GD3axb7vghLVZ06nWo5f/6y9rW4zztFKfx+u/TzwfbCC6oKqvnoMTU83Kk+8ID9strgfr7p012fXx4cb77+SUpy9c2zz9pUZ6NGqv2220r92zlat1YdgwaVfLyU8OONz1+//Jw6pTobNlSd9eurlhMnXH/LGTNc37/ff1/kY959PU0FVd39yPwib9//wz71Gn5Wf5tU9OMtFotqu/U2NUqT5vqcyLe9aUOrejMrVNvrr1eK/i3JZZ+WRkVFceLECW/G+0WKjo4mNd8SxKmpqUTmm/QFMGTIEIbkmxCScuFyoi/ExMQU+/w1d+3C3rIl6RdunzYttojSTArbtjlISUlhyFN1uPPznugSE8l+7DGyn5pU9rbXr090377o5swh5c47i12c4cMPQ7DbDdxySwopKa7RuffeC2P+/FB69TpfoFxbUYraFyMhTP1lAINLaXOL1lY+/rEeThRyNmzgwM/HefOra4kdm0arfI/N69t27WrwySfBJCWloC3mav3zz2vI+eBHmAdpjRrhKEO/1a0beyHvsaB69Rxs3pxM/fp1UNXCZ8enTkHWN98Q+dBDpF64pGbo1InIkSM9ThmxWGD/fj316zuIjnbyyy8BLFsWzcSJWTz+uJb/cZacHIW4uFqcaX8dmm0vYHrtNXIvLO1d49QpgkNCSMnJca3eA1x9NcycGcSMGWGcOaOlbl0HU6Zkc/XVJi7tlpKOX0917QrNmtXk88/tDB6c7t6uqjB2bDSKovLFF+cLLXKR97ITJ7rSdfJfTQgKcjJxYiYpKZd/KXrwWz149aqsQv0weHiPUvf56qvh1Vc968OS5O/fiAgwGGrBJQuQGE0KU3UzGL73QfdnRX4vvVSDjAyFN94oODchfNo0DPv3k/rpp1hUlTI1DNC/8goxw4Zhe/JJMmfORHvkCLHffkvOI4+QbTa78lRKMnq069/8r9u+PS8t0FCzpoNzjdYTfeutBGzaRM6995LVvn2Jbfztt5rUresg648/iFFVMlq0IKhVKwISEoi5JxOI5q+/sjAYLubpx8TEcDZZoQlJpOlrlel9n1/ounVY58/HmtfG9u0xzJ+PYd06coq4MhZbP4apMUsZv3k8H3+cU2DZ93nzIgjRObgtdBUpphcorm5rgdcEogYPRr9tG6bffiOnffti3xcvhbyMNa4XqVZrmf/mUPznXd26jkLvi0s/H3R9+xILmD5fzqBBjxAS4iAl5fJX+FzySxs6cw0djMbSj7cK0K5dDGvWqExp0wbdjh3Ff060b49h3jyiR47EDmhGjnR9B5RyjF/KG5+/fqHRoHvvPWKGDUO5+mpSP/mE2OnTMQ8aRI7RiOHFFwulabburiNUk8uRNceILmKfa574g1U8TPKQX4rtk9CWLejg3MWu7T1ISckAIClJw9GTtXmYDaS3vwZbETFERatbQglBj9JFfvvttwI/P//8M6+88gotS1lK2huaNWvG2bNnSU5Oxm63s3HjRrp161b6Ayua2Yzu2DHsrVq5N5WWK2tISEDJzSV7/HiCly7lu1dP8uGHZb+MlvPQQ2jPnSNo5cpi7zNmTC7ffHOe5s0vBj69ellxOBS2by+9ZF55Jmq2HBSLkRCO0JQa06ezZqprBairHy76wOzY0YbJpCl2pSdw1YHulvEbzogIHPWKnjRYnNLykEtKHSipZrInFi8O4frra9KxYy169IglJ0fDJ5+k8thjF1MDQkNVrrnGwldHupE9aCg1XnzRlQvLhSXVLynf9+GHwaSkaIq9LO5tGg18+mka77yTXmC7osCsWRksXpxW5EqFecqaolIWJaUH+PKxxUlKKvoj9pS9TrE52WvXBpCcXPD9FvDrr4R8+CE5DzzgWmH0Mtg6dsTavTshy5Zh2LyZ0IULQa/H1qFDuS57d+9uo3FjB4aNG9FfKNkV/OWXJc4RcTrh2DFXZZG8Y9vWqZNrEtq5czSu4fqiPH688OfO+cxAapFU6pLqJSnrctb2li0ZY17Af/6TRa9eFydAZmcrfPttIP+OXU1w/fAyvWbu2LFoMzPdFRmKel+8Pvko956bddmpIlD2eRf5Ba5Zg6NWLQJ/+YW5czN4+ulsj6spFWXmn0P4TnvzZeWW+8ILL2TxwguZ2Nq1Q3f0KIqx+NQybVISitPJuP1TuDp0Y5kXEavq7O3bk/PII+gPHqTmoEEoubmYbrih2LSwZs3sJI5+gpuOzinyhEq3dx+qXo+9RfEL99nat6cju9l/QO+e/Lh1qyte6RO0o3B97UrIoyN9/fr1BX527txJq1atKqROtlarZezYsbz88ss88cQT9O7dmwYNGvj8dctKd/gwitOJ7cKkRyglWMu3tGn21KmkL1jAr+8k8cr/Qjxe8COPZcAAbG3aEPruu8WWIdJqYcCW2QW++Lp1s6LVONk+9+9SX6PYfalTerm9Nm1cOVc72t6B7tgxVjpvpktnC3XqFD07u1Mn1/137iy6CP2BAzoWLAghe+dJVz52GXOySgvySvpSKuuXc34rVgTxxht5eZAXJ1ympmoK7cIttxjJydGw4f55OGrWJPKhh1AyMwut9uh0wrx5oaxfX3SpSF+pV8/B118HuXONO3WqxYoVQTRp4qBnz6IrhOTni4C2Miq2rmxImnshlPzMZtekns7mTe73qub8eSKeegp7w4YFSjdejpwJE1A1GiL/7/8I/vJLzP36ET55ske50yXZsWg/z9yTTeqCd7HXrYutQ4cSJ2OfPavFbNbQrJkdw86d2OvVwxkT464o0DhjFxqNyokTBU+0HQ44bwwlVp9eYBlmX7O1bk3g0YNMeCiDyMiLf7O0NA29e1sZp/+ozCf7lquuwt60KSGLF7u3Xfq+uFP/OUCxpfs8UZ6TWmunTmgyMwlYt85VtrQMufZFsTj0GPSVZ8Jgr15W2rSxY2/bFkVV0f3zT5H306SmUmPqVFSdjkN1++I8k1ymNRmuFDlPP41xxAi0WVnY2rWjxv/+V+xVXEUBe78+KGYzhu3bC90+5vMRXB+wutir7+AKsm/gex7s+ieWC+e2W7YYCFJMtOuhp9hL3ZWIR0H2pRVFpkyZwh133EFYWMkTJ7ylS5cuzJ49mzlz5jB8+PAKec2yyhvBsecLsksK1ooaEX30lUByTHrefz+01NfLq6dav34devSsxQdd30B/4AABv/9e6L7TpoXz9tuhWOPiCnzxRe3aQBflL9antiv19aZMyUanu3RinpEp/yl+QYM8rVrZ0WmdnD3u4EC3W9lhac+I9EUFlsDOr2lTO/ffn+OebHOpP/4I4KWXwlEOHi3zpMc8JQV5vhppLUupvYEDLfz11znirgoi/Z130CYmEjVmDJrUVHeQbUhIYM/UHzhzRsctt1RskLpiRRBPPXVx5cXz57U8+WTEZZdzu1IV9xnwzPUb0BiNaC5ZNffAAT0Oh0LbXgbXe3XDBiKefBJNVhaazEysXbuWqz2WQYPImjLFNSpnNhOwbZvHqU4lObklgwWWsWwOGYg1Ph7dwYOkv/NOsVd4jhxxBc/NmrlGsvNK09kvBNkhB/dQr56j0II0OTnQJuyke6S7othbtkSxWtEdP87WrXruvTcKkwkaNXKwdEkqPVN/do9Ie0yjIXfMGAx//YV+584i7xK4ejX2Jk1wNG1arvZf7kmtNT6erClTUOx2Do1dQNy/+/LjY19e9vFicegI1Feu0nfffBPIz5l9gOInP0aMH48mJ4eMmTM5a2hEVI9GZVqT4UqS8dZbGP/1Lwy7d5c68f8Xx2A6s4Oc1TsL3XYgrTa6GkWXOM7jjI5mcO2/eanWbHdd94n3neR3dQD06lKOvag4HgXZY8aMKXL7uHHjvNqYqihv1rF+/35UgwF7kybuy2klBWtFjYg2H9mB6683sWhRCBkZxY/O5l98xL1a5FdDWVrj/whdsKDAfVNSNCxbFkxqqsaV2vDOO0SNHk2tLl2IfPBBelwfyq7j0ZeueF7IDTeY0OlUgoOdrlJlhrPMb/qKRx/W4Ts2kFGjPnd/2IW9/3mHJqFJ3H58FlF33VVkoK3RuJZt79Kl6FnHe/boqR1tppbt9GUH2aXxxUhrWUrt6fW4R8ysXbuRe+edBGzejH7XLpyRke4Rpc+TBhIY6GTo0IrNbyxqyWqbTfGoNnd1kv8zAFzvn5kzMxl+4aTo0uXV9+51Xb1pPaIZ6QsWEDVmDIG//Yaq15P23nteuUSdO348lu6uCieXlq67XINe601goGsxFUt8PNr0dJyRkcVe4dFqVXr3ttAiOsW1rHKnToCrao6jdm30e/fyzDNZjBpV8PJ9eDhs73A3o5oUHkzwpbw0QN2BA9hsCmvWBBIXV9s1yNG9Jp/m3IjjMpZ2Nt52G86QkAKj2XkUo5GAjRvLNYrtDbljxqAaDDRK+Iozah3+Cby8FT7tdnCoWgwGzytaVYS33w5j4TeNcdaoUWQZv4DffiNw/XqMt92G6d//5vx5DdFto8qUJnglMfz5JwEbNpRalQcgMCqInXRm+28Fv5/U5FQOOxrTtFHpVz1t7dtj+fsY5865wtWa+zfTky1Ye/Ys345UEI+CbEcRgZDdbsdZVIXwasY9OrxpE/bmzTFs3lzgclpZg7XHH88mO1vDokXFj2YXNyI6TXmZgIQE9H9fTP/44osgbDaFu+4ygs1G0LffojEa0SYlYe3WjQdfDmfnzqSSrtgAsHFjAGazhnnz0klMPMvRqC7c1rX0coPgKjloenc21vh4evWysn6/gzr/7kbg+vVEPPVUkYG2zeZaWbCoMnH79unpWOuM634+CrJ9oaxl4lJTNdx0UwxffRVE1iuvYO3cGQVXfeXIhx4iee67fL21CUOHmkuduOpt5anNXd3kfQbccIOZsDCVW24xFVsrOyzMyVVXmWnY0IGtY0eUC++N3Pvv91oOqCEhAd2RIx59SXqqRg2VNm1sfPRRCNFPPEpjjvHtgqJr4INroa4vv0yl/hnXZeT86Qe2tm3R//MPw4aZ6dGj8JewJiXFo/J93mRv0QJVUdAdPMi5c1o0GpXcXI1rkOOsgQd4j+WJZc+VV8PCMN5+O0Hffeeu/53HsGEDisVSrnxsbzBs3gxOJ3VjzASTy5G1pS/aUhSLxXVSfumqw/7Ws6eVrVsNGNt0LBRkK7m5hE+Zgq1lSzJffZXcXIXcXA2xsU6P0wSvJPnLeGZPnFjqKssdO1rRa+xsOVILJefiVe9z645jIZDGHUpPc7S1a0f3Q5/z3H9D2b1bz5vzo0k11C53iltFKTHIzluExmazFUoZefzxxytk4mNllzfxTb9rFzid7gPwcr8Q27Wz8+CDOe485kudOaPh9OmiA5nErAicoaGEXBjNVlVYtiyEHj0stKp5nui77iJk2TKcgYE4Q0MJ/OMP6uxfX2DFxeL89FMgwcFOrrrKAmYz2nPnsDdq5NE+5Tz8MM+vvZYmTepQv34devaM5YO+75D19NMEf/EFUffeS/4lnQwJCfz+xDqGDo1l//6Cedkmk6tWa5x+H86gIOzlvIxakco6ASkqyklyssaVgqHRkLpkCY5atTD89RfGe+/lbKu+dOxo80s+c3nqSldXQ4aYSUrSsmePHkfduqh6PdpLguwbbzTz6adpaDRQ45lnUCwWckeOJHjpUq8Ew2X9kvTUihVB7N2rx+lUUFWFEzTmsa+HFZs+lJeKnpcmYevY0X2brV07dIcOkXbWyu+/B2AyXbxi8v33ClcdWcLp4Oblam9ZqUFBOBo2RH/gADNmhOF0Fq609NL3fS7ruXNHj0axWgn++OMC2wNXr8YZGurXEbu848V0ww3o0lNp0cTMsV8SL+t4CQ5WOdv1ah6q/60PWnr5evWyYDRq2Bp7rSsnO9+gT9irr6I9c4aM116DgABsNrj9diMdOpSyWtoVqqwT/4OCoGPTTDaqvV0naxec2OyaNN+kT3SRj8vP1r497dnDgb/hl18Cmb5tGM4ObVwLClQBJQbZeYvQaDSaAovRDBo0iHHjxvH0009XVDsrNWuXLqjBwej37y/z4iRFefbZLK6/vujL/6GharFrRtSt68B4110Effcd2sRE/vzTwLFjOu65+jg1b7wRw+bNOENCSFuyBNOIEaiKQuSDD/L5S6d58cXiF39xOGDVqkAGDbIQGAi6U6dc2z0MslesCOK990KxWhV3esukSeEsaTQV4623EvjHH0SOHg1Op/tDvcNgV9rBpZMf8yZCdTEmYG/TpkpMfMhT1lxvRYGbbzaxfn0Aycka9P/8AzabewSy4ZH1fPJJGkOGFL/cs6+Up2JBdTVokAVFUVm9OgB0OuwNGxYYyXY6L650GvDzzwR/8QWWnj3JfP11rwXD5a2OU5yi0oeMzsBi04cGDKjJSy/VwLBrF7ZmzVBrXPz8sbVrh2K3s+XrDO6+O7pAlaHDB1U22XsQUKvi05LsLVuiO3Cg+EpLKZc3H8HRvDnm/v0JWbr04gGgqgSuWeOqJFPaZUYfci98dsMNKA4HLRsZ2Rve67KOF0WBKGsSQWGV6zO7Vy/X1ZJ16lVoTCb3ia9+xw5CFi8md/RobBcqmkVEqLz5ZoZrsKkaupyJ/12v0rKV7rDuYpBd6+zfjAn6hGZdSq+mZmvfng78zdEzwaxfqyOO3QT2qTpXsEsMsgcMGMCAAQOYOXOm+/8DBgygf//+dOrUCV0pK4RVF4YdO1ANBrIfe8xrl18//TSItm1dOX9dutRixAhX3nSNGiqzZmUUGeD06WPh25NdQVUJee89oqKc3DngKGPejEdz7hzGO+8k7YMPsMbHYx46FI3VSs7993Noh5WPPgpxz969VE6OwsCBFncwmLdSnb2UJdXzFPUFnDfhL+OttzDecgtBa9agi493j7LVvrkzERFOdu8uGGS3bm3n4P7T/Ovs+1UqVSRPWdOHhg834XQqfP/WuQIjkGffXoj5gef8NvHGl2X4rlTR0U46d7axZo1rBMbRpEmBIPvoUS2tWtXhl18CCH3vPQAyZ8wAvBcMl6c6TknKkj5kMrkmPgYHOV2THi/kY+fJK8vV3LQHKFjGL/m4CQMWQuuVPjnc22ytWqE7etQnV3Fyx4xBe+4cgT/+CIBu71605875PR8773jJuzR/Xc0tXHezk6yHyn68pKVpmHZyPDttpU+0r0ixsU6aNbOxz+xanlu/dy9YrURMnIizdm2yp0xx39fhKLaAlyjGgCEO/hW9AfP6i6tF9jj3A/N7LyI6uvTUIUeDBrQPPozDqWHbjiD6sa7K5GODhznZdevWZfXq1bzwwgvu0et9+/axceNGnzauKihw+XXSJK+MOK1YEcS0aRFkZrpy/pKStGzaZGDBAldN6hEjCgc4M2ZkcuyYnrt+up/b1OW0e/+/DBlckw1/aPnadC0Zr71G5iuvuL9gLb174wwLQ3fqFF0fbIPZrLB7d9EjJuHhrrP3vMl1upMnAXB4sKQ6lPIFrChkzJnjKhW1YwemG27AGh+PokBcnJWdOwu3KST5JME5Kdg6dPDo9auyFi3sdOhgZcUvMQVGIL/LGkijzL38s+ry8iO9obqU4fOmRx/N5uGHXbmJ9iZNXKNmF7619+7VY7EoNAhMxrBzJ6YRI7DnS8mrzDmgxZYqDMsotO3ECdeE7ebRKWiTkwsF2Y7GjXEGB9Mi+U/3/fMkJ9qoRRJqbMXmZINr8qNitzNt1IFCgxzBirFcV3Esgwdjb9yYkA8+AFypIuCqBlMZOOvUwREby78dn/Dii1mXVeY6JUXD65kPctBW+VL8vvsuhTcXWlB1OvT79hE6fz76/fvJeOUV1NCLJ3RLlwbTrFkdUlMrR53vqqB/fwvvj/2FegfWo6SlgcVC5sFULG08PNlSFI7GXFwb5RPu5LOzA33UWu/z6EhZvnw5v//+O0OGDHGvphMdHc0333zj08ZVBb64/DpjRph7kshFCh9/fHHhl0sDnFtvNbF8eQrdu1v4Sr2VkzRCReEkjbhf/yGfqHde0nADloEDCfz1V3p0dQVHf/5ZOKBVVdi/X1fg7F174gTO4GCc0aXnU0Hp+buGjRvRHT+OCgR/8YX7BCUuzsaBA7oCC6g9+2wNls5zPa4qjmRfjvHjc7jtkVDMvS+OQH79dRCxtZw0fu4WP7ZMlNXVV1vcqWD2Jk3QmM1ozp0DXFVzDAaVLj+8DnY72U895c+mlklR6UOBipmX6swpdN+88n2tzK6RrUITmLRa7K1bE3X4L6KjC5bxSzrrpDbncFbwxEcA24UTnn83WF9gkKOh4Szzm88s30mmRkPuqFEEbN2Kbs8eAlevxtq5s1/2s0iKgi0uDv2uXVitrkV4yiqvgpU+qPIFqPWWzcOwbRv2Fi0I/OUXwmbPxtynD/pDhwrcLzlZi80GERGVa/JmZWeJjyedCAL+/BPdoUN0d2zioe2eDRisWBHES6cfcP+eQk0mPlu7ypSL9ehoX7t2LZMnTyY+Ph7lwqoZsbGxJCf7bxStsvDF5dfLrdwQGFjM5VmrrsjcSPPQoWhTUqh1fButW9vYtKlwkL1vn47Bg2MLHNC6Eydc+dgeLgJTYr3wC1cC0hYuRB0yBDU01H0lYMQII0uXprnTrh0O+PTTYI7sdaDqdNjyra55JbvxRjOjRhndo0fp6Qq//x7ITTeZqlJKurjg0CEdP/4YWKjCyJ49elo1NhLx2RKMI0d6POehMrg0fUhRVFpEJnHviVe4NA/t6FFXkN06eYPrfdyu8IiWrV079Hv30rCho8BIdvOIFPqwEYeHJ/jeZG/eHFWjQX/gQIFBjqPRXbmtc9GLmJSFkpOD02Cgxmuvod+5E/PgweVaXdHbrHFxaI8cpX27WsyeXfac+LyBI0Nw5fvQym7bmfF3a/nAcS/6gwdR9XoM//xT6AQwJUVDTIxTPnfLaMrXA2mj7MewIQH7X/s5QSMatPFs4uKMGWGYHAWrkBS3vkRl5FGQ7XQ6CbxkJqfZbC60TXhHeXL+yhKgmwcORNXpCPz1VwYNMhMUVDjZ7Oefg9BoVPr3v/hFqT1xwuPKIlBy/m7+KwHOO+9Ee/48OY89hmHXLpo3d9C/v8U97+f4cS1Go4bOli2upVgDKnaVQ3/KyFD44osgVBV+/NFVlvHmmyU9oyp6770QnngiAlN912Vz3bFjqKoryO5s3Qw6HdmPPebnVpZd/sBz6tRs/k5rxDpzDww7dhS4X6tWNkaPziX6ny2uFXKL+B6xtW2LJiuLlx85xP/+l+nePnvIN7zFE/4Z4Q0MxNGoEbqDB/M11IYmKanMqz0WxdqzJ4qiELh6NYqq4ryw0mtlKVVm69QJDSqNYrI5eLDs87Esua7vr4DgyjeSrQzozZbIa/jxyMVlutPefbfAANqKFUF89VUQyckaevSIrTIjqZVBi1ZOktRaJP5xksQtqahoaNLVs3kVZ4qpplbc9srGo6O9U6dOLFmyBNuFmc+qqrJ8+XK6lnP1MVG08lRuqBdt9Hi7Gh6OtVcvAletYtq0bBYtSi90n59+CqRHDysxMRfa43SiO3myzKNsxeXv5r8S4LzpJpxBQegOHnRfCdi0ycCqVa4v4byFOrqc+7napIrkWbUqkMcfj2THDj1ffx1E06b2altGqqobMsRMTo6GjacaoxoM6I4dw26HB4ef5I4Tr5M7ahTOOnX83cxyGTMmhzq1bExiJoYNBeenXHONhZf/l4F+9273So+Xyhvd7skWWra8uPKrkpyMGhhYIE+2Itlat0Z34OL6ANpz51CcTu8E2fHxZEyfDoAzJISwV1/1ymqc3pL3t2odcrJAxRePH5/tyhcxhFTOggk9B2hYpxuEE4XcceMKBdiTJoVjNmuAixWyJND2TPfurr/9lpP1Ob7RlXLctLlnM0jrxRQT0xSzvbLxKMgeNWoU6enpjB49GqPRyL333sv58+e56667fN2+aqk8lRuei/+BIEPB5ciDDHaei/+hyPubhw5Ff/gw2iNHgALlqjl2TMs//+i59tqL5QQ1SUkoFkuZRrI9FhqK+brrCPr+ezC7XnPBglCmT3ddFtq7V49e56RjxoZqF2Rff70ZnU5l5Mho/vzTQHa2wsqV8gFfFfXtayUgQGXN78HYGzVCe/w4ej08c/YRhgavI2fCBH83sdyCguDpSTnYgsLIXFtwqeqUFA2ao8fQZGYWmvSYx96mDaqikLLlFJ98Esz58xrS0hSaLpzGJ8FjPU5V8zZ7y5auVTovpMBoT58G8EqQDWC64w6s7dujyc31SjlYb3JGRWFv2JC29t2cPKktUL/cEwM6n8eKnq4t0nzUwvLpG72HdEsoW+6eUagufXELwFWVlAV/6/rbHMICLGykD0fPufqsVdIGj1KhJj9nLTKmmfxc6atFVgalBtlOp5NNmzbx2GOPMX/+fF5++WXmzJnDxIkTCQqSL3lfudzKDdfP78vMN7ILBuhvZHP9/L5F3t98zTUABP7yCw8+GMl990W6b/v5Z9cIcv4gW3fiBOB5jeyyMo0YgSYzk8A1awBXhZEjR3RkZytoNNCnVRIGbNUuyP7110BUFfcqc+fPa2UkpYoKDlaJj7ewerUrL1t37Bhnfj1M9g9byH3gAZxRUf5uolfcfruJ38e8Q/2/16AYXaNOaWkKcXG1+fBt1yhWcakQanAwjiZNOPVXFhMnRvD333rOn9dy0hgDNfwX2NhatUJxONBdGJTIC7LtXgqyDQkJaM+c8epqnN5ki4ujfep6VFXhyJGyXa7XmIzosaMJrXyfWYaEBGwfrASg98cTaaw5yU9jfkWzbiMrVwYVuwCcrHDrGXunjvR2biBB6ccA/uCFbl/S4IlxHqVCDR9uYuYb2TQIPo+CkwZhacx8I7vKVLMqNcjWaDQsWbIEg8FAeHg4zZs3JyIiogKaJi5XWQJ0R/362Nq1I3DVKsLDnfz5Z4B7wat77zWybFkqDRo4CJ0/3/UFcCHItjdq5JNJOZa+fXHExhK0YgXgqjCiqgp79uiZPDmbb4e9BVDkZKkr2YwZYTgcRdcaF1XP4MFmEk/AaUdtdMeP89LT0FezEWtcXKWZ6FZeGg3Y+/YhzV6Dv5YeBS5WFmme9RfOwEDsJUxetrVrR8vEtQCcOKHl/HnX11XNaHuxj/G1vJKK+gspI9rERAAcdeuW+7l9tRqnN1k7daJP2o8888RZoqLKVmFj23YD45lLqlr5TiK/XqYyzfHShd8UElNCuM/8Du3GXsuECZElLgAnSmeNj2fM0wb+o5lBLzbz34P3lSkV6o5aqzkW2JrMx5/imL4Fd9Ra7eMWe49H6SJdu3Zl27Ztvm6L8BPz0KEYtm2jd7tUsrM17Nvnyn0OCVEZMMB1WdQaF0fkQw8RsGEDqkaD9uRJ30zK0ekw3XwzgWvWoKSlERfnyjvetcvVJv2ePdgbN0YNq17B5eVWnBGV0623mjj4wXc03fQVitnM7pQGdKifQsSTT1aaiW7eYO3endHKEsa81ovcXMVdWaTt2T+wt29PsdELrsmP9U9vIyjIyfHjOlJSXMd6dG3/pIoA2Js2RdVq3XnZ2tOnXZVOvHBV11ercXqTLS6OBiTyWKdfqVu3bEH2wYMG5jMek9Y/+fQleX7bcEzWgseizaElxxHCBx+kFrsAnKxw67mrJjTjlmtS2UwPztx+v8cBdlU4+SyJRzMQbDYbs2bNomXLlkRHR7vL+AFMuALyB6s78zXXEDZrFv3Nq4D7+fNPA4mJWg4f1vHQQzno9Rc+8N95h+i773aV2ZswwWeTcowjRhC6cCFB339P9L33Ur++nXnzQvnss2BW5Jpp1qV6pYqAa8Tk9OnCb1cZSamaQkNVGNKT7CefRH3pbY7ThPvPLyH9o8oz0c0b1OBgJrZZQf99w1i4EMxmBb1epfnBX7DefUeJj7W1a4cCNInN5sSJAOrXc41gx9Tz48S5gADsTZu6K4xoz5zxWj52UWVfrfHxlep4sHXogKoopCUc5XgdHe3aeX5VIa+6iL6G/5aJL05xgxU2m2uiLrimAcyYEcaZM1rq1nUwZUrVSVmoDL6dcZLnfv6QZGKJWJTOK0EH+NeU0leNLunkszK9N4rj0Uh2gwYNuOWWW2jXrh21a9emVq1a7h9R9dnat8dety7NNn9Fo0Z2Nm0ysGRJMJ9/HlxgoEmblIRis6HJyvLppBx7u3bYWrUi+KuvAPjqq1TGjs3l0CE9Dc5sq3b52FC+ijOickpIMDD0h0ms1QwAoM3QWlXiS6OsOg8NZwRf8fbsUBYuDMVmg5aWPXxiu63Ex+Utr94k+BwnTmipH57JTXxNeP2QEh/na/aWLS+mi5w+jaN+fb+2pyKpoaHYW7Tg6ZWDefjhyNIfkI/VeGHxsRqVr/SqJ2VzZYXby/ftjJM8NacjyWosABlqJE/N6ci3M06W+lhfrEVSkTwKsm+77bZif8QVQFGwXHMNAWvX0rOrkU2bAli3LoDkZI27goU2MZHwyZNRL9Tw9emkHEXBNHw4hm3b0B4/zpYtBubNCwVU4tjFp5nDfPO6lVh5Ks6Iykmng807QpmpTAGg5x9vVZlLoGVhiY+nFxux2hSsVgVQOEFjHl8+pMSJu87atXFERTGr5Ry++iqFG+OO8DW34KwZU3GNL4K9VSu0J06gmExoExO9ko9dldji4miXs4Vjx3TuVRw9YTG6BgkMEZVvfQ0ZxPCt6R+1wkhwgW1Ggpn+0ZW/oFzlqwov/MI8dCifmm/hu++Dycx01QLNydG4Klh8GUDk6NEoJhPpb71F9qRJPs+LMt5yC6qi8N3Lx5k4MfxC+STXl/MTH/SpllU1ZCTlytLb8gfB5LBd6Q6o9NRt56cxv15xgba1Sxfm8ChwycRdi7bkibuKgr1tWxof30BUlIqSfB4AZ4x/g2xby5Yoqop+61Y0RqPX0kWqCmunTrQ3bcfhUDh2rAypO1YbgZjQhlW+z24ZxPCtxOyIMm2/kkiQLQCw9OrFVGVGockfJpOGmc9oMPzzDzn/93+Yb7kF8P2kHGe9elh79+alVVddWAAgX5vMUlVDVH3ff+bEognGYteSV9HgQdt8vl7m2SINVUZAAKdoUORNpU3ctbVrR8o/Gbz2agjNx97M3Sz1z2qP+eRVRAn8/XfAezWyqwpbXBxtcC0jX5aVHyf1Xo2JYAgJLv3OfiCDGL5TnlWsqzoJsoWLwcAptejcwsSscEzXX0/2tGkFtvs6L8o4YgSnHEVfipWqGqKqe37bcBzOS04grTqe3zbcTy3ynfo1MovcXtqXrK1dO4xWHW+9HU6WKQADVhx+Hsm2N2mCqtcTkBdkV6OcbHDlyrfUHUXBWaaVHxWTK2hVgytnkC18pzqn40iQLdzqReYUub2B5jQZr75a4ausmYcNowGnirytOpwBiytbdSrLOPX+YwSTW2CbJ1+ytrZtacQJNIrrCzpWk4Lq73Ua9HrszZqhP3QIqH4j2QQEoG/bmM9aTSvTaO9H2zrxmPZt0F55x7coWXVOx/H4NHTXrl0cP34cs9lcYPu///1vrzdK+MeU/2QzaZIWIxdn7weTy9SHTqJGNanw9qhhYTzf5VMm7Pi/ApMmqssZsLiyVaeyjP96NIbQuY8wzfo8p9T61KttY/I0Y6lfsvbmzdEZNNTATIY1mFphuX5bUr1Au1q2RL9/P2pAAM7oaH83p8LZ4uK49et5nGswHk/H6jadakyCsx+Tfds0UUkNH26qFkH1pTx6dyxatIg5c+Zw9OhRUlNTC/yIK8c9me8wv/6LNNSdRlFUGnGcuR3nMTLyJ7+16V+PxrCQcTQITELBSf3almpzBiyubNXpEmrowoXc3m4XJ9RG2GrWZvO2FO6otbr01S31epbEPk621VX27eWcx/0+6Tl0/nycga4KGY66dUFRfLL6bWVm7dSJk9lRfD4nF7uHpbItFoVAbRnKkQhxBfBoJDshIYGZM2cS4+dcOOFb1rg47kkbzSj7TJwREThDQ1FO5ZIe967f2qTfv587wr7nruxPcYaHc27bXgwbN2KYv6vK1MkUoih5J4rVYYELa1wcoW++CbhGQQ0bN7pXcSvJihVBTDr7Ig5cKQapjkgmTXKdmPirn6xxcUTNng248rHzr0hXXdji4viDATwxsxVdb0iiWbPSr75YbAoGja0CWidE5eHRSHZYWBghIf5dAED4njU+nozXXwdAycpCk51N+rvv+nWBDGuXLmguFGO1tW3r/nK+kpaeFtVXdaloYI2PJ/P55wFQcnLcQWlpny0zZoRhchRcvMRk8m91IWt8PBn/+x8ASlqax/tyJbG3aEHrgKMAHD6s9+gxFpuWQK3nK0QKcSUoNshOSkpy/9xwww28/fbbHDx4sMD2pKSkimyrqADmm27C2qEDitNJ7pgxfv/isMbHk/nccwAoZnO1/EIT4kpguvNOzEOGELBpk8crxlbWyaHm4cNxhoRg2LvXp6vfVlo6Hc3auy6Ee1rGL5QcagYUXWVGiCtVse+ORx99tNC2HTt2FNq2fPly77ZI+JUhIQHt6dNkP/44wUuWYOnTx+9fIMZ77yXwp58IXL+e7Mcf93t7hBBlZ9i4Ef2OHWX6bKmsk0MNmzahBgSQPW5cpfmcrGhBXZpTf3sihw5GeHT/z+o/gTMmhjSW+rZhQlQixQbZEjxXP/lzC63x8Vj69KkUI8eGjRvR791bqQJ/IYTnLvez5fluK3j0/PACi2QFGew8320F0LcCWl5YoX2Jj68Un5MVzdapE23Zy+G/e3l0f8VoRA2qfKs9CuFLHuVkL168uMjtH374oTfbIvzMsGtXgS8KX6/q6FGb8n2hZU+c6PPl3IUQ3ne5ny0336Xwrv5hGhrOouCkYUQm7+of5ua7/FfGrzJ+TvqDNS6Od/g/vhzp2cj0I2f+y5unpOSvqF4UVVVLXcN31KhRfPTRR4W2jx07ttgA3J/OnDnjs+eOiYkhJSXFZ89fnRXVt6Hz52ONiyswQmRISMCwS6qLXA45fn1L+tf7DAkJRI0ahcZkQo2IIHXhwmo1YlyRynT8qiq/tXiOqcorJJpiSq2O06+Bhe6NzzFrfSMvtrhqkc8H3/JX/9atW/TK1FBKCb/ffvsNAIfD4f5/nuTkZMLC/DfDW1QPRQXS1vh4+ZIVopqwxsdjGjGCkI8/xvnAA/LeryRWrAxmkmUuJqerZvjp0zomTQoHii6vaHHqCQhwFtouxJWsxCB7/fr1ANjtdvf/84SHhzN+/HjftUwIIUS1Z0hIIPDHH8l+/HFCFy/G0K2bBNqVwMxpuAPsPCaThpnTYPjwS+7scGAmCEOA/1frFKIilRhkP3ehdNpnn33GHXfcUSENEkIIIaDwJMPA664jcuTIajfJsDJKzI4oYXvBkWzFaMRMJAGBpWanCnFF8ajAZV6AnZmZidlsLnBbrVq1vN8qIYQQ1d6lkwzVAQPckwwlyPavspRXVIxGGnGCmhGyrLqoXjwKsnfu3Mk777xDRkZGoduk1J8QQghfkDkZldeUKdlMmhSOyXSxSFlQkJMpU7IL3VcxGtlLF9Kvm42JVhXZTCH8yqMge9GiRYwYMYIBAwZgMBh83SYhhBBCVGLDh5vQHTzAk3M6YCKYhppE/jPuNP8a3rDQfRWjEQA1OLiimymEX3lUJzsnJ4err75aAmwhhBBCYEhI4P5lw0js9S8s9Ruz/bNN3L9sWJFrGOSkWBnA7/ywr6UfWiqE/3gUZA8aNIjff//d120RQgghRBWQly+v79kB/ZlErN27F7sojynDxloGkGSs4YeWCuE/HqWLHDp0iJ9++olvvvmGiIiIAre98MILvmiXEEIIISqpvHz5HRvsfOlsy1P/nCWsmHx5a5ZrwqMh1KOQQ4grhkdH/KBBgxg0aJCv2yKEEEKIKuSUoSnv0ZN7d31PWFzRqzlasy8E2SESZIvqxaMjfsCAAT5uhhBCCCGqmsiWkQCkHcqkaTH3yQuy9aH6CmqVEJWDx6eVv//+O+vWrSMtLY2oqCiuuuoqBg4c6Mu2CSGEEKISi27hWko9/YSx2PvorUY6s4Oo2lEV1SwhKgWPguwVK1awdu1abrzxRmJiYkhJSeHbb78lPT2d4YXWTxVCCCFEdRAd41rFMfW0rdj7tA09wQ4e4cxVxyuoVUJUDh4F2WvWrOH555+nZs2a7m1xcXE899xzEmQLIYQQ1VREhJNgjRlLavEj2YrJhKrXg17SRUT14lEJP4vFQo0aBUvvhIWFYbXKEqlCCCFEdaXRwLkxjzA551lQ1SLvk3C0Pt2dmzl8WCY+iurFoyC7U6dOvP3225w5cwar1crp06eZO3cucXFxvm6fEEIIISoxR5PGaEwmNOfPF3l7SmYA2x2dsdsruGFC+JlHp5Vjx45l8eLFTJw4Ebvdjk6no3fv3owZM6bcDfjzzz/54osvOH36NNOnT6dZs2bu21auXMlvv/2GRqNhzJgxdOrUqdyvJ4QQQgjveWvPdeQQwJQTJ7DGxha63WpyjXAbDEWPdAtxpfIoyA4ODmbChAk8/PDDZGdnExYWhkbj0SB4qRo0aMDTTz/NwoULC2xPTExk48aNzJo1i/T0dF566SVmz57ttdcVQgghRPntPl+fv7mJacd/hO7dC91uuRBkBwRIkC2qlxKD7JSUlCK3p6Wluf8fExNTrgbUr1+/yO1bt26lT58+6PV6YmNjqV27NocPH6Zly5blej0hhBBCeE9UgwCSiUV34kSRt1struA6MLAiWyWE/5UYZI8fP77UJ1i+fLnXGpNfWloaLVq0cP8eFRVVILgXQgghhP9FxypkUQPb0TNF3l5LTSI+fDeBgTWLvF2IK1WJQXbDhg2x2Wz079+ffv36ERV1eYXkX3rpJTIyMgptv+OOO+hexKUlALWYWcpFWb16NatXrwZgxowZ5R5dL4lOp/Pp81dn0re+J33sW9K/viX961uX27+NG7vSOLNPGKlTxONvD/qB2zsfwd7os3K3sSqT49e3KmP/lhhkv/baa5w8eZK1a9fy7LPPUq9ePa666ip69uyJwWDw+EWeeeaZMjcsOjqa1NRU9+95K00WZciQIQwZMsT9e3FpLt6QtxiP8D7pW9+TPvYt6V/fkv71rcvt39DQAJqE2sk5fr7Ix8dmZ2PVasmo5n87OX59y1/9W7du3WJvK3UWYcOGDbnnnnuYO3cuw4YNY/v27TzwwAMcPXrUq428VLdu3di4cSM2m43k5GTOnj1L8+bNffqaQgghhCibwYMt7HxkNu0yNqHk5BS6/bXUcfRc84YfWiaEf3lcGf7cuXPs27ePQ4cO0aRJE0JDQ73SgC1btrB48WKysrKYMWMGjRs3Ztq0aTRo0IDevXvz5JNPotFouO+++6SyiBBCCFEJ2Rs2BEB74gT2du0K3HbWGsMpRwyQUfENE8KPSgyyc3Jy2LBhA2vXrsVsNtOvXz9eeOEFr+a89OjRgx49ehR52/Dhw2XZdiGEEKISs1hg5MJbuY+N3HBpkO10YnVoMQQ4/NdAIfykxCD7wQcfJDY2ln79+rlL5507d45z586579O+fXvftlAIIYQQlZbBAJv3RtGT9tx0SRk/xWTCTCABOgmyRfVTYpAdERGB1WplzZo1rFmzptDtiqIwd+5cnzVOCCGEEJWbokBMTSdJyfXRnfi54G1GIxYCCNBLkC2qnxKD7Hnz5lVUO4QQQghRRcXEOEnKaoj20pFso5FO7CS4dVtA6mSL6sXjiY9CCCGEEEWJjnaSfLx2oVUfldxcJjOTtHubYeYGP7VOCP+Qch1CCCGEKJd27Ww0rpmNNjERbDb3dsVoBEANDvZX04TwGwmyhRBCCFEuU6Zks+j/fkdxONCePu3erhiNDON7xi3o78fWCeEfEmQLIYQQotwcjRoBFEgZ0ZhMnKM2ubYAfzVLCL+RIFsIIYQQ5fLHHwH0mXg9R2lSYPJjXnURQ6Dix9YJ4R8SZAshhBCiXFQVDh0L4qy+YYGRbMVoxEwghiAJN0T1I0e9EEIIIcolJsYJwNmYtkWPZAdLuCGqHznqhRBCCFEu0dGuxWaSwlugO37cvV0xGvkX39KthyxGI6ofCbKFEEIIUS7R0a6R7KTgxq6RbFUFXEH2XN3j3Hmv1Z/NE8IvJMgWQgghRLkEBMDVV5up00iDxmhEk5oKgGIySY1sUW1JkC2EEEKIcvvwwzRuvzkTAO2FlBE110Ro1jnmzAn1Y8uE8A8JsoUQQgjhFY7GjYGLtbKtOTZMBKFIBT9RDen83QAhhBBCVH1TpoSzb08PtiqKu8KILce1xLrBoPqzaUL4hYxkCyGEEKLcnE44cUqPs3Ztd4URS66rqkhAgATZovqRIFsIIYQQ5RYT4yQtTYO1UZOL6SJGCbJF9SVBthBCCCHKLTraidOpkFynHdqTJwEIsaQzrsEPtGhh93PrhKh4EmQLIYQQotxiYi4sSBPVGm1yMorRSKz1NLO7L6ZrV5ufWydExZMgWwghhBDl1ry5nVtvNaJtWAsA7YkTqLkmbIFSvk9UTxJkCyGEEKLc2rWzM3t2Bg27RQKuMn4bszsS8clHrFtn8HPrhKh4EmQLIYQQwitUFSz1GwGuBWlsF1ZTDwz0Y6OE8BMJsoUQQghRbk4ntGxZm1kfNsQZHo5+/37MuKJrqZMtqiMJsoUQQghRbhoNBAWppKRosDdqhG7/fiwEAFLCT1RPEmQLIYQQwitiYpykpmpwNGqE/uBBGckW1ZoE2UIIIYTwiuhop3skW7FYaM1+Hrl6J1FRTn83TYgKp/N3A4QQQghxZYiJcbJnjx5HI9fkx67soPE9f2OJjPVzy4SoeBJkCyGEEMIrhg4107q1DfuFINtIEJlqDQJUUBQ/N06ICiZBthBCCCG84uabTQA4TjcGYDaPMXXUTRw5ckbK+IlqR3KyhRBCCOEVTiekpyuYo2ujGgzuiY8BAX5umBB+IEG2EEIIIbxi1apA2revw5Ev92Nv0AALAQQYnARsTCB0/nx/N0+ICiVBthBCCCG8IibGVUXE/NK7qDVqYCEAg9ZO5EMPYY2L83PrhKhYEmQLIYQQwiuiox0AHB89Ef2+fZgJJMicQfqCBVjj4/3cOiEqlkx8FEIIIYRX5I1kn4tsjfGmm7jx8+9o2Le2BNiiWpKRbCGEEEJ4RViYisGgkrHrLIGrV9Pv8VZM2jsOQ0KCv5smRIWTkWwhhBBCeIWiwNTbd9Pnm+dIX7SA0y37YWg3kJYPjZGUEVHtSJAthBBCCK95otEXWBfdhTU+nifviSAl5VrWLFiAYdcuCbJFtSJBthBCCCG85tTI8WRkaGiCA6tVwWAAa3y8BNii2pGcbCGEEEJ4zfPPh3PHHdEAWCwQEKD6uUVC+IcE2UIIIYTwmpgYJykpGlQVrFZFgmxRbUmQLYQQQgiviYlxYDZrMBoVLBYJskX1JTnZQgghhPCa6GhXreyUFA3jx+dQo4bTzy0Swj8kyBZCCCGE1+QtSJOaqmH4cJOfWyOE/0i6iBBCCCG8pm1bGzNnZlC/voMDB3QkJ0uoIaonOfKFEEII4TW1azu56y4jsbFObrophrlzQ/3dJCH8wu/pIkuXLmX79u3odDpq1arFww8/TEhICAArV67kt99+Q6PRMGbMGDp16uTfxgohhBCiVLt366lRw4nVqhAYKBMfRfXk95Hsjh078sYbb/D6669Tp04dVq5cCUBiYiIbN25k1qxZTJs2jUWLFuF0yuQJIYQQorK77bZoFi8OwWJxLUYjRHXk9yA7Li4OrVYLQMuWLUlLSwNg69at9OnTB71eT2xsLLVr1+bw4cP+bKoQQgghPBAT4+TsWdd3u5TwE9WV39NF8vvtt9/o06cPAGlpabRo0cJ9W1RUlDsAv9Tq1atZvXo1ADNmzCAmJsZnbdTpdD59/upM+tb3pI99S/rXt6R/fcub/Vu7tobz5wMAiIwMJiYm0CvPW5XJ8etblbF/KyTIfumll8jIyCi0/Y477qB79+4ArFixAq1WS79+/QBQVc/PfIcMGcKQIUPcv6ekpJSvwSWIiYnx6fNXZ9K3vid97FvSv74l/etb3uzfGjUiOXJEx5tvZhIXZyMlxe6V563K5Pj1LX/1b926dYu9rUKC7GeeeabE2//44w+2b9/Os88+i6IoAERHR5Oamuq+T1paGlFRUT5tpxBCCCHKLybGyc6dGm6/Xepki+rL7znZO3fu5JtvvmHy5MkEBAS4t3fr1o2NGzdis9lITk7m7NmzNG/e3I8tFUIIIYQn7r3XyPTpmWzdqictTfF3c4TwC7/nZC9atAi73c5LL70EQIsWLXjggQdo0KABvXv35sknn0Sj0XDfffeh0fj9nEAIIYQQpejQwYZerzJ4cCzvvpvGDTeY/d0kISqc34PsOXPmFHvb8OHDGT58eAW2RgghhBDllZam4bvvggCpLiKqLxkaFkIIIYRX7d2r4623wgDIlwkqRLUiQbYQQgghvCom5uLicTKSLaorCbKFEEII4VX5g2yDQYJsUT1JkC2EEEIIr4qMdAXZrVrZaNJEamSL6kmCbCGEEEJ4lU4HUVEOeva0EhEhI9mievJ7dREhhBBCXHn+979MsrI0mM0QKKuqi2pIRrKFEEII4VUrVgQxdWo4U6ZE0LdvLCtWBPm7SUJUOBnJFkIIIYTXrFgRxKRJ4ZhMrnG8s2d1TJoUDsDw4bLMuqg+ZCRbCCGEEF4zY0aYO8DOYzJpmDEjzE8tEsI/JMgWQgghhNecOaMt03YhrlQSZAshhBDCa+rWdZRpuxBXKgmyhRBCCOE1U6ZkExTkLLAtKMjJlCnZfmqREP4hEx+FEEII4TV5kxtnzAjjzBktdes6mDIlWyY9impHgmwhhBBCeNXw4SYJqkW1J+kiQgghhBBCeJkE2UIIIYQQQniZBNlCCCGEEEJ4mQTZQgghhBBCeJkE2UIIIYQQQniZBNlCCCGEEEJ4mQTZQgghhBBCeJkE2UIIIYQQQniZoqqq6u9GCCGEEEIIcSWRkewymjJlir+bcMWSvvU96WPfkv71Lelf35L+9S3pX9+qjP0rQbYQQgghhBBeJkG2EEIIIYQQXiZBdhkNGTLE3024Yknf+p70sW9J//qW9K9vSf/6lvSvb1XG/pWJj0IIIYQQQniZjGQLIYQQQgjhZTp/N8DfUlJSmDdvHhkZGSiKwpAhQ7j++uvJycnhzTff5Pz589SsWZMnnniC0NBQsrOzmTVrFocPH2bAgAHcd9997ud6/vnnSU9Px2AwAPDf//6X8PBwf+2a33mzb+12O4sWLWLfvn0oisIdd9xBr169/Lh3lYO3+thkMvHss8+6nzctLY1+/foxevRoP+1Z5eDNY3jDhg2sXLkSRVGIjIzkkUceoUaNGn7cO//zZv9u3LiRFStW4HQ66dKlC3fffbcf96xyKGv/7t69m2XLlmG329HpdNxzzz20b98egKNHjzJv3jysViudO3dmzJgxKIri5z30L2/276effsq6devIyclh6dKlft6zysFb/WuxWJg1axZJSUloNBq6du3KXXfdVTE7oVZzaWlp6pEjR1RVVVWj0ag++uij6qlTp9SlS5eqK1euVFVVVVeuXKkuXbpUVVVVNZlM6j///KOuWrVKff/99ws813PPPacePny4QttfmXmzb5cvX65++umnqqqqqsPhUDMzMytuRyoxb/ZxfpMmTVL37t3r8/ZXdt7qX7vdrt53333u43bp0qXq8uXLK3ZnKiFv9W9WVpb60EMPuft3zpw56u7duyt2Zyqhsvbv0aNH1dTUVFVVVfXEiRPqAw884H6uKVOmqAcOHFCdTqf68ssvqzt27KjYnamEvNm/Bw4cUNPS0tS77767YneiEvNW/5rNZvXvv/9WVVVVbTab+swzz1TY8Vvt00UiIyNp2rQpAEFBQdSrV4+0tDS2bt1K//79Aejfvz9bt24FIDAwkNatW7tHq0XxvNm3v//+OzfffDMAGo2m2o8A5vHF8Xv27FmysrJo06aN73egkvNW/6qqiqqqWCwWVFXFaDQSFRVVsTtTCXmrf5OSkqhbt677c6Fjx45s3ry5Avekcipr/zZp0sR9XDZo0ACbzYbNZiM9PR2TyUTLli1RFIWrrrrK/ZjqzFv9C9CyZUsiIyP9sBeVl7f6NyAgwH3FQKfT0aRJE1JTUytkH6p9ukh+ycnJHDt2jObNm5OZmek+4CMjI8nKyvLoOebPn49Go6Fnz56MGDGi2l9Oy1Oevs3NzQVg+fLl7Nu3j1q1ajF27FgiIiJ83ewqxRvHL0BCQgK9e/eWY/cS5elfnU7H/fffz9NPP01AQAB16tRh3LhxFdHsKqM8/Vu7dm1Onz5NcnIy0dHRbNmyBbvdXhHNrjLK2r+bN2+mSZMm6PV60tLSiI6Odt8WHR1NWlpahbW9KihP/4rSeat/c3Nz2b59O9dff32FtLvaj2TnMZvNvPHGG4wePZrg4ODLeo5HH32UN954gxdffJH9+/ezbt06L7eyaipv3zocDlJTU2nVqhWvvvoqLVu2lJy1S3jj+M2TkJBA3759vdSyK0N5+9dut/PLL7/w6quv8u6779KwYUNWrlzpg5ZWTeXt39DQUMaNG8dbb73Fs88+S2xsLFqt1gctrZrK2r+nTp1i2bJl3H///YDrSowoXnn7V5TMW/3rcDiYPXs21113HbVq1fJVcwuQIBvXF+Abb7xBv3796NmzJwDh4eGkp6cDkJ6e7lF6Qt5liqCgIPr27cvhw4d91+gqwht9GxYWRkBAAD169ACgV69eHDt2zLcNr0K8dfwCHD9+HKfT6b5EJ7zTv8ePHwdcI66KotC7d28OHjzo03ZXFd46frt168b06dN5+eWXqVu3LnXq1PFpu6uKsvZvamoqr7/+OuPHj6d27dqAa+Q6/+X11NRUSXe6wBv9K4rnzf599913qV27NsOGDauw9lf7IFtVVRYsWEC9evW44YYb3Nu7devG2rVrAVi7di3du3cv8XkcDof7koXdbmf79u00aNDAdw2vArzVt4qi0LVrV/bt2wfAnj17qF+/vu8aXoV4q4/zJCQkEB8f75O2VkXe6t+oqCgSExPdnxG7d++mXr16vmt4FeHN4zczMxOAnJwcVq1axaBBg3zT6CqkrP2bm5vLjBkzGDlyJK1bt3bfPzIykqCgIA4ePIiqqqxbt45u3bpV7M5UQt7qX1E0b/bvZ599htForPCKWdV+MZr9+/fz7LPP0rBhQ3cO6siRI2nRogVvvvkmKSkpxMTE8OSTTxIaGgrA+PHjMRqN2O12QkJC+O9//0tMTAzPPfccDocDp9NJhw4dGDVqFBpN9T2P8Vbf1q9fn/PnzzN37lxyc3OpUaMGDz/8MDExMf7cvUrBm30MMGHCBP7zn/9IAHiBN/v3l19+4aeffkKr1RITE8P48eMJCwvz5+75nTf796233uLEiRMA3HrrrXKySNn796uvvuLrr78uMAKYV4r2yJEjzJ8/H6vVSqdOnRg7dmy1n7fhzf79+OOP2bBhA+np6URGRjJo0CBuv/12f+1apeCt/rXb7fzf//0f9erVQ6dzTUW89tprGTx4sM/3odoH2UIIIYQQQnhb9R1mFUIIIYQQwkckyBZCCCGEEMLLJMgWQgghhBDCyyTIFkIIIYQQwsskyBZCCCGEEMLLJMgWQlR7Tz75JHv37q2Q10pMTGTKlCkV8lql+fzzz3n77bf93YwC9u7dy0MPPeTvZmCz2Xj88cfd9beFEKKsdP5ugBBC+No999zj/r/VakWn07lr2D/wwAPMmjWrwtry2WefceONN1bY6+XZu3cvc+bMYcGCBRX+2lWRXq9n4MCBfPPNN9x7773+bo4QogqSIFsIccVbunSp+//jx4/nwQcfpGPHjhXejvT0dPbu3cujjz5a4a8tPOdwONBqtfTt25dJkyYxcuRI9Hq9v5slhKhiJMgWQlR7+QPvzz//nMTERHQ6Hdu2baNmzZo89dRTbN68mR9++AG9Xs9DDz1EXFwcAEajkY8++oi//voLRVEYOHAgt99+e5Grve7evZumTZtiMBgKvPbQoUNZt24dSUlJ9OnTh5EjRzJ//nz2799PixYteOKJJ9wrHm7bto1PPvmEtLQ0GjduzLhx49wrduZ/rvPnz9OpUyfGjx+P0+lk+vTp2O1296j+7NmzAbDb7cydO5ctW7a4V6Js1qwZAF9//TU//fQTJpOJyMhIxo0bR4cOHQrt144dO/jss89ISkoiODjY3QcAycnJTJgwgYcffpjly5djtVoZNmwYw4cPB1xXFt577z22bdtGREQEAwcOLPbv9P7772MwGAqMLM+YMYMOHTowbNgw0tLSWLx4Mf/88w+BgYEMGzaM66+/HoDDhw/zwQcfcPr0aQwGAz179mTUqFHuFeBuv/12xo4dy48//ojD4WDevHlER0cTEhLCoUOHaNu2banHkRBC5Cc52UIIcYnt27dz1VVX8cEHH9CkSRNefvllVFVlwYIFjBgxgoULF7rvO3fuXLRaLW+//TYzZ85k165drFmzpsjnPXnyJHXq1Cm0ffPmzfz3v/9l9uzZbN++nVdeeYWRI0eyaNEinE4nP/30EwBnzpxh9uzZjB49mvfff5/OnTvz6quvYrfb3c/1559/MnXqVObNm8fJkyf5448/CAwMZOrUqURGRrJ06VKWLl1KVFSUe1/79OnDhx9+SLdu3Vi8eLH7tVatWsUrr7zCkiVLmDZtGjVr1ixyvwICApgwYQIffPABU6ZM4ddff2XLli0F7rN//35mz57NM888w5dffkliYiIAX3zxBUlJScyZM4dp06axdu3aYv8uAwYMICEhAafTCUBWVhZ79uwhPj4ep9PJq6++SuPGjXn33Xd59tln+fHHH9m5cycAGo2GUaNGsWjRIv73v/+xZ88eVq1aVeD5t27dyvTp03nzzTfd2+rVq8fx48eLbZMQQhRHgmwhhLhE69at6dSpE1qtll69epGVlcXNN9+MTqcjPj6e8+fPk5ubS0ZGBjt37mT06NEEBgYSHh7OsGHD2LhxY5HPm5ubS1BQUKHt1157LREREURFRdG6dWuaN29OkyZN0Ov19OjRg2PHjgGwceNGOnfuTMeOHdHpdNx4441YrVYOHDjgfq7rrruOqKgoQkND6dq1a6kBYuvWrenSpQsajYarrrrKfX+NRoPNZiMxMRG73U5sbCy1a9cu8jnatWtHw4YN0Wg0NGrUiPj4ePbt21fgPrfddhsGg4HGjRvTqFEjTpw4AbhOCoYPH05oaCgxMTFcd911xba1efPmBAcHs2fPHnd/tGvXjoiICI4cOUJWVha33norOp2OWrVqMXjwYPffomnTprRs2RKtVktsbCxDhgwp1MZbbrmF0NDQAlcagoKCMBqNJfahEEIURdJFhBDiEuHh4e7/GwwGatSo4U7/yAvAzGYz6enpOBwOHnjgAff9VVUlOjq6yOcNDQ3FZDKV+nqX/m6xWABXTnf+0WSNRkNMTAxpaWnubREREQUem/82T/bVZrPhcDioXbs2o0eP5osvviAxMZG4uDjuvfde9wh4focOHeKTTz7h5MmT2O127HY7vXr1KnCf/O0KCAjAbDa79yl/f8XExJTY3v79+7Nu3To6duzI+vXr3UH5+fPnSU9PZ/To0e77Op1O2rRpA7hG5pcsWcKRI0ewWq04HA6aNm1a4LmL+ruZTCaCg4NLbJMQQhRFgmwhhLhM0dHR6HQ6Fi1ahFarLfX+DRs2LDEdojSRkZGcPHnS/buqqqSkpBQZ+F5KUZQyv17fvn3p27cvRqORhQsXsmzZMh555JFC93v77bcZOnQo//nPfzAYDHz44YdkZWV59BoRERGkpqbSoEEDAFJSUkq8f79+/Xjqqac4fvw4iYmJ9OjRA3AF57GxscWWJHz//fdp3Lgxjz32GEFBQfzwww9s2rSpwH2K6qPTp0/7pRqMEKLqk3QRIYS4TJGRkcTFxbFkyRKMRiNOp5Nz584VSkPI07FjR44dO4bVar2s1+vTpw9//fUXf//9N3a7ne+++w69Xk+rVq1KfWx4eDjZ2dkepz6cOXOGPXv2YLPZMBgMGAyGIidzgmu0Ny/N4vDhw2zYsMHjferduzcrV64kJyeH1NRUfv755xLvHx0dTbNmzZg7dy49e/Z0X1lo3rw5QUFBfP3111itVpxOJydPnuTw4cPuNgYHBxMYGMjp06f55ZdfSm1bWloaOTk5tGjRwuP9EUKIPDKSLYQQ5TBhwgSWLVvGk08+iclkolatWtx0001F3jciIoL27duzbds2+vTpU+bXqlu3Lo888giLFy92VxeZPHmyu0JGSerVq0d8fDwTJkzA6XSWWhvcZrOxbNkyTp8+jVarpVWrVgXSYvIbN24cS5YsYfHixbRt25bevXuTm5vr0T7ddtttvPfee0yYMIHIyEgGDhzIjz/+WOJj+vfvz9y5cwukhmg0GiZPnsySJUsYP348drudunXr8u9//xtw1UpfuHAh33zzDU2aNKFPnz7u3O7ibNiwgf79+0v5PiHEZVFUVVX93QghhKguEhMTmTdvHtOnT7+sFA4B+/btY86cOcybN6/Y0fXystlsTJw4kRdeeKFA3roQQnhKgmwhhBBVht1u56233qJx48bceuut/m6OEEIUS3KyhRBCVAmJiYmMGTOGjIwM9yIzQghRWclIthBCCCGEEF4mI9lCCCGEEEJ4mQTZQgghhBBCeJkE2UIIIYQQQniZBNlCCCGEEEJ4mQTZQgghhBBCeJkE2UIIIYQQQnjZ/wP7HgeMnufpawAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(figsize=(12,5))\n", "\n", "ax.plot(equity_ts['monthly_return_USD'], marker='x', color='r', label='equity')\n", "ax.plot(realestate_ts['monthly_return_USD'], marker='o', linestyle='--', color='b', label='real-estate')\n", "\n", "ax.set_xlabel('Time (months and year)')\n", "ax.set_ylabel('Month return in USD')\n", "ax.set_title('Monthly return for select portfolio over the period of 2015 to 2022', fontsize=18)\n", "\n", "plt.legend()\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "5b79b61c", "metadata": {}, "source": [ "The `subplots` method can also be used to create more than one plot on the same figure. The parameter `sharex` or `sharey` allows us to share the x and y axis respectively so that we do not have to repeat the same information on the plot. \n", "\n", "The `ax` object can then be indexed to extract the space for each plot and provide data to plot in these individual spaces. " ] }, { "cell_type": "code", "execution_count": 38, "id": "3f2f0506", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
monthly_return_USDtotal_mkt_val_net_USD_millions
Asset_Classbondcommodityequityreal_estatebondcommodityequityreal_estate
date
2015-01-01NaN-0.640343-1.5307453.786328NaN5231.2864573172.1095772920.478118
2015-02-01NaN2.6341395.548605-0.491976NaN7308.9867903768.8088372657.529011
2015-03-01NaN-5.323783-0.3030830.492793NaN5238.5084133436.1243142360.004310
2015-04-01NaN2.2843672.332015-2.159467NaN4805.4303073486.3217202117.946382
2015-05-01NaN5.6380480.652395-1.263921NaN4704.6504393452.5618742077.472763
\n", "
" ], "text/plain": [ " monthly_return_USD \\\n", "Asset_Class bond commodity equity real_estate \n", "date \n", "2015-01-01 NaN -0.640343 -1.530745 3.786328 \n", "2015-02-01 NaN 2.634139 5.548605 -0.491976 \n", "2015-03-01 NaN -5.323783 -0.303083 0.492793 \n", "2015-04-01 NaN 2.284367 2.332015 -2.159467 \n", "2015-05-01 NaN 5.638048 0.652395 -1.263921 \n", "\n", " total_mkt_val_net_USD_millions \\\n", "Asset_Class bond commodity equity \n", "date \n", "2015-01-01 NaN 5231.286457 3172.109577 \n", "2015-02-01 NaN 7308.986790 3768.808837 \n", "2015-03-01 NaN 5238.508413 3436.124314 \n", "2015-04-01 NaN 4805.430307 3486.321720 \n", "2015-05-01 NaN 4704.650439 3452.561874 \n", "\n", " \n", "Asset_Class real_estate \n", "date \n", "2015-01-01 2920.478118 \n", "2015-02-01 2657.529011 \n", "2015-03-01 2360.004310 \n", "2015-04-01 2117.946382 \n", "2015-05-01 2077.472763 " ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "assetclass_ts = etf.pivot_table(index=['date'], \n", " columns=['Asset_Class'],\n", " values=['monthly_return_USD', 'total_mkt_val_net_USD_millions'],\n", " )\n", "assetclass_ts.head()" ] }, { "cell_type": "code", "execution_count": 39, "id": "097fa8ba", "metadata": {}, "outputs": [], "source": [ "bond_ts = etf_ts[etf_ts['Asset_Class']=='bond'].resample('M').mean()\n", "commodity_ts = etf_ts[etf_ts['Asset_Class']=='commodity'].resample('M').mean()\n", "\n", "\n", "bond_ts = etf_ts[etf_ts['Asset_Class']=='bond'].resample('M').mean()\n", "commodity_ts = etf_ts[etf_ts['Asset_Class']=='commodity'].resample('M').mean()" ] }, { "cell_type": "code", "execution_count": 40, "id": "4d24df1b", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzUAAAIWCAYAAABuo6PAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3gU1frA8e9sz6b3BiSB0HsTASGAICqCoIg/FAVRUa/XclX0ovcqeq2oV1TsoIL92kARpWgoIqL0XgIJkJDek91NdnfO749llyypQEIIns/z7PMks1POzM7OzjvnnPcoQgiBJEmSJEmSJElSC6Vp7gJIkiRJkiRJkiSdDRnUSJIkSZIkSZLUosmgRpIkSZIkSZKkFk3X3AWQJEmSJEmSpJZOCEFubi52u725i3JB0+v1hIeHoyiK13RFJgqQJEmSJEmSpLOTk5ODw+FAr9c3d1EuaHa7HZ1OR0REhNd02fxMkiRJkiRJks6S3W6XAc05oNfra6wNk0GNJEmSJEmSJEktmgxqJEmSJEmSJElq0WRQI0mSJEmSJEkt3NGjRxk6dGijr7dv377k5+c3+nobmwxqJEmSJEmSJElq0WRKZ0mSJEmSJEm6ADgcDv7+97+zc+dO2rVrx7x589i0aROzZ8/G6XTSq1cv5syZg9FopG/fvkyaNIkVK1bgcDiYP38+7du3p6CggDvuuIP8/Hx69+5NS0mULIMaSZIkSZIkSWpE9k/eRj16uFHXqWnTFv2Nd9Y5T0pKCq+88goDBgzgvvvu4+2332bRokV8/fXXtGvXjrvvvpsPP/yQO+64A4DQ0FB+/vln3n//fd58801eeeUVXnrpJQYMGMBDDz3EypUr+eijjxp1P5qKbH4mSZIkSZIkSReA2NhYBgwYAMDEiRNZt24dbdq0oV27dgBcf/31bNiwwTP/mDFjAOjZsydHjx4FYMOGDUycOBGAUaNGERQUdA734MzJmhpJukCtXr2a4cOH88EHHzBt2rTmLs4ZSU5OZtasWezevZuysrJzvi+KojB16lQ+/PDDc7bNliwvL48HHniAVatWkZmZSVJSEqtXrz6tdcTHxxMfH++13LBhw0hLSyMtLa1Ry9sQ06ZNY+HChS2m+UVLJ79z0oWivhqVpqIoymnNbzAYANBqtTidzjNez/lA1tRI0gklJSX85z//oU+fPvj7+2M2m+nSpQszZ84kOzu7uYv3l1NYWMg111xDeXk5L7/8Mh999FGTZHU5H8yePZvFixc3dzHqlZaWxuzZs9m2bVuN7z/44IN88cUX3HnnnXz00Uc89thj57aA0jnx4YcfMnfu3OYuhiRJNUhPT+fPP/8E4Ntvv2Xo0KEcO3aMw4ddTeG+/PJLBg0aVOc6Bg4cyNdffw3Azz//TFFRUZOWubHImhpJAg4cOMDo0aM5cuQI11xzDbfeeit6vZ7ff/+dV199lQ8++IDvv/+egQMHNndRG2zo0KFYrdYWO7rxn3/+SVFREQsWLOCaa65p7uI0qSeffJKpU6cyfvz45i5KndLS0njyySeJj4+nV69e1d5fuXIlo0eP5vHHH2/U7a5YsULWlJxHPvzwQ9LS0rj//vubuyiSJJ2iQ4cOfPHFFzz00EO0bduWp59+mr59+3Lbbbd5EgVMnTq1znU89NBD3HHHHVx66aUMGjSIVq1anaPSnx0Z1Eh/eRaLhbFjx5KRkcH333/vaV8KMGPGDP72t78xcuRIrr76anbu3ElkZOQ5L6PdbsfpdGIymRq8jEajOa35zzdZWVkAhISENHNJpNLSUvz9/eudLysrq0k+L3fzCEmSJKl2bdq04ddff602fejQofzyyy/Vpm/evNnzd69evTwtBkJCQvjyyy897/3nP/9p/MI2Adn8TPrLW7BgAQcOHOAf//iHV0Dj1q9fP5599llyc3N58cUXAdi7dy+KovDAAw/UuM7JkydjMBjIzc31TMvMzOSuu+6iTZs2GAwGYmJimDFjBjk5OV7Lzp49G0VR2L17Nw888ACtWrXCZDKxfv16YmNj6dOnT43bfOedd1AUxXNRWr16NYqiVGubLoTgrbfeom/fvpjNZvz9/Rk+fDjJycle8yUkJDBs2DCvac8++yyKolSrUXjkkUdQFKVBzfR27NjBhAkTCA0NxWQy0aVLF+bMmePVljc+Pt7zJGn48OEoilJv+95jx44xffp04uLiMBqNREREMGjQIBYuXHhG+1+XVatWcdlllxEUFITJZKJHjx68/fbbNc67detWrrvuOiIjIzEajbRu3ZrJkydz6NAh0tLSPPu1cOFCz37Wt69VP9vXX3+dDh06YDKZ6NChA6+//nqNy6xdu5ZRo0YRGBiIj48Pffr0YcGCBdXmGzZsGPHx8Rw+fJiJEycSEhJCQEAAH374IcOHDwfglltu8ZRz2LBhnnNWCOG1H1XPvfnz59OnTx98fHwIDAzksssuq/HHtybuMp3pPu3evZvrrruO2NhYjEYjUVFRDB8+nB9++KFB2wfIzc3l5ptvJjQ0FF9fXy699FK2bt3qeT87OxuDwcCUKVNqXP5vf/sbGo2GI0eO1LmdP/74g2nTptGhQwfP+Tl48GC+/fbbavM25JwXQjB37lx69OiBv78/AQEBdOzYkVtvvRW73e61vk2bNjFhwgTCwsIwGo107NiRZ555BofD4ZknPj6eNWvWcOTIEa/ztSF9p5KTkxkzZoznu9+2bVtuvfVW8vLy6lzuiy++YNy4cbRp0waj0UhYWBjjx49nx44d1eb97bffuOKKK4iKisJkMhEbG8uVV17J77//7pmnoKCAf/zjH7Rr1w6TyURoaCh9+/b1XN8lSWqZZE2N9Jf31VdfAXD77bfXOs+0adO4//77+frrr3nppZfo3Lkz/fv359NPP+XFF19Eq9V65i0pKWHJkiVcccUVhIeHA65RfgcOHEhlZSW33nor7dq1IyUlhbfeeovk5GQ2bdpEYGCg1zZvvPFGfHx8ePDBB1EUhVatWnHjjTfy4osvsmvXLrp16+Y1/6JFiwgLC6sxMKvqpptu4rPPPmPixInccsstVFRU8MknnzBq1Ci++eYbxo0bB7iCiU8++QSr1YqPjw8Av/zyCxqNhtWrV+N0Oj37/csvv9C1a9d6a7E2bdpEUlISer2eu+++m6ioKL7//nseeeQRtm/fzieffALA3Llz+fHHH3n33Xd59NFH6dy5c53rdTgcjBo1ioyMDP72t7/RoUMHiouL2bFjB+vWrfOqam/o/tfm3Xff5c477+Tiiy/msccew9fXl5UrV3LXXXdx6NAhrxujpUuXcu211+Lr68ttt91GYmIiWVlZLF++nF27djFy5Eg++ugjbrrpJoYMGcKMGTPq3PapXn/9dbKysrjjjjvw9/fns88+495776WgoIAnnnjCM9/333/PhAkTiIqK4sEHH8Tf35/PP/+c2267jcOHD/PMM894rbesrIykpCQGDx7MM888Q05ODkOHDuXRRx/l2WefZcaMGQwZMgSAyMhIIiMjSUxMrLYf7nbbjzzyCHPmzOGiiy7i2WefpbS0lHfffZfhw4ezZMkSrrzyytPa79PZp/z8fEaMGAHAnXfeSVxcHHl5eWzatImNGzfW+31xu/zyywkJCWH27NlkZWUxb948hg4dyoYNG+jWrRuRkZGMGzeOr7/+mnnz5nllC7LZbHz22WeMHDmSuLi4Orfz7bffsm/fPiZNmkRcXBz5+fksXLiQa665hk8++YQbbrgBaPg5//TTT/P4448zduxY7rzzTrRaLampqXz33XdUVFR4mqcuW7aMCRMmkJiYyIMPPkhISAgbNmzg8ccfZ9u2bZ6ntnPnzmXWrFnk5eXxyiuveMpd33f0nXfe4a677iI2Npa77rqLuLg4jh49yvfff096ejphYWG1Ljtv3jxCQkKYMWMGUVFRHDp0iHfffZfBgwezZcsW2rdvD8D+/fsZNWoUUVFR3HfffURGRpKVlcX69evZvn07F198MQDXXXcda9eu5Y477qBnz55YLBb27dvH6tWrmTlzZp37IUnSeUxI0l9cSEiI8Pf3r3e+bt26CUCUlpYKIYSYN2+eAMQPP/zgNd/8+fMFIL7++mvPtHHjxonw8HBx7Ngxr3n//PNPodVqxRNPPOGZ9sQTTwhAJCUlCbvd7jX/rl27BCBmzpzpNT0lJUUA4p577vFMS05OFoD44IMPPNO++eYbAYh33nnHa3m73S769u0r4uPjhaqqQgghPvroIwGIFStWCCGEsNlswsfHR0yZMkUAYuPGjUIIIYqKioRWq/Xadm0GDRoktFqt2L59u2eaqqriuuuuE4BYtWqVZ/oHH3wgAJGcnFzverdv3y4A8cILL9Q53+nsvxBCAGLq1Kme/48fPy6MRqOYPHlytXXfe++9QqPRiJSUFCGEEOXl5SIsLEyEh4eL9PT0avM7nc5at1Mf92fr5+fndU5VVFSI/v37C51O55nucDhEmzZtRGBgoMjIyPCad9CgQUKj0YgDBw54piclJQlAPPbYY7Vut+o5VVVN+7Fv3z6hKIoYPHiwqKio8EzPyMgQgYGBIi4uTjgcDs/0uLg4kZSU5LWOpKQkERcX5/n/dPZpyZIlAhBffPFFjWWuz9SpUwUgJkyY4HVubNq0SSiKIkaPHu2Ztnz5cgGIN954w2sdH3/8cYPLUFZWVm1aeXm56NChg+jcubNnWkPP+d69e3stVxOr1SoiIyPFkCFDql1z/vvf/1b7Hp76edTn2LFjwmAwiM6dO4vCwsJq79f3XajpmOzZs0cYDAZx1113eaa9+uqrXtemmhQVFQnAazlJaizp6ekiJydHvs7Bq6bfVdn8TPrLKykpqVZLUhP3PMXFxcDJJmaLFi3ymm/RokWEhIRw1VVXeeZfunQp48aNw2QykZeX53nFx8eTmJjIihUrqm3v/vvvR6fzrkzt2rUrffv25ZNPPkFVVa9tAvV2/vv444/x9/dn/PjxXuUoKipi7NixpKWlcfDgQQAuvfRSAE873A0bNmC1Wnn44YcJDAzk559/BmDNmjU4nU7P0/Da5OTk8NtvvzFu3Dh69Ojhma4oCo8++ihAjU1sGsL92SQnJ1drznem+1+Tr776ioqKCk+TmaqvsWPHoqqq57gsX76cvLw8HnzwQWJjY6utS6M5+8vvjTfe6NWB02Aw8I9//AOHw8H3338PuNpMHz16lOnTpxMTE+M178yZM1FVlSVLllRb90MPPXTW5QNYsmQJQggefvhhr74xMTExTJs2jSNHjng142qI09kn97nx448/UlJScsb78fDDD3s1C+zbty+jRo1i1apVlJWVAa7xHBISEqo1gVuwYAGhoaENSgTh6+vr+dtisZCfn4/FYmHEiBHs3bvXsw8NPecDAwPJyMios6nfypUryc7O5pZbbqGoqMjrvHbXotV0jWqoL7/8ksrKSp544okax7uo77vgPiZCCEpKSsjLyyM8PJyOHTuyceNGz3zuY7JkyRJsNluN6/Lx8cFoNLJx48ZmSREuSVLTkUGN9JcXEBDQoJudU28mQkJCGDNmDEuWLPEEOmlpaaxbt84T8ICrSYSqqixYsIDw8PBqr/3799fYF6VDhw41luPmm2/m+PHjrFq1yjPt448/9gQ8ddm7dy+lpaVERkZWK8fs2bMBPGWJjo6mY8eOnqDml19+ISoqiu7du5OUlOQ1XaPRkJSUVOe2U1NTAVdgdqouXbqg0Wg8KSdPV1xcHI899hgrVqwgOjqavn378vDDD3vSWp7J/tdk7969AIwcObLa8qNGjfJa3h0c9e7d+4z2qSFqavLTpUsXAM+xrOu4u5swnnrcw8PDG22wtTPZfmOuMykpiZtvvpkPP/yQsLAwBg8ezBNPPMGePXtOa5u1HWun0+npJ6MoCrfddhtbtmzxpL0+fPgwq1ev5qabbmpQwoOcnBxmzJhBZGQkvr6+hIWFER4e7umz5U6t2tBz/tlnn8VkMjFkyBBiY2O58cYb+fTTT6msrPTM4z6vp0+fXu287tSpE1D396I+Z/td2Lp1K1dddRX+/v4EBgZ6yrZz504KCws98/3f//0fI0eO5NlnnyUkJIQRI0bwwgsvePVjMhgMzJ07l127dpGQkEDXrl255557PA8jJElquWSfGukvr1u3bqxdu5aUlBQSExNrnMdisbB//37i4+Px8/PzTJ86dSrffvstX375JbfddhsfffQRQghuvvlmzzziRCraKVOm1FqT4u6zUpXZbK5x3htuuIGHHnqIRYsWcdlll7Fu3ToOHz7MCy+8UO++CiEIDw/n008/rXWeqn11RowYwbvvvktxcTG//PKLp6P4iBEjmDVrFhUVFfzyyy/07t2b4ODgerfdlJ5++mmmT5/ODz/8wLp165g/fz4vvvgiDz/8sOfYnO7+n8q9D4sWLSI6OrrGedq2bes1b1MOYFbTuk89zmdy3Gs7985EU3zup7vOhQsXMnPmTJYtW8avv/7Kyy+/zDPPPMPcuXP5+9//3qjlmD59Ok888QQLFizg9ddf5/3330cIwW233dag9V122WXs3buXe++9l/79+xMYGIhWq+WDDz7g008/9aqhbcg5P3DgQA4dOsTy5ctJTk4mOTmZTz/9lKeffppff/2VkJAQz368+OKLNabqBrxqxE7X2XwXjh49ytChQwkICODf//43HTt2xNfXF0VRuP/++z21ZABGo5GVK1fyxx9/sHz5ctauXcvjjz/O7Nmz+fTTT5kwYQLg6lt19dVX88MPP7BmzRq++uor5s2bx/XXX8/nn39+xvspSVLzkkGN9Jd3zTXXsHbtWubPn8/zzz9f4zyLFi2isrKy2ngpV155JeHh4SxatMgT1HTq1ImLLrrIM09iYiKKolBZWcnIkSPPurxhYWFceeWVfPvtt5SVlbFo0SI0Gk2tWZeqat++PQcOHODiiy/2Cs5qM2LECN566y2WLVvGH3/8wS233AK4mqZZrVa+++47du3a1aCmSu6b/d27d1d7b9++faiq6pnnTLVt25Z77rmHe+65B5vNxujRo5kzZw4PPvggERERp73/p3J3SA4LC6v3s+zYsSPgesrsrsVpbDXVNrifuruPZbt27YCaj7t7+YYe9zO5Ka26ffffZ7r9mtZ5qtrW2a1bN7p168bDDz9MUVERAwYM4J///Cd33313g/Zr7969no7mVadptVqvzv9RUVGMHTuWTz75hOeff56FCxcyYMCAGmuVTrVjxw62b9/O448/zpNPPun13vz582tcpr5zHsDPz49rr72Wa6+9FoA333yTu+++mwULFjBz5kzPee3r69uga9TpngdVvwvubTWU+zr33XffeR6quOXn52M0Gqstc9FFF3muwceOHaN3797861//8gQ14KqJvu222zxjd7gTiDz44IP079//tMooSVLDjB8/ntmzZ9OrVy8mT57sqYH++uuvmT59+lmvXzY/k/7y3FmpXnnlFX766adq72/ZsoVZs2YRHh5eLTOOXq9n8uTJ/Prrr3z66accPHiwWm1MaGgoV155Jd98841XWlE3IYRX6ueGmDp1KhaLhY8//pgvv/ySUaNGNehJ6s0334yqqsyaNavG909tYuJOp/yf//wHu93u6TfTrVs3IiIimD17NkKIevvTAJ50s99//z27du3yTBdC8NxzzwF43XScjuLi4mrpaU0mk6fJkLuJyunu/6kmTZqE0WjkiSeewGq11liOiooKAC677DLCwsJ4+eWXyczMrDZv1af8fn5+FBQU1LntmnzyySekp6d7/q+srOSVV15Bq9V6+nT16dOHNm3a8MEHH3jG/gHX2EcvvvgiiqJw9dVXN2h77kDwdMo6btw4FEXhxRdf9PqMMjMz+eCDD4iLizvtZkmns08FBQVetRsAQUFBJCQkYLFYau17cao5c+Z4fWZbtmxh1apVXHrppdUC5Ntvv53CwkLuvPNO0tPTG1RLA3iyCZ5aA7Rr165q/c0aes7XlC7ZnRbe/TmOHj2aiIgInn/++Ro/W6vVSmlpqed/Pz8/CgsLG1xjNnHiRAwGA08++WSNTX3rWk9tx+S9997z+uyh5n1t1aoV4eHhnv2yWCxYLJZq23D38zuT76EkSafvs88+IzAwkOLi4mpDT5wpWVMj/eX5+vry3XffcfnllzNmzBiuvfZahg0bhk6n448//uCjjz7Cz8+PxYsXExUVVW35qVOn8tprr3HXXXfVWmPy1ltvcckllzB06FBuvvlmevfujaqqHD58mCVLlnDzzTd7+nQ0hHush0ceeYSSkpJ6EwS4udMYz5s3jy1btnDVVVcRFhZGeno6GzZsICUlxat/Q2hoKD169GD79u3Ex8eTkJDgeW/48OF88cUX6PV6T3rf+rz66qskJSUxZMgQT0rnpUuXsnz5cm644QZPcoLTlZyczIwZM7j22mvp2LEjfn5+bN68mfnz5zNgwADPk+LT3f9TtWrVirfeeovbbruNzp07c9NNNxEXF0dubi47d+5k8eLF7Nmzh/j4eMxmMwsWLGDixIl069bNEzzn5uayfPlyHnjgAc+N98UXX8yqVat44YUXaNOmDYqi8H//93/17neHDh0YMGAAd955J/7+/nz66af8+eef/Pvf/6Z169aA64Zt3rx5TJgwgf79+zNjxgz8/f354osv+P3333n00Ucb/PS8S5cu+Pv78+abb2I2mwkKCiIiIqLOoLZjx47MnDmTOXPmMHToUK6//npPSueysjI++eQTr5ToDXE6+7Ro0SJeeeUVT7pivV7PmjVrWL58OZMmTaqx6WdNjhw5wujRoxk3bhyZmZnMmzcPHx+fGsc2GT16NHFxcXz88cf4+vo26LMEV7+drl27MmfOHCwWCx07duTAgQO88847dOvWjS1btnjmbeg537lzZy6++GIGDBhATEwMmZmZvPvuuxgMBk+5fH19WbRoEePHj6djx45Mnz6dxMREioqK2LdvH9988w3ffvutZ9yqiy++mKVLl/L3v/+dQYMGodVqGTFihKdm6FStWrVi7ty53H333XTv3p2bb76ZuLg4MjIyWLJkCe+//36tzd6uuOIKzGYzN910E3//+98JDg5m/fr1LFu2jHbt2nmNofP000+zYsUKrrrqKhISEhBC8P3337Nv3z4efvhhAA4cOEBSUhITJkygW7duBAcHs3fvXt566y0SEhIafC2TpPPVF198wZtvvomiKHTp0oVZs2Zx//33k5eXR1hYGK+++iqtWrXinnvuwWQykZKSwrFjx3jttdf44osv2LRpE3369PGMeRYfH8/06dNZu3YtgYGBPPbYYzz11FOkp6fz9NNPc/nll2Oz2Xj44YfZvn07Wq2Wp556iksuuQSr1cp9993H/v376dChg9dDpL59+7JixQqefvpp0tLSGD58OElJSeTk5DB27FiuuOIKwNVcdPz48Vx++eX173wTZbWTpBanqKhIPPnkk6Jnz57C19dXmEwm0bFjR/Hggw+KzMzMOpd1p3seOXJkrfPk5uaKhx56SLRv314YjUYRGBgounXrJu69916xe/duz3zulM6pqal1bvPvf/+7AERAQICwWCzV3q8r/e6iRYvEJZdcIvz9/YXRaBRxcXFiwoQJ4vPPP6827wMPPCAAMX36dK/p7777rgDE4MGD6yznqbZt2yauvvpqERwcLAwGg+jUqZN44YUXvNL6CnF6KZ0PHz4s7rjjDtGpUyfh7+8vzGaz6NSpk/j3v/8tioqKznj/qSXV8q+//irGjx8vwsPDhV6vF9HR0WLYsGHipZdeElar1WvejRs3iquvvlqEhoYKg8EgWrduLSZPniwOHTrkmefAgQNi1KhRwt/fXwCivktz1c/21VdfFYmJicJgMIjExEQxd+7cGpdZvXq1GDlypGefe/XqJd57771q89WXrveHH34QvXv3Fkaj0ZN6vL7jJYTrfOnVq5cwGo3C399fjBw5Uqxdu7bafA1J6Xw6+7R161Zx8803i3bt2gmz2Sz8/f1Fjx49xEsvvSRsNlut++nmTumck5MjpkyZIkJCQoSPj48YPny42LRpU63LPfXUUzV+b+qTlpYmJk6cKMLCwoSPj4/o37+/+Oabb6pdFxp6zj/33HNiyJAhIjw8XBgMBtGqVSsxceJEsXnz5mrb3rlzp7jxxhtFTEyM0Ov1IiIiQgwcOFA89dRTIj8/3zNfWVmZmD59uoiIiBAajabB39Ply5eLkSNHioCAAGE0GkVCQoK47bbbRF5enmeems6hNWvWiMGDBws/Pz8RGBgorrzySrFz585q50VycrKYNGmSiIuLEyaTSQQHB4uLLrpIvPfee5503Hl5eeL+++8XPXv2FIGBgcJkMol27dqJ++67Txw/frwBn5Ak1a5qSuf/fL9N3LLw90Z9/ef7bXWmOV67dq1o166d2Lt3r8jJyRH79+8Xl112mXjttddETk6OmDt3rrj88stFTk6OuP7668X48eNFdna2WLhwofDz8xOrV68WWVlZokePHuLnn38WOTk5AhCfffaZyMnJEVdccYVISkoSGRkZ4pdffhFdu3YVOTk5Yvbs2eL//u//RE5Ojli/fr2IjY0VR48eFU8++aSYPHmyyMnJEcnJyUKr1YoVK1aInJwc0bp1a7F3716xadMm0alTJ88+LF682FPGlJQU0aZNG3H8+PEGpXRWhGji3ruSJElSo1q9ejXDhw/ngw8+YNq0ac1dHKkGc+bM4ZFHHuG3335j4MCBzV0cSZLOgYyMDE+Ww3c2HudwQcOatzZU2xATdwyovan5/PnzycnJ8QyTANCpUyd27tyJXq/HbrfTvXt39u3bxz333ENSUhITJ04kLS2N66+/3pMi/e6772bMmDFceeWVtGrVimPHjqEoCs8//zxGo5F//OMfqKpKhw4dSElJYerUqdx2222ems6xY8fy/PPP88ILL3D77bd7pl966aW8/PLL9OrVy1NTU15ezpQpU1i7dq2nzEOHDuXrr7/mhx9+IDU1tVofQ3A1tz51uATZ/EySJEmSGpHD4eCdd96he/fuMqCRpL+ouoKPpiKEqDeRR9X33Yk2NBqNV9INjUaD0+kEQKfTeZbRaDSeoE2j0Xiaf9ZVP3ImCWYmTpzI119/zeLFi5k7d26Dl5OJAiRJkiSpEaSmpvLpp59y4403cvjwYa+npZIkSU1tyJAhLFmyxJPworCwkP79+3sSjXz99dde2Vkby8CBA/n6668BOHToEBkZGSQmJnpN37t3b40ZO/38/LxSs4NrzKl3330XwDNWVkPImhpJkiRJagRr1qzhlltuISwsjMcff7zBCQIkSZIaQ6dOnbj//vsZP348Go2G7t2788wzz3D//ffzxhtveBIFNLZbbrmFmTNnkpSUhFar5bXXXsNoNDJt2jTuu+8+kpKS6NatW42ZLkNCQrjooosYOnQoI0aMYPbs2Z4hGNzJAhpK9qmRJEmSJEmSpLNUtU+NdOYsFgtJSUn8/PPPBAQE1DhPTX1qZPMzSZIkSZIkSZKa3Zo1axg8eDC33XZbrQFNbWRNjSRJkiRJkiSdJVlTc+7ImhpJklq0adOmnVEmlZYmLS0NRVFOa0DWhmqqY6iqKrNnz6Zt27Ze2XIkSZIk6VyQQY0kSeeVxYsXN8nNvNS0Fi5cyJNPPsnw4cNZsGABH330Ua3z2mw23nvvPa6++mri4+Px8fGhbdu2TJ48mb1799a4TEVFBY8//jgJCQkYjUbatWvH008/jd1urzbvypUrufPOO+nfvz8mkwlFUVi9enWN63UHkDW9unXr1qB9T0tLY/bs2Wzbtq1B85+uLVu28NBDD9GnTx+Cg4MJDg6mf//+vPnmmzXuP8DGjRsZOXIk/v7+BAQEcPnll9dYvtNZ95l8bpIkSeeKzH4mSdJ5ZfHixSxcuPAvHdjExcVhtVrR6VrOJXrlypUEBgYyf/78emtp0tLSmDFjBpdccgm33norMTExHD58mLfeeotvvvmGn376ieHDh3stc/3117NkyRKmT5/OwIED2bBhA//+979JSUnhww8/9Jr3k08+4dNPP6Vbt2507ty5QcHGhAkTuOaaa7ymBQUFNWTXSUtL48knnyQ+Pp5evXo1aJnTMWfOHFatWsX48eO5/fbbcTqdLF26lLvvvpslS5bw008/eR3z33//nWHDhhEbG8tTTz0FwLx58xgyZAi//fYb3bt3P6N1n8nnJkmSdK60nF9MSZIuCKWlpfj7+zd3Mc5L7mOjKAomk6m5i3NasrKyCAoKalCzs/DwcLZu3VotALjxxhvp3bs3M2fOZNOmTZ7py5YtY8mSJTzwwAO8/PLLANx2220EBQXx3//+lxkzZjBo0CDP/M888wzvvPMORqORl156qUFBTY8ePZgyZUrDdvYcu+eee/jwww+9zom///3vTJkyhU8++YQffviBq666yvPevffei8FgYO3atZ4255MmTaJz5848+OCDrFix4ozWfbqfmyRJ0rkkm59J0gVsx44dTJgwgdDQUEwmE126dGHOnDmekYIBHnnkERRFYceOHdWWLy4uxsfHh/Hjx3tNX7VqFZdddhlBQUGYTCZ69OjB22+/XW35+Ph4hg0bxtatWxk9ejSBgYH06NGj1vIOGzaMhQsXAng1Azr1SXxxcTF33XUXERERmEwmBg8ezMaNG6utTwjBW2+9Rd++fTGbzfj7+zN8+HCSk5PrOmweH374IYqisGrVKmbPnk1cXBxGo5EePXrw+eef17jMpk2bmDBhAmFhYRiNRjp27MgzzzzjGXm56r7Gx8dz+PBhJk6cSEhIiCfTS219ahwOBy+88AJdunTBZDIRGhrKhAkT2LlzZ7Vy2Gw2Zs6cSUxMDD4+Plx00UVeN7MNNX/+fPr06YOPjw+BgYFcdtll/Prrr573V69ejaIoJCcnc+TIEc9nNm3atFrXGRoaWmONRpcuXejWrRu7du3ymv7pp58CcP/993tNd///8ccfe02PjY31Gh27oWw2GxaL5bSW+fDDDz21E7fccotn/4cNG+aZp7y8nFmzZtGuXTuMRiNRUVHcfPPNHDlypEHbGDx4cI1B7vXXXw/gdbxSUlL4888/ue6667w60cbGxnLdddexatUqsrKyzmjdp/u5SZLUMmVlZTF9+nQAdu7cyapVq5q5RA0jgxpJukBt2rSJgQMHkpyczJ133smLL75Iq1ateOSRR7j55ps9802dOhWARYsWVVvH//73P2w2m2cegHfffZfLLruMsrIyHnvsMf773//Srl077rrrLmbOnFltHUePHmXEiBHExcXx4osvcs8999Ra5scee4whQ4YA8NFHH3leQ4cO9Zpv9OjRpKen8/jjjzNr1ix27drFlVdeSWlpqdd8N910E3//+99JTExkzpw5zJ49m+LiYkaNGsV3333XgKPo8sgjj/D5559z11138dRTT1FZWcnkyZOrBVvLli1j8ODBHDhwgAcffJDXXnuNgQMH8vjjjzN58uRq6y0rKyMpKQmdTsczzzxTb5O7G2+8kX/+85+0atWKF198kTvvvJPk5GQGDhzI1q1bveadPHkyL730Ev369eOll17ikksu4ZprrmHz5s2ntd+33347er2eZ599lgcffJA9e/YwfPhwli1bBkDnzp356KOP6NSpE2FhYZ7P7I477mjwdtxUVSUzM5PIyEiv6X/++SexsbG0bt3aa3rr1q2JiYnhzz//PO1tnerll1/GbDbj6+tL69atefzxx6moqKh3uaFDh/Loo48CMGPGDM/+P/bYY4ArEB09ejTPP/88ffr04ZVXXmHy5Mn873//Y8CAAaSnp59xmd3LVj1e7mMxcODAavNffPHFCCEadA7UtO7a1Pa5SZLUMkVFRfH+++8DsHv37hYT1CAkSbogDRo0SGi1WrF9+3bPNFVVxXXXXScAsWrVKs/0fv36iejoaOFwOLzWcckll4jQ0FBRUVEhhBDi+PHjwmg0ismTJ1fb3r333is0Go1ISUnxTIuLixOAeO+99xpc7qlTp4raLk3u9+666y6v6f/73/8EIN5++23PtG+++UYA4p133vGa1263i759+4r4+HihqmqdZfnggw8EINq0aSOKioo804uKikSbNm1EcHCwsFgsQgghrFariIyMFEOGDBF2u91rPf/9738FIJKTkz3TkpKSBCAee+yxattNTU0VgHjiiSc801asWCEAMWnSJK9yb9++XWi1WnHJJZd4pi1fvlwAYurUqV7r/fbbbwVQ6/Gtat++fUJRFDF48GDP5y+EEBkZGSIwMFDExcV5nS9JSUkiLi6u3vXWZd68eQIQ//73v72m+/n5iYsuuqjGZfr37y+io6NrXeeLL75Y7dhXdeTIETFixAjx2muviSVLloj58+eLyy67TABi5MiR1b4TNUlOThaA+OCDD6q99+677wpAzJw502v60qVLBSCmTJlS7/prUlpaKhISEkRgYKDIz8/3TH/ppZcEIJYtW1ZtmR9++KHG70RD112b2j43SfqrSU9PFzk5Oc36euONN0Tv3r1F165dxU033SQyMzPFq6++Ktq2bSsGDhwopkyZIqZPny5ycnLE9ddfLxYsWOBZ1mw2i5ycHLFp0ybRqVMnkZ6eLmJjY0VoaKjo2rWrePfdd0VCQoLYs2ePyMnJEVlZWSI+Pl7s3bv3nO9nenp6teMv+9RI0gUoJyeH3377jQkTJng191IUhUcffZQvv/ySb7/9lksvvRRw1dbcc889rFy5kssvvxyA1NRU1q9fz9133+3Ju//VV19RUVHBrbfeSl5entc2x44dy2uvvcbPP/9Mu3btPNNDQkK45ZZbGnX//vGPf3j9P2LECAAOHjzomfbxxx/j7+/P+PHjayzr7NmzOXjwIB06dKh3e3fddReBgYGe/wMDA7nzzjt59NFHWb16NVdccQUrV64kOzub5557jqKiIq/lr7zySh544AFWrFjh1SwJ4KGHHmrILvPtt98Crtqsqv1WevTowVVXXcWSJUvIzc0lPDycxYsXA1SrORs/fjwdO3Zk//799W5vyZIlCCF4+OGHvcZdiImJYdq0abz66qts3bqVfv36Naj89fntt9948MEH6dGjh6fmw81isdTanMxkMp12k7Gq2rRpw88//+w17dZbb2XGjBm89957fP7559x4441nvP5vv/0WjUbDrFmzvKaPGTOGXr16sWTJElRVRaNpeMMJp9PJlClTSE1N5dNPPyUkJMTznvtY1HS83M3M6jpeda27JnV9bpL0V7Z9UxnFBY76ZzwNgSE6evbzq/X9AwcOsGTJEpYuXYper+fhhx/myy+/ZM6cOaxcuZKAgAAmTJjglSykLgaDgUceeYRt27bx/PPPA67f2a+//po77riDNWvW0LVrV0JDQxtl/86WbH4mSReg1NRUALp27VrtvS5duqDRaDh8+LBn2uTJk9Hr9V5N0BYtWoQQwqvpmTtt68iRIwkPD/d6jRo1CoDs7Gyv7bVr1w6tVtt4Owe0bdvW63/3BTU/P9+rrKWlpURGRlYrq7uZ16llrU3nzp2rTevSpQuA5zi6j8306dOrba9Tp041bi88PLzBGbZSU1PRaDQ1lsWdetj9uR8+fBiNRlNjwFbT8rVtD2o+h9zbq3oOnY3NmzczZswYYmJiWLZsWbU+HmazudamYDabDbPZ3CjlqMrdfOyHH344q/WkpqYSExNDcHBwtfe6du1KaWlptaC7LqqqMn36dJYsWcIzzzxTrVmj+1jUdLxsNpvXPKe77lPV97lJknRurVu3ju3bt3PZZZcxfPhw1q1bxzvvvMOgQYMICwvDYDBU6yN7um644Qb+97//AfDZZ5/Ve504l2RNjSRdgIQQpzV/aGgoY8aMYfHixZ4MXB9//DGdO3f2ehLvXu+iRYuIjo6ucV2nBhxNccNZW5BUdb+FEISHh3s6mdekoeOQ1JTR69Rj7P7/xRdfrDWtb0xMjNf/p3NsTuczrWvehq7ndM+hM7VlyxZGjRpFYGAgycnJ1UaIBtdxy8jIqHH5jIyMGpc5W61bt0ar1Z5WwFGTxjyOQghuu+02Fi1axBNPPFFjzYj7HKvpeLmn1XS8GrLuqhryuUnSX1ldNSpNRQjB9ddfz7/+9S/PtGXLlnn6QJ5Kp9Ohqqpn2drGvaoqNjaW8PBw1q1bx5YtW3jrrbcap/CNQAY1knQBcgcWu3fvrvbevn37UFW1WvAxdepUFi9ezJdffknHjh1JSUnxVDe7tW/fHoCwsDBGjhzZJGVvrJHo27dvz4EDB7j44ovx8zu7H5c9e/Ywbtw4r2numhn3cXQfG19f3yY5Nu3atWP58uXs3bu3Wga5PXv2AJCQkOCZd8WKFRw4cKBaTcu+ffsavD1wnUNVmxNW3d6p59Dp2rp1K6NGjcLf35/k5GTi4uJqnK9///588sknHDt2zCtZwLFjxzh+/Hi1z6YxHD58GKfT2aDO73Wds+3ateOnn36iqKioWq3cnj17CAgIICwsrN5tuIOODz74gH/961+1JpXo378/ABs2bOC2227zeu/3339HURT69u17Rut2a+jnJknSuTVkyBBuvvlm7rjjDsLDwyksLKR79+7861//oqCgAH9/f7777jvP70Lr1q3Zvn07V199NT/++GONQY2vry9lZWVe02688Ub+9re/cd111zV6S4yzIZufSdIFKCIigkGDBvH99997pVkVQvDcc88BrsEGqxozZgxhYWEsWrSIRYsWodFoqo3bMWnSJIxGI0888QRWq7XadouLixuUMaou7gCkoKDgrNZz8803o6pqtb4Mbg1tegbw1ltvUVxc7Pm/uLiYt99+m6CgIJKSkgBXRraIiAief/75GstutVqrZWc7He4mA88995zX0/9du3bx3XffcckllxAeHg7A1VdfDbhqjapavHhxg/rTAIwbNw5FUXjxxRe9fugyMzP54IMPiIuLo3fv3me8P1u3bmXkyJH4+vqSnJzsCchq4m7eMHfuXK/p7v/Pps9L1SaLbqqqep50jh07tt511HXOjh8/HlVVqz0g+PHHH9m6dSvjxo2rtz+NEILbb7+d999/n0cffZT//Oc/tc6bmJhIv379+PLLLzl+/Lhn+vHjx/nyyy8ZMWIEUVFRZ7RuOL3PTZKkc6tjx47MmjWLSZMmkZSUxHXXXUd2djYzZ87kyiuvZOLEiV4PxaZMmcKGDRsYPXo0W7ZsqbH1wCWXXMKBAwcYPny4p7/m5ZdfTnl5+XnV9AxkTY0kXbBeffVVkpKSGDJkCHfffTdRUVEsXbqU5cuXc8MNN3iSBLjp9XomT57MvHnz2Lx5MyNHjqzWpKRVq1a89dZb3HbbbXTu3JmbbrqJuLg4cnNz2blzJ4sXL2bPnj3Ex8efcbkvvvhi5s2bx9/+9jfGjBmDXq9nwIABp33zNHHiRG655RbmzZvHli1buOqqqwgLCyM9PZ0NGzaQkpLS4D4hYWFhDBgwgOnTpyOE4IMPPuDo0aPMnz/f8yPg6+vLokWLPJ3xp0+fTmJiIkVFRezbt49vvvmGb7/9tlqigIYaNWoUkyZN4vPPP6ewsJCrrrqKrKws3njjDUwmE6+99ppn3tGjRzN27FgWLlxIQUEBl19+OYcOHeKdd95p8HgiHTt2ZObMmcyZM4ehQ4dy/fXXU1payrvvvktZWRmffPLJGT+hO3LkCKNGjaKwsJB7772X3377jd9++81rngkTJuDr6wu4Au6rrrqK//73vxQXFzNw4EA2bNjAggULmDJlCpdcconXsjt27PCk7F6/fj3gShHuHl/nnnvu8SR+uP322ykpKWHQoEG0bt2avLw8vv76azZv3szVV1/NxIkT692fLl264O/vz5tvvonZbCYoKIiIiAhGjBjBtGnTWLhwIS+88AJpaWkMHTqUlJQU3nzzTSIjI3n22WfrXf/MmTNZsGABPXv2pHPnztXG5WnXrp1XCudXX32V4cOHM2TIEE8K9ddffx1VVT2Dl57Juk/3c5Mk6dwbP358tX4z/fr18wQgn3/+uWdA4oiICH788UfPfO6HOW3atGHt2rUABAcHVxvjbPfu3XTt2tXTQuG80YSZ7SRJambbtm0TV199tQgODhYGg0F06tRJvPDCC7Wmqd20aZMn5e/HH39c63p//fVXMX78eBEeHi70er2Ijo4Ww4YNEy+99JKwWq2e+eLi4kRSUtJpldnpdIoHH3xQxMbGCo1G45Uqt650z9SQwlgIIRYtWiQuueQS4e/vL4xGo4iLixMTJkwQn3/+eb1lcad0XrlypXj88cdF69athcFgEF27dhWffPJJjcvs3LlT3HjjjSImJkbo9XoREREhBg4cKJ566imv9Lh1pUCuKaWzEK501M8//7zo1KmTMBgMIjg4WFx99dVix44d1dZhsVjEAw88ICIjI4XJZBL9+vUTP/30U53HsCbvvvuu6NWrlzAajcLf31+MHDlSrF27ttp8p5PS2Z0Cua5Xamqq1zJWq1U89thjIi4uThgMBpGQkCCeeuopUVlZWW397s+tIeueP3++SEpKEpGRkUKv1ws/Pz8xYMAA8cYbbwin09ng4/TDDz+I3r17C6PRKACv876srEz885//FAkJCUKv14vw8HAxZcoUkZaW1qB1u9N/1/aq6bz/7bffxIgRI4Svr6/w8/MTl112mdi8efNZrftMPjdJ+is5H1I61/d67bXXPCmdz+T1r3/9S7Rq1Up89913zbofNaV0VoQ4R71BJUmSWpgPP/yQW265heTk5DOuYZEkSZL+GjIyMrxS4EtNp7KyslprEtmnRpIkSZIkSZKkFk0GNZIkSZIkSZIktWgyqJEkSZIkSZIkqUWTfWokSZIkSZIk6SzJPjXnjuxTI0mSJNUqPj6ep59+urmLIUmSJEmnTQY1kiRJzWTatGkoisK1115b7b3FixejKAo6XeMPJ/b000+f1VhCjWXkyJFMmzatuYshSZIkAX379q1xQOIz8fnnn5OVldVo8zWEDGokSZKaUZs2bfj+++/Jzs72mv7uu+8SFxfXTKU6O5WVlX+JbUqSJJ2vhBCoqtps22+OoKbxHwFKkiRJDda+fXvi4uL48MMPeeSRRwA4evQoK1eu5F//+hf/+c9/vOZftmwZ//73v9m1axeBgYFMnDiRF1980TOK+7Rp00hPT2fSpEk888wzFBYWMnz4cObPn094eDgffvgh//73vwFQFAWAJ554gtmzZwOu4OC+++7jo48+Qq/Xc9NNN/HCCy+g1WprLH9aWhoJCQl8/PHHfPLJJ6xZs4a77rqLl156ic8//5znn3+effv2ERUVxTXXXMN//vMffH19mTZtGj///DMACxcuBCA5OZn4+HgSEhJYt24dl1xyiWc7iYmJTJkyxVNORVF49dVX+f333/nhhx+47LLLGDNmDLfddhtr1qzhnnvuYd++fXTt2pW3336bvn37NsKnJUmS1DDJycnk5OQ06jojIiIYPnx4re8fPXqUyZMnM3jwYDZt2sQVV1zBypUrqaio4Morr/T8xtx8880cP36ciooKbr/9dm6++eYGbf/LL79k/vz5VFZW0qdPH+bMmQPA/fffz/bt21EUhcmTJxMbG8u2bdu46667MJlMLFu2jDfeeIMVK1Zgs9no378/L730EkuXLq0234EDB3j88ccpLy8nJCSE119/ncjIyAaVT9bUSJIkNbMZM2Ywf/583Hlb5s+fz6WXXlqtpmbHjh2MGzeOoUOHsm3bNhYuXMjSpUu58847veb7888/SU5O5ocffuCnn35i27ZtPPTQQwBcf/31PPLII7Rq1YrMzEwyMzM97wG8/vrrREdHs3HjRl577TXmzp3LokWL6t2HRx55hBtuuIGdO3dy99138+GHH3LXXXfx4IMPsmfPHhYtWsSqVas8ZX311VcZMmQIkyZN8pRj0KBBp3XcnnzySQYOHMiWLVt45plnAFBVlVmzZvHqq6+yZcsWgoODmTRpEg6H47TWLUmS1BKlpKQwadIk/v3vf5OVlcXy5ctJTk5mx44dbNiwAXBdf1etWsWKFSuYP38+BQUF9a73wIEDLFmyhKVLl5KcnIxWq+Wrr75i165dZGZmsnbtWtasWcPkyZMZO3YsvXr14q233iI5ORkfHx9uvfVWVqxYwdq1a7FaraxYsaLafDqdjlmzZrFgwQJWrVrFDTfcwLPPPtvgfZc1NZIkSc1s4sSJ3HfffaxevZqhQ4fy/vvv89prr1FSUuI134svvkifPn145ZVXAOjcuTOvv/46EyZM4Omnn/YEQQaDgQ8//BCj0QjAXXfdxauvvgqAj48Pfn5+aLVaoqKiqpVlyJAh/POf/wRctUgffPABK1as4JZbbqlzH+644w6mTJni+X/48OE899xz3HTTTQC0bduWefPmkZSUxGuvvUZwcDAGgwEfH58ay9EQ48eP55577vH8/9tvvyGEYO7cufTp0weAp556ioEDB3Lo0CE6dux4RtuRJEk6XXXVqDSl1q1b069fP5544glWr17NiBEjACgvL+fw4cMMHDiQ9957j2XLlgGujG2HDx8mJCSkzvWuW7eO7du3c9lllwFgs9kICwtj9OjRHDlyhFmzZjFq1CiGDRtW4/K//vorb7zxBlarlcLCQjp16sTo0aO95klJSWHfvn1cd911gOshVURERIP3XQY1kiRJzcxkMnHTTTfx3nvvUVpaisPhYOzYsXzyySde8+3evdvzA+WWlJSEEII9e/Z4gprOnTt7AhqA2NjYan12atOrVy+v/2NjY0lNTa13uYsuusjzd25uLkeOHOGBBx7wqgVy10SlpKTQv3//BpWnodt0UxSFnj17ev53p/zMzs6WQY0kSRc8s9kMuK639957L1OnTvV6f/369axdu5Zly5ZhNpsZP348FRUV9a5XCMH111/Pv/71r2rvJScnk5yczPvvv8+SJUs8D9HcbDYbjzzyCCtXriQ2NpY5c+Zgs9lq3EbHjh358ccfT2eXPWTzM0mSpPPAHXfcwTfffMOcOXO45ZZb0Ov1Nc7n7gdT1/RTx0lQFIWGDklW07IN6Wzq7tMDeOZ/9dVX2bZtm+e1fft2Dh48SPfu3Wtdj0bj+lk6tbx2u73ObVZdvmr/H/dxac4Os5IkSefa8OHD+eyzzygrKwMgMzOT3NxcSkpKCAoKwmw2c/DgQTZv3tyg9Q0ZMoTvv/+e3NxcAAoLCzl27Bj5+fkIIRg7diyPPPIIO3bsAMDPz8+zbXfQFBISQllZGUuXLvWst+p8iYmJ5Ofn8+effwKu6/6+ffsavM+ypkaSJOk80LlzZ/r378/69es9HedP1bVrV9asWeM1bc2aNSiKQpcuXRq8LYPBgNPpPKvy1iUyMpLWrVuzf/9+br/99tMqR3h4OADHjx/3TMvJySEjI6NpCitJknQBGj58OAcPHmTMmDGAqwbnzTffZMSIESxcuJCkpCQSExMbnESlY8eOzJo1i0mTJqGqKnq9nueffx6TycR9993neXDkrsm5/vrrmTlzpicBwE033URSUhKtW7f2ahFw6nwLFizgscceo6SkBKfTyYwZM+jUqVODyiiDGkmSpPPE8uXLsdlstbZtnjlzJn369OGBBx5gxowZpKWlcc8993DjjTfSpk2bBm8nISGBrKwsNmzYQPv27TGbzZ4mC43lmWee4dZbbyUoKIjx48ej1+vZu3cvP/74I++8846nHMnJyRw6dIjAwEACAwPx8fFh8ODBzJkzh06dOuFwOHjssce8mtNJkiRJ1bVp04a1a9d6/p8xYwYzZsyoNt/nn39e4/L11dqMHz+e8ePHV5vuzmRZ1dixYxk7dqzn/1mzZjFr1qx65+vevTvfffddneWojWx+JkmSdJ4wm811dtbs0aMH3333HWvWrKFnz57cdNNNjBkzhrfffvu0tjN+/Hiuu+46xowZQ3h4uCctZ2O66aab+N///scPP/zARRddRP/+/Zk9e7anjwvAgw8+SFhYGD179iQ8PJz169cD8P777+Pn58egQYP4v//7P2bMmEF0dHSjl1GSJEm6cCiioQ2tJUmSJEmSJEmqUUZGRrV+iS1NQUEB1157bbXpX3/9db0Z0s6lyspKr4dkIIMaSZIkSZIkSTprF0JQ01LUFNTI5meSJEmSJEmSdJb0en2NmRqlxmW322vMECpraiRJkiRJkiTpLAkhyM3NlYFNE9Pr9YSHh1cb4kAGNZIkSZIkSZIktWiy+ZkkSZIkSZIkSS2aDGokSZIkSZIkSWrR/vKDb1YdtfpcCgsLIy8vr1m2faGTx7bpyWPctOTxbVry+DYteXybljy+Taspj29MTEyTrFdykTU1kiRJkiRJkiS1aDKokSRJkiRJkiSpRZNBjSRJkiRJkiRJLZoMaiRJkiRJkiRJatFkUCNJkiRJkiRJUosmgxpJkiRJkiRJklo0GdRI0glvbszif7tkmkxJkiRJkqSWRgY1knTCHxll/HqktLmLIUmSJEmSJJ0mGdRIEuBUBcU2B+nFFdidormLI0mSJJ1QUFDAW2+9RVFRUXMXRZKk85gMaiQJKLQ5UAU4BaSXVDR3cSRJkqQTCgsLsdvt5OfnN3dRJEk6j8mgRpKAAovD83daoQxqJEmSzhcOh+v6XF5e3swlkSTpfCaDGkkC8q1VgpoiGdRIkiSdL+x2OyCDGkmS6iaDGkniZE1NqI+O1EJbM5dGkiRJcpM1NZIkNYQMaiQJKLA60CrQM9osa2okSZLOI+6aGovF0swlkSTpfKZr7gKcrry8PN544w2KiopQFIWRI0dy5ZVXUlZWxiuvvEJubi7h4eH84x//wM/Pr7mLK7UQBVY7wT462gab+OVwCYVWB8E+Le7rIUmSdMGRzc8kSWqIFnfXptVquemmm2jbti1Wq5V//vOf9OjRg9WrV9O9e3fGjx/P4sWLWbx4MVOmTGnu4kotRL7FQYiPjrggIwCphTaCfWRQLEmS1Nxk8zNJkhqixTU/Cw4Opm3btgD4+PgQGxtLQUEBf/75J0lJSQAkJSXx559/NmcxpRYm3+Ig1KwjPtgEyGQBkiRJ5wt3TY3VakVV1WYujSRJ56sWF9RUlZOTQ2pqKomJiRQXFxMcHAy4Ap+SkpJmLp3UkhRaXTU1AUYtoT46mdZZkiTpPOGuqRFCyH41kiTVqsU1P3Oz2Wy8/PLLTJs2DbPZ3ODlVq1axapVqwB4/vnnCQsLa6oi1kmn0zXbti90p3tsrXYn5XaV1mGBhIWF0SEym/TSCvn51EGev01LHt+mJY9v02rs46soiudvg8Hwl//s5PnbtOTxbblaZFDjcDh4+eWXGTJkCAMGDAAgMDCQwsJCgoODKSwsJCAgoMZlR44cyciRIz3/5+XlnZMynyosLKzZtn2hO91je7ykEgCTqCQvL49YXw1/HLGQmZ2DXtuiKzObjDx/m5Y8vk1LHt+m1djHt7y8HI1Gg6qqZGRkYDAYGm3dLZE8f5tWUx7fmJiYJlmv5NLi7tiEELz99tvExsZy1VVXeab369ePNWvWALBmzRr69+/fXEWUWph8q6u9dojZFePHBRlxCjhWXNmcxZIkSZJwPch0P6iUyQIkSapNi6up2b9/P2vXrqVNmzbMnDkTgMmTJzN+/HheeeUVfvnlF8LCwnjggQeauaRSS5FfZeBNgIRgVwa0tKIK2oaYmq1ckiRJkitRQGBgIEVFRTKokSSpVi0uqOnUqRP/+9//anzv8ccfP8elkS4EBVZXUOOuqYnxN2DQKqQV2oDAZiyZJEmSZLfbMRqNmEwmmShAkqRatbjmZ5LU2AosDkw6DWa9FgCtRqF1oJFUmdZZkiSp2TkcDvR6Pb6+vrKmRpKkWsmgRvrLK7C6xqipKiHYSFphBUKIZiqVJEmSBK6aGr1ej9lslkGNJEm1kkGN9JeXb3GNUVNVfJCRkgonhTZnM5VKkiRJAldNjU6nkzU1kiTVSQY10l9egdXhSRLgFu9OFlBoa44iSZIkSYDT6URVVU/zM4vFImvQJUmqkQxqpL80IQQFVocnSYBbfJAr61laoexXI0mS1FzsdlfKfXdNjaqqWK3WZi6VJEnnIxnUSH9pJRVOHKqo1vzM36gl1KyTyQIkSZKakcPhyk7prqkBZAY0SZJqJIMa6S/t1HTOVSUEGTkia2okSZKajbumpmpQI/vVSJJUExnUSH9pJwfe1Fd7Lz7YRHpJBXaneq6LJUmSJOHd/MxsNgMyqJEkqWYyqJH+0tw1NaemdAZXBjSngGPFlee6WJIkSRI1Nz+TQY0kSTWRQY30l1ZwoqYmyFRD8zN3BjTZr0aSJKlZVG1+ptfrMRgMMqiRJKlGMqiR/tIKrA4CTVr0WqXae9H+BgxahVSZ1lmSJKlZuGtqdDrXgyc5Vo0kSbWRQY30l5ZvsXsyn6mq6jX+gVaj0CbQKGtqJEmSmknVmhrAM1aNJEnSqWRQI/2l5VcZeHPJkiWsXr3a6/34YCNphRUX3GBv2/6wsGuLvDGQJOn8VjVRAMiaGkmSaieDGukvzT3wphCCrKwssrOzvd6PDzJSUuH0JBS4UOTlOMjLvrD2SZKkC0/VRAEAZrOZ8vLyC+5BkyRJZ6967+iztGXLFvbt20dZWRl+fn507tyZ3r17N/ZmJOms2Z2CYpuTUB89VqsVu91OaWmp1zwJwSYAjhRVEGqunva5JRJCYLOqKIrrb0Wp3p9IkiTpfFBTTY3T6aSyshKj0dicRZMk6TzTaEGNw+Hgueee48CBA7Rt25bg4GAyMjL48ccfad++PY8++qjnoiRJ54Mi28mBN0tKSgA8wY37qWB8kOtHM7Wwgj4xfs1T0EZWYRMIFcSJv00+MqiRJOn8ZLfb0Wg0aLVaAK+0zjKokSSpqkaLMpYuXUppaSmvvPIKYWFhnul5eXm8+OKLLF26lPHjxzfW5iTprLkH3gzx0VFcXOyZXlpaSkhICAB+Ri1hZt0FlSzAajk5mKilTMXkI1uhSpJ0fnI4HJ6HTIDXAJzu67QkSRI0Yp+ajRs3Mm3aNK+ABiAsLIypU6eyYcOGxtqUJDWKfKurWUOo2TuocdfauCUEG0m7gNI6Vw1qysvUOuaUJElqXna73auVhxyAU5Kk2jRaUJOZmUliYmKN7yUmJpKVldVYm5KkRlFwSk2Nu3nDqf1q4oJMpJdUUum8MAIAm/VkB1tLubMZSyJJklS3U2tqZFAjSVJtGi2oEUJgMBhqfK+26ZLUnAqsDnQaCDBqKS4uJiIiAo1GU2NNjSogvbiymUrauKwWFY0WTGYFi6ypkSTpPHZqTY3BYECn08mgRpKkaho1UUBycnKtaRadTvlEWDq/FFgchPjoUBSF4uJi2rRpQ3l5ebWampPJAmy0DTE1R1Eblc2i4uOjwWTWyOZnkiSd11xBjZ4Du22062hEq1PkAJySJNWo0YKa9u3bs3bt2jrfl6TzSb7VQYiPHofDQXl5OYGBgZSWllarqYn2N2DQKqReIMkCrBYVH7MGH18NOZn25i6OJElSrRwOBwg9+3fZ8AvQENPa0OIH4Dyw24bNqtKjn7m5iyJJF5RGC2pmz57dWKuSpHOiwOogPsjoSRIQGBhIcXExR48e9ZpPq1GICzJypPDCCWrCInWY/TRU2AQOh0Cnk2mdJUk6/9jtdox6HxBQkOsgprUBs9lMXl5ecxftjGWm2ykrddK1tw9arbz2SlJjadJcrjt27GDp0qUcOHCgKTcjSWck/0TzM3fNTEBAAAEBAZSXl3tGsXaLCzKSWlTR4kexVlVBhU3gY9bg6+f6+st+NZIkna/sdjuKxpXEpSDP1Yy9JdfUCCGwlDlRnVCUL5vlS1JjarSgZu7cufz888+e/xcvXszzzz/P+vXr+c9//lNn0zRJOtcsdic2h0pIlXTOgYGB+Pv7A1BWVuY1f0KwkdIKJwVWR7V1tSQVNoEQ4GPWYPY9EdSUy6BGkqTzk8PhQDnRqKS4yInDLvD19cVut1NZ2fKSt1RWCNzPzPJzW/bviSSdbxotqNm/fz/9+vUDQFVVvv/+e+69916ee+45HnjgAb7//vvG2pQknbVT0znr9Xp8fHwICAgAqqd1jvZzZfDLKW/ZfVDcY9SYfDSYPTU18mmhJEnnJ7vdjkY50VJeQGG+w5PWuSUmC6ianEUGNZLUuBotqLFYLAQGBgKQlpaG3W7noosuAqBXr17k5uY21qYk6azln6hxcQ+8GRgYiKIonpqaU5MFhJpdP6r5lpb9I2Q7EdT4mDUYDAo6vRyAU5Kk85MQ4kRTYB26E0PVFOQ5W/RYNe7rbXiUjoI8B6qzZTdplqTzSaMFNf7+/uTk5ACwa9cuOnTogEbjWn1FRYXnb0k6H5ysqdF7ghoAPz8/FEWpVlMTanb9orb0oMbqCWoUFEXB7KuVzc8kSTovOZ1OVz9GocPkoyEgSENBnqNFBzXumvHWCQZXv5oCWVMuSY2l0SKNESNG8Pzzz7Nw4UKWLFnCsGHDPO/t2bOH2NjYxtqUJJ01d01NiI+WkpIST1Cj1Wrx9fWtVlPjZ9Bg0Cotvk+N1SrQ6kCnd2Xc8fXTyEQBkiSdl+x2d3NfLXq9QkiYjsJ8ByaTD9Ayg5ryMhUfs0J4pKv2P082QZOkRtNoQc0111zDuHHjcDqdTJs2jUsuucTzXklJCWPHjm2sTUnSWSuw2PHVa3DYLDidTk9QA64saKcGNYqiEGrWkWdp2X1qbCfGqFEUV1Bj9tNgKVdbfFY3SZIuPO4slELVoTe4ghqnAyptejQaTcvsU1OqUlaxny1b/8A/UEN+jgxqJKmxNNo4NQDDhg3zqqGpOl2SzicFVgfBPt6Zz9z8/f05fvx4tWVCfXSeZmstldWiYvI5+SzD7KtBVcFmFfiY5XgJkiSdP9w1NUJ11dQEh7luWQrz1Rab1tlSrlJYnEJmbjGDL+pGeqoDVRVoNPL6K0lnq9GCmtdff93z9NdNq9USHh7OxRdfTKtWrRplO2+++SZbtmwhMDCQl19+GXCl333llVfIzc0lPDycf/zjH/j5+TXK9qQLU77FQajZe4wat4CAAA4cOICqql59wULMevblWs95WRuT1aISEa33/F91rBofs+z3JknS+eNkTY0WnV7B7KvBZFYozHNgNptbXFBjr1SprBDYKkux2+1o9cU4nb4UFTgJCWvUZ8yS9JfUaHcxUVFRREZGer2Cg4M5fvw4jz32GFu2bGmU7QwbNoxHH33Ua9rixYvp3r07r732Gt27d2fx4sWNsi3pwlVgdXjSOVfNegaumhohRLWxasLMOgqsDtQW2lRLdboH3jz58MGd1rlcpnWWJOk8466pUZ2u5mcAoWE6T7KAlhbUlJepONVK7PYKACwV2QCyCZokNZJGezRw3XXX1frejh07+PTTT+nTp89Zb6dLly6eLGtuf/75J7NnzwYgKSmJ2bNnM2XKlLPelnRhUoWg0Oog1KynOKsYf39/tFqt5313gFNaWupVgxPio8OhCkoqnASZWt5TNZvNFYxVrZFx9a+RA3BKknT+OZkoQIf+RHKT4DAdGUftmELMlJdnNF/hzkB5mYrDeTKzZk5OJv4BieTnOmjfjOWSpAvFObkz6969O9nZ2U22/uLiYoKDgwEIDg6u1sm7qlWrVrFq1SoAnn/+ecLCwpqsXHXR6XTNtu0LXX3HtqC8EqeANuGB5B0qJywsrMb5hRBe0xOiAHJQDX6EhbW85o3ZlVaghMioYMLCzJ7pvv7lOO360zof5fnbtOTxbVry+Datxjq+7vsGjaIjOMSfsLBANFSwa8sxjPogKioqCAwMRK/X17Om80NGWgEOp6sFQFRUFFlZWQwZ4Meh/aWEBIei0TasX01tx7e8vJzc3Fzi4+Mbs9h/OfL60HKdk6CmsLAQs9lc/4znwMiRIxk5cqTn/7y8vGYpR1hYWLNt+0JX37E9VGADwKBWkJ+fT2Jiotf87nbcx48f9+oLpne4+tOkHM8lRGNriqI3qazMSgAq7aXk5Z3MGmTygYJ862mdj/L8bVry+DYNh8PBmjVruPzyy6vUAkiNrbHO34KCAgAURYetopy8PDtCFej0YC13BQDHjh3zqlE/n+XmWBCKq6amffv2rFu3DlWTi8Nh5FBKNsGhDbslq+34rlq1in379jFjxgwMBkOjlv2vpCmvvzExMU2yXsml0frUZGdnV3sdP36cbdu2MXfuXAYOHNhYm6omMDCQwsJCwBVAtZQLnNQ88k+kZQ7QqthsNq/MZ+B6SmM2m6vV+IWZdSeWb5ntn08OvOn9tTf7amTzM+kvITc3l927d7Njx47mLorUAO7AU1FONj9TNArBoToqrEagZY1VU17mRChlmEwmEhISALA2Ur8ap9PJoUOHUFW1SVvGSNL5rNFqau69995q0zQaDWFhYQwcOJCJEyc21qaq6devH2vWrGH8+PGsWbOG/v37N9m2pJbPPYCm3uH6MTw1qAFXv5rS0lKvaUEmHRrlzIIaIUS17IDnmtWiotOfHHjTzddPQ2WFwGEX1d6TpAuJ+0FFeno6nTt3bubSSPVx15prlJOJAgBCwnSkHzv7oGZfrpXXf8/k6ZFtCPZp+oYrljIVh7OMwMBAAgMDMZvN5ORk4hcQT36ug8TOkF1WydbMckYnBp3Wb0ZGRgYVFa4EBJmZmbRu3bqpdkOSzluN9i3+4osvGmtVdZo7dy579uyhtLSUO++8k0mTJjF+/HheeeUVfvnlF8LCwnjggQfOSVmklinf4kABhK32oCYgIKBaQgqtRiHYpCPfenpBzaKtOWzJLOfZUW0w67X1L9BErNaa0zafzICmEhjcfOWTpKbmHpfq6NFj58WDBqluJ2tqtJ6aGoCQMC1ajatJ+9kENcsOFJJeUsmGY6Vc2SH47ApbD4dDYLMKKuylRERFoygKMTExHD9+nL7ddWQcqURVBR9ty2XdkVJ6RvkS7d/wJmQpKSno9Xp8fX3JzMxswj2RpPNXi0vhdP/999c4/fHHHz+3BfmLKLI6KK100jrQ2NxFaTQFVgdBJi2lJa4bnJqaKwYEBHDo0KFqNz4hZh0FltNri78n10pqYQVzf8vkn0Nj0TTTjZTNImoOanxPjFVT7pRBjXRBy8t11dSUl5dRVlbmlcpdOv84HA40Gi2KovGqqQkK1aHTGgEFi8VS+wrqYHOobEx31cZvPAdBjaVMRQgVm63M8yAtNjaWlJQUfPysOBxajmdXsuGYK5HAtszyBgc1qqpy6NAh4uPjMRqNHDhwQAbt0l+SHG1PqtNH23N5bOXRFjs2S00KLA5CzHpKSkowmUwYjdUDNn9/f1RVrfYUMMysI+80m59lllYSZNKyMb2Mr3bln1XZz4bVomLyqf6VrzoApyRdyEpKilEU17M8+TT7/Ge329FqXZ9X1aaxOp1CUIgevc7njGtqNh4rxeYQdA73YWe2hbLKph2rq7zMicNZjhDC8yDN3WncZne1Cth8sByHKjDrNWzPaniwlpmZidVqpV27dkRHR1NZWUl+fvP91khSc5FBjVSnrNJKiiucpBVWNHdRGk2+1UGo2TXwZk1Nz8B7rJqqQsx6T5+chrDYnRTZnIztFEJSfACf7shjU0ZZ/Qs2MqdTUFlRc02N3uB6ClougxrpAldWVoqPIQYFLceOyqDmfGe329FodGi0oD0l3XFImA6N4lNtkOSGWpNWQphZx9Te4TgFbG7i67Klyhg17t+d0NBQDAYDubmZ+PpryMt20CnMh0Ft/NmZXY5TbdjDxJSUFLRaLfHx8URHRwOnF7QLIUgvvnB+46W/LhnUSHVy10rsyG45GWbqU2B1EOLjCmqCgoI801P22jh62HVhdz9JOzWoCfXRYbGrWOwNe6qXVepqqhbtr+fuAVHEBxv57/rjZJZWNsKeNJzN6s58VnNzBJkBTbrQCSGw2sow6P0x6EPJyJBBzfnO4XCg1bgyn6UVeqfRDwnXolF8KC05/d+mIpuDrZnlJMUH0DHMh+ATNelNqbxMRVVc23AHNRqNhpiYGDIyMtD4QZBTx2WJgfSM8qWsUuVwYf1DBwghOHToEHFxcRgMBgIDA/Hx8TmtoGbDsVLuXprK3pwza8onSeeLJgtqiouLq6V4lloWIYQn09eO06gKP59VOlVKK5yEGDWUlpZ6ghfVKdi/28aebTYcduGpqTk1rXPoibTOBQ1sgpZV5gpeov0MGHUaZg2NRaPAs2vSKbPZWb16NYsWLaKysmmDHHc6Z1MNNTXgaoImm59JF7Ly8nKEUPHzDSA4MIrikjxPdi3p/GS321EUHaoiuG9ZGmtSiz3vhYTp0Gl9KK+nT40oyEMc2O01bf2RUlQBSQmBaBSFi1r5s/l4OZXOprsGlpepoJSh0Wjw8zs5eHNMTAyFhYUcKC/CoGjoEeBLjyhXEoRtmfUHbNnZ2ZSVldGuXTsArwQEDbUpw7Wdnw8X1zOnJJ3fGj1RwLZt23jrrbcoKiqq9t65ypAmNY7SShW7KjBoFXbnWHGoAp2mZXc8LDzRdMxfsZEthOeJWWGBE9XpCm6OpVWS0N6IyWSqXlNzIqjJszho1YDkCZknamqi/F0jXkf6GXjoklheWLWf+R/9isZaBEBWVhZt2rRplH2sic3iasZQU/MzcGVAy0x3DWyntPDPWJJq4n5A4e8fQGBwKFl5O0g/lkN8ghwM73xlt9vRKDocJy5bH23LZWAbfwxaDUaTBpPJTGmhFVVV0Whqvrapn74Nu7egefkjFLMvAKtTi4kPMhIX5LqGX9zaj+UpRezIstAv1q/G9Zyt8jIVp3AlCajagd/dr2ZX9lGifbpRUuCkXbiJhGAj27MsXNet7vWmpKSg0Wg8494AREdHc+jQIcrLy/H19a1zeSEE27JcQc36o6Xc3i8So0424pFapkY/cxcsWMC1117LRx99xBdffOH1kloW9yCVA1r5YXOopOTXXxV+vnPXPBkdVuBkM4C8bDso4B+oIfVABUK4amuqD8DpCk4a2q8ms7SSQJPWK5WzX3kmg0o24rSVEdzFNShtVlbW2e1YPTw1NTUkCgBX8zMhwGq9cBJCSFJV7u9yYFAAPXq1BSDlYEZzFkmqh6smTYcD1/Ur1+Jg6f5Cz/uBga4ApLZkAaK4EHZuAocDseMPwHVNPpBvIykhAKfTyZEjR+gW4YOPTsPvx0prXM/ZUp0Cq0Wl0l5arR9nREQEikaLoTIfg1nxDMLZM8qXvblWKhy11x4JIUhJSaFVq1aYTCYcqqDE5jitfjXpJZXkWxxcEuePxa7yRxM3w5OkptToQU1ZWRmjRo3CYGh4fnXp/OQOAIYluC7CO7Jafr8adzCiqfQeoyYvx0FgkJb2nU2Ul6lkH3cQEBBQLagJ8XHX1DQsrXNmmZ1oP9d3wel0snbtWpYtW0Z4aDBq55F8k+OPOSDonAQ1eoOCTldzLczJDGhNmwFIkppLYYHruxwSEkCr1mHodWYyjzft9046O3a7HQUdFQj8jVr6xvjy1a58Sipc16mQUFdQk59b8424+H01qCqYfRGb1gOuBAEKMDQ+gK1bt7JkyRKyM4/TL9aXPzLKGtw5/3RYLCpCFVhtJdWGENBqtZQbAokSxURF6SnIdSJUQa9oXxyqYHcd/Vzy8vIoKSkhMTERgI+35fK37w8TFBqGVqttUFDjbuI2pWc4YWYdyamyCZrUcjV6UDNixAiSk5Mbe7VSM3DfuCcEG0kINrIju/H61djtgrycc9+e3R2oqbYytFotvr6+OByCwnwn4ZE6olvrMfkoHD5Qgb+/P6WlpYgq6ayNOg3+Bk3D+9SUVhLt70of/dVXX7Ft2zZ69uzJddddxz3DEmkdYOSI3ZesrCyv7TQ2m1WtNUkAeA/AKUkXosLCYrQaH/wDXA8ZQoIjKS3L9STRkM4/DocDhBarqhLqo2Na7wisDpX/7coDICLa1fcxO6uk2rJCCMT6VdC2I8qgS2H3VlRLOWtSS+gaaSbYqGHHjh0A7Nu3jwGt/Cm2OTmQZ230/SgvVVFFBQ6HvVpNzb5cK9lKEIbKYgKCVex2QUmxky7hPug0Sp2pnVNSUlAUhbZt22J3qqw6XExppcr+/EoiIyMb1K/GNR6Onmh/A8MSAtmaWe5ppi1JLU2jBzUHDx5k/vz53HfffTzxxBNeL6llybc40CgQZNLRI9LMvnqqwk9H6sEKNiSXnfOMWwVWBwatgrWsxNO2uSDXgVAhNFKHRqOQ0N5Ifo4Dvc4Xh8OB1er9Ixdi1pPfgIt+hUMlz+Ig1FHIZ599RmFhIVdeeSVJSUlotVpMOg039AwjTxOIzWbzjHbeFKwWtdb+NAA+PhoUBZkBrYGEEOzPa7zvg9T0iktK0Gl9Pd+D1m2icahlpMnO0ectu90O6Ch3Ognx0dEmyMilbQP58UAhmaWVhIe7gpr8/BpqatIOQuYxlMGXovQdDA47B//YyvHSSpLiXYMrl5WVERQUREpKCj0iDOg08HsTNL8qL1Oxn5LO2W15ShEWYwgIgUN1BWv5OQ6MOg1dwn3YXkcLiZSUFGJiYjCbzfyRUUbpiRqsTcfLiI6OJjc3t85kGHanYFeOhV5Rrn43wxICUAWsTaseJEpSS9AkNTUzZsxgwoQJDB8+3OsltSx5FgfBPjq0GoUeUb7YVdeNXGMoKXRdfPOyG9aMq7EUWFzpnEtKTjYDyMtxoGhc2XQA2rQzoNVCWbEJqJ7WOcys8/Q3qkt2uWueiiM7MBqN/N///Z+nmYBbfJCRYp3rR64pBwO0WkSt/WkAFI3iSussa2oa5OfDxTy8/Ag3fXWQ59emszq1uMGD9+Xl2Nm7w4q9Uh7rc6m8rBSdxg8fX9f3IC7e1e/gcErDs0Q1he1Z5XU2Mforcwc1JQ4nISeStNzQMxytovDRtlzMZleWsOKi6oGIWL8KDAaUfkOgbUcICmXN4UJ0GoVBbfzZvn07AQEBDB8+HLvdTubRNHpE+vL7sdJGrzW3lDkRwjudM0BZhZP1R0vp1b41iqKQl5+J2VdDfq7rWtIzypfUwgqKaniIVlBQQGFhoec35edDxYSadfSK9mVzRjnR0dGoqlpn5tn9eVZsDldTN4DWgUbah5pkEzSpxWr0oGbYsGG1vqTmIYQgp+z0g4d8i52wEz8kXSJ80Cic1ijHdSkpcl20c7PObTV3vtVOiEnrNUZNXraD4FCtp7+JwaChdYKB0kIfoIYBOH10nmZsdcksrUSvVmIpzKVz585eY+K4RfjpcRoDQKtrsn41DofAXlnzwJtVmf009TY/E0Kw7EAhuWV/3YHaVCH4Zk8BrQMNjGgbyL48G6/8lsnUrw8y+5djLD9YVONNCLiO387NVlL2VpD8YymZ6ed2vKK/KlVVsdrKMBr80Z8YmT4yMtJ1I5mXTWVF8wSYTlXw8vrjvLohs0mbn7ZEQggcDgcaRUeJw+Hpzxjio2N8lxDWHy0lpbASg96EzWahwnbyMxSVFYg/1qH0Hohi9kXRaFD7DGK9EkW/KBOWonwyMzPp2bMnrVq1IiAggL179zKgtR9ZZXaOFjfu97K8TAWtq8alap+a1WnFVDoFozuGEx4ezvHjxwmN0JGf60B1CnpGu4K2mmprDh06BEC7du3Is9jZmlnOiIRA+sf6cry0Eo1/KFD3w7JtmeVoFOgeafZMG54QSGphRbVxgSSpJWiUoGbt2rWev3/55ZdaX1L99u20cmB3415MfjpYxO1LDpFRcnoX6nyLg9AT2b7Mei3tQ33Y2QiDcDrsgqKiIgrLt5OT5UojfC7kW+zsz7MR769gt9sJCAigslKluNBJWITea96EDkY0iuvpVU0Z0IpsTuzOusudVWon1O5qTlA13WZVGkUhLthEhbHpkgW4+wzUNkaNW0MG4EwpsPHOn9n8d/XhRitfS/NnehkZJZVM6hbGnRdF8f6EdswZHcfYjiFkllby5h9ZTPsmxdPuv6r8XCdlJSrtOhkxmjRsWm/hz1/LPdnppKbhHqPG7OvvmabT6QgJCcdWmUv28ebpQ7A1s5welb4kWnxIKZA3kVW5m00pig6bEJ6gBmBC51CCTFo+3JKD2dcXp9NKfu7Jz1Bs/R2s5SiDR3qm7Ww/mCKDP0PVTLZt24Zer6dLly4oikKnTp04duwY3YMVFGBjI2dBKy9TUUUpZrMZvd71WyOEYMXBYhJDTLQNMREbG0tWVhaRMRrslYK0Q5W0DTbhZ9DU+DAxJSWFqKgo/Pz8SD5cjCrg0naB9I1xJU/YXaASHBxcd1CTVU6HUB98DSezcw6J80erQHKqbIImtTyNEtSsX7/e8/e6detqfUl1U1VB6oEKDu+vQG2kG32L3clnO1w3V0eLG/50XQhBnsXuGZcFoEekmYP5Niz2s8uQVVrspKh8F0Vl27FYCikuOjcZt77fV4gqBIMjXU9qAwMDPekzwyK9h2zy89cSHWtGo+gpLj4lA9qJY1JfZ8rM0kqiHHn4+voSHh5e4zyqKkg0m8jTBJCXl3eiuUXjct8w15UoAFwZ0OyVos5mUe50n2sP5bMvt/E71Da2tEIbC7fmNGpGo2/3FhDhq2NwG9cNskZR6Bjmw7Q+Ebw9ri2vXhlPzygz3+wuqNbnJi2lAr1BoWNXE0NG+dG5h4mcLDurfyohLaVCPq1vIu7aVvegum6xsVFUOPI5fqx5AorVqcXEaUx0UHz47XDTpBNuqdzXQo2ioxKVEN3J75KPXsPkHmHsybWiGoyoWNm/y4bD4fr+iN9+htAI6Njds8yaikB8HTY67V3NgQMH6Ny5M0aja5yaTp06AZB15BAdwnwatV+NUAWWchW7o8yr6dmBfBtHiisY3T4IcI1X43Q6UZV8wiJ1HNhtw+kQ9IjyZVtWuSvxwaF9qO+9RPbvv5Kbm0tiYiJCCH4+XEy3CB+i/Q1E+xuI8dez+US/mszMmmsBSyucpOTb6BVt9poeYNLRL9aPNWklTZIJTpKaUqMENbNmzfL8fWpyAJkooOGK8p04HK7MYIX5jXOj/+2eAopPdB7MKm14TY3FrmJzCEKrPB3rEWVGFbAn5+xuZosK7VgqjgFgtWedkyZoZRVOfjxYxCVtAtDZXU+93EGNVgvBIdpqy7TraEKr9SU3x7t9sbtJXn39ajJLKwiuzCM+Pt5rsLWqDu2rIPq4AasS7GommJNzJrtXJ5snqKm/+RnUnQHtz4wy2oWYCDXrWbg157y/CV+6v5Bv9hQ02vgTe3Ms7M21cnXnELQ1DFKqKArxwSYu0mYQVHaM346e3K7NqpKVbqdNggGtTkGjUUjsbGLY5f4EhejYudnKb7+UUVoi02o3NncSjqBT0ulGR0cjhIOM9Dwc9nN7LlvsTrall2NCg1ZROHpUBrVVVa2pqRSC4HmPI7Zt9Lw/ql0QrQIMHLVoULQ2ykpUdm62IPJzYe92lIEjUE4MyFnhUPk9vZyB+kIOZuegqio9e/akINfBb8llHE8zEhoayZ49exkQ68uhAhu55Y3zgMlqVREq2CpKvIKa5QeLMOk0XBLnCrTdg3BmZmbSpacJe6Xg4J4KekaZybc4OPb6y6jPP4z4Yy07vvsKcDU925NrJbPUzqXtgjzr7hPjx85sC+GRUdhsNgoLT47t47YjuxwBnv40VQ1LCKDQ6mjUjKeNqaSkhAULFpCbm9vcRZHOM3LY2PNIbrb7Ig45x8/+glpgdbBkbwGXxPnjZ9CQdRr9atx9RtzNzwA6hfug1yh1ZmNpiPRjx1GFq9bIIbI9+92UfjxYiM2hck3XEM8NTkBAALnZDkLCdWi01W9QQyN0+Bj9KCos8brZcDeDqC8DWkleFhrVQXx8fI3vCyE4lloJKMQZYoGmGYTTanGVva5EAQBmX1dgV1sTtNxyO6mFFVwS588tA9qwJ9fKpozzd+wiIYRnDIYvduWjNsIN47d7C/A3aBhZ5QbiVGVlZRzeuYmO1v38nJLvmX7kUCVCQFyi9xhevn5aLk7ypddFPpSWqKxdXkpO1vlfC9aSFBa6aluDQryDmqioKACsFXnkZJ7bpCUbjpbip558aBRRaeBACxjgOLfcztGipu9T566pUU7U1ARXFKEumocoKQJAq1GY2jucQqceq81C+y4G0tPsHF23H4RAGTTCs66N6WXYHCpD2oezKyiauEB/dNoA/vi1nJIiJ4cPVkBlPIWFBfgcLqWn4svGA2WN0jTalc7ZidVW7glqyiudrDtSQlJ8gGdgZh8fH0JCQsjIyCAwWEfreANpB2x0WPE5ANvL9SgTb0G5dioHKlXCA/wJDAxk1aFifHQaBrU5WQvZN8aXSqegRBcE1NyvZltmOWa9hg6hPtjtdg4ePIjT6Xqg0j/WD1+DhuTzNDNgeno65eXlnn5FkuQmg5rzSG62naAQLSHhOrIb4Qf28x15OIVgSs9wovwMpxXUuMeoCavS/Myg1dA53IedZ/n0JuN4KoqipX379lhs2eTnVnqaDTSFCofK9/sK6RvjS0KwieLiYvz8/HDYNZSVqIRF6GpcTlEUwsIDqbSXkVcl8HIHenUlC3CoAm1xFigaWrduXeM8RflOystUTGaFdtpAtCa/JgpqVAxGBW0NgVtVZs8AnDUHNX9muJpkXBTrx9iukcT461m0rXGbdjWmjNJKci0OukeaOVJUwcZjZ9ekJL24go3pZVzZMRiTrvZL5549exBCoFUdFB5LIbO0ElUVHDlUQUS0Dl+/6rWCiqLQOsHI8CtcNyZHDp2/weL5YP/+/Q0ag8Ot6JQxatwCAgLw8fHBruaSmX5ug5rVqSXEmVzNn2Li9UQrBjYcOv/7Mby2IZNn1qQ3+XbcNTUaRYddqARiB6vFFdiceEDRP9aP0AA/EILgWAehEVp2WTtQ2jUJJTzKs641qa7MYAZfDRa9kc5lRWxcW46iwNBRflw+IZChI7qgKBqKilPor/VHHFBYvqSEjKNnlzSgvEzF4XRde9xJAtaklVDpFIxK9E7vHBMTQ2ZmJs5D+2j/xxsojkoKlA5EairZcfF4NKMnUN5vKNnmINpZirDYnaw/UsKQeH9MOg0pe238+nMpHYN9MGgV9pTpMJlM1YIa9wOf7pFmNAqsXLmSH3/8keTkZIQQ6LUahsQFsOFY6Vk3N28K7hYN6elNfx5KLYsMas4TdrugKN9JWKSOyGgdpcXqWY0Zcqy4gpWHiri8fTDR/gai/PWn1fzsZE2N9w1/9ygzqYUVlNjOrHZFVVUKio8SEhRDQkICDkcFFZWFnr4tTeHnw8UUVzi5tosrG0xJSUmd/WmqiooJQhV2Duw5ebPhZ9Bg0Cp1Nj/LLbcTWpmLX1g0BoOhxnmOpVWi0cKAIX5oFNDowmpt/3w2XANv1v9V1+sVDEal1uZnf6SXEeOvJzbAgE6rYUqvcI4WV7L6PE3/uT3TFXz/7aIoYvwNfLEr76yO7eK9BRi0CmM6BNc6j6qq7N69m9atWxMaHkFr61FWpRSRlWGnwiaITzTWuQ2jSUNgsJac7PP/iX1zUVWVX375hT/++KPByxSXlKLT+mH29f4eKIpCVFQUDjWP7Ew7znqSfzSWPIudndkWOvr6oNcrdOxiQlEUMo85GqVGsamUVzrZnWMhq8xO8Rn+BjRU1ZoaH7UcbZu2KNfcDNv/QPy68sR7CkkdIgF4aOk+vi44TqUQrI2dwu7McmwOlRKbg62Z5QyN82fnzp0EaRWOG4ZRaVMZMNQXs58r82XrOH/atk2g3JZGUUIFq9UidAZXE+GzYSlTcQpXM9SgoCDKKp18tTufdiEmEkNMXvPGREZQWVlJ7tynMB3eRlufDDJD+3JRTCS7citwqoLDGa5gvu2+Tfy6N5MKp2BkuyCOHq5g7w4bhXlOdm+y0iPCzJbj5Z5+NVVlltrJKXe40j9v3kxKSgrR0dHs2bOHjRtdTfyGJwRS6RRsOHr+9fVyp6nOyspqkn6oUsslg5pmUNNgWPk5DoSA8EgdETGumoCzaQ6xaFsuJp2GSd1cN/JRfgZyy+0NfqruDmpCfLyzgvU8MUjXmdbWZKTn4HCW0bpVW1q1agVAhSOL3KymuTA5VcG3ewroGOZDlwhXiubi4mICAwPJy3ag1ysEBlV/cu4WGOh6spZ5vNjT10FRFELNujqbnx0+nouvaiG2TVzN5XIKjh+zEx2rJyBIS5HRga8SgcVioayscQd/s1pctUENUVsGNIvdyc5sC/1j/Tz9gwa19qd9qIlPduSdl4NQbs0sJ8pPT0yAgeu6hZJaWMEfGWd2bAusDpJTS7i0bSCBptqD4KNHj1JaWkq3bt3o37cPZtXC5j0HST1YgY+vhoio2pd1Cw7VkZ9TgXqObrBbmoKCAux2O3l51bPL1aa8rASd1q/G4D4qKgqLtZjKyopzlmJ+TWoJAghWdPgHavDz16LxhSiHgQN5529Auy2zHPdpmdLETeU8N6uKliBrIUpMa5RLx0LH7ogvFiByXbXaiVGuhwyXtjYSaMnmN3suOA38tLqYyf87wL3L0nAK6OFnIzs7m6CQ3pT6x9E7LJWgEO/vY+fOnbFarbQ1FpKi2nAGCooLnVScRcrv8jIVpUo65wWbcyi0OrjrokivvpYiP5eoxQsByOybhOa590i8qjdGk0JMmRGLXWVXegH79+8nPDiYYFsZP+/OolWAgWC7lh2brIRF6ujS00T2cQe99a701L7BERQWFnoNIr3tRBPyaLWADRs20L59eyZOnEiXLl34448/2LVrFx3DTET768+7LGiqqpKXl4fZFISqqk06vpvU8jRJUGOxWEhJSWHXrl1eL8lVXTp//vxqX8S8bDsaLQSH6fDz12D21ZxxULM7x8If6WVc2yXUcwMW5afHKU42K6tPvtVOkEmL/pQmS4khJnx0mjPuQLh//yFAoX37tvj5+REUFIRD5DRZv5p1R0rIKbdzbdcQFMWVyrm83NW2OS/HQWiEDqWGDt9u7uYCqign9cDJJ3ahZn2dzc/S0tIA6NK+bY3vZx+3Y68UtIp31eJoIsGsd2VIa+yLtNWi4lNPfxo3X7+aB+DcnmnBoQouauXvycynKK427fkWB8sOVO+I2pwcqmBntoXeJzrBJsUHEOWn54ud+WdUW7N0XwGqEFzdOaTO+Xbu3ImPjw9t27YlMTERg48v4cWpFOQ6iW9nqPNccwsO0+J0Cs9YTpI3dxNNi8WCxVL/dcgzRo3eD72h+vF396txivxzMm6QEILVqcV0DPWholzgH+h6qNKunZEwRc+GlPPvybjbpuPl+Oo1KMDBJk5B7X74pypaQmyFEN0aRaNBc8v9oFFQ338FoTo9A3D2DnDw2MZ5vCB+oXVHAx00Zia3CqNdsJFL2waSfWgPWq0BQUe6HfmKiL0/VdtmXFwcJpOJ4ozDhPro2GdznV95Z/H7VF7mRFCGTqdjd4HKL4eLubZLKO1DfTzziL3bUZ/+B/5ZR/E3GsiMaI0wmCgqzscYcJisjF8ZWvgraxZ/QlZWFr379ye953D2qX6MjPJn828W/AM09BvsS9uORqJb6RGZCpHoyddWH9x5W2Y5sUY7f679mZCQEEaOHImiKAwfPpy4uDiSk5NJS0tjeEIgO7MtZzTOXVMpKCjA6XTio++EoiiyCZrkpdGDmtWrV3PHHXfwwgsv8NZbb3leb7/9dmNvqkUKCwtDCMGGDRu8pudmOwgN16HVKiiKQkS0jtxsB87T7GsihODDLTmE+ugY2+lkM5kof1eNS2ZpA4OaKmPUVKXVKHSN8GHHGQ7CeexYKkZ9OOGRrlz6rVq1otySRWmxo9HH6hBC8M1u1yCJ/WNd23OPOWMy+mMpV+tsegYnU8D6Blg5llbpGfMltJ4BOAuzjlGu86NVeM1NldLTKjGaFMJPbL91lIE8jRlF0ZKZ2Xj9ahx2gcNef+YzN7OfBqtFrZZS/I+MUvwMGkIdOn76tpjkn7KosKl0j/Slb4wvX+3Op6zi/LkJd42UrdLzRFCj1ShM7BrKoQIbm4+fXn8Vi93JTweLGNjan2j/mpsSgittcFpaGl26dEGr1aLRaOjbuxf+jgJs9nxat6192aqCQ13nREEjZUC80FTtd9aQ2hrXGDUCs9m/xvcjI13Nl7TGfLKPOxotnX5tUgsrOFpcybDWAdgrBf4BrqAmPt6IQJCXfn42QVOFYPPxMgaG+9PBz0RKftMms3DX1NgVDcEVJSgxrr6JSmg4yg13QMpexPLF+Pn54evry9r161kV3o7iXoPo1dNMaIQOvxwd9/eJYXp3f1JSUvA1JtKhqx9xrQXs3Iywee+DVqulY8eOpKam0j/KwG95pej0Zx7UCCE8fWr8AgJ4848s4oOMXN89zPO++uNXqK88Af6BaB77LzHxCaSmpvLOO+/w6aefsn3nOmz24/jpQykJ78p1113H4MGDSe5wKX5CYE4T6PQKFw31Q6933T/0vMiMr6+GUfpg9pf6oNFoPEGNQxXsziqlU9FWVFVlzJgxnrFztFotV1xxBeHh4fz4449093UdnzVp508TY3fTMx9DFGafsNMOajIzM9mxY0eNLWaklq/Rg5rPPvuMBx54gPfee4833njD85o3b15jb6pFMplMdO7cmZ07d1Je7rq5slpUykpUzw0uQESMHtWJ14BiDfHbsVIO5Nu4oWcYxiqdmaP8XDdUWWUNexKZZ3F4JQmoqkeUa8Tihtb6uBUXF1NaVkBwQBy6E6N6t2rVCofTToUjn7zsxn0atPl4OUeKK7imSyiaE9X87sxnqt11s1tbkgA3Hx8fdDodJj8rCNi1xXWRDzXrKLDaa7z5qKiowFmci90vqsZUzhU2lZxMB63iTz65jwsyshMrBl0oR482Xk2NtYEDb7qZfTUIgVeA6VQFmzLKSQoKZPN6CyaThqOpZaz+qZTM9Epu6hVOeaXK13vy61jzuVXTSNnDEgKJ8NXxxc7T61uzMqWYcrvKhC5119K4EwR069bNM61zp64oio4Myy4qRMOCdh+zBrOvlqJ8+aNbk+zsbE8g0pCgxv0gw98/oMb3DQYDoaGhVDrysFeKJu3fB66xaXQa6BLgOjf9A13fTZOPBl2AQozTwN6cs0+lW1ZW1qi1vrsOWxhQ6U98jg+DKgM5lGdr0hTU7qCmAg2hFSUQ3cbznjJgGPQdhFjyCZqMI0yePJmejjIOBUXy8boN/PzLzyR2caDVKWz6rZxf125FCEGHxK506m5C6TcY7JWInZuqbbdz5844nU7iRS42p0DrD7lZ9jPa1wqbQHVCRWUJBU4jJRVO7hsYjV6rIKwW1LeeQ3yzCKXvIDSPvoQSFUuXLl0IDw+nU6dOXHbZZUydOpVrr5lGTNBwKmlPYFgETlWwrtiHq5UAVLvgoiG+Xg+u9HqFfoN9MaIQUeBDWHi451w4kGuhTeEusBQxevRogoKCcDoFpcVOhBAYDAbGjRuH2Wzm11U/0iPISXJqyXmTbjwnJweNoken9UevRJKTk0NlZcNrWHfv3s1vv/1W6zALUsvW6EGNO/+7VLtevXqhqio7duwATj4FqlprEBauQ6N1NVNqKIcq+GhbLm0CDQxP8M6qEuKjQ6dRyGpwTY29WpIAtx5Rrh/j062tcadfjIlO8Exz96txqNmN3p796935hJt1DI0/eTPjDmpsFjNGk4JfQN1fAUVR8Pf3x2Yro0M3E5npdo4fqyTUrMOhQkkNtRNHjx5FQWAKi6lxnRlH7QgBreJOPrmPDTCSpVRiMIVRVJTbaE+RrA0co8bNfCIzV9UmaAfyrMRWGoguMBIcpmXIKH/GTWqNyUfDpvUWCvc7Gd4mgKX7C2sNdO2VgvS0ynPWpGprpmukbL8qI2XrtQrXdg3lQL6NbQ08d+1OwZJ9BXSPNHs1FzmVO0FAmzZtvMaiyMtU8Dclgu0oP+9veA1cRJSpUWtq9udZeW5tOnZnzYGVuzajMVU6Vf696igb0xuvOVVFRQX5+fnEx8fj6+vboHEq3N/5wKCagxpwNUErLMpBoxW1ZkHLzMz0PIg6U05VsDathL4xfqgnUq27m58BdEg0EaDo+OPgWW7H6WTJkiV8+eWXHDhw4IzXI4QgN8vOb8llHNlkJ0IxENVGh1ZVCK00kFdHbfXZcl8DK9ESLKwQdPKhgqIoaKb8DfwCUN9/BZ/CPAbv/Z2b4iPp2bMn+/fv539ffoxT9yeFBUWkHNpDUEAbLh5y4kFTYmcIDEZsWl9tu+Hh4YSEhFB6/DC+eg3HqcRqEXWO31Wb8lIVIQRllhLSKwxc3z2MtiEmRGY66rMPwvY/UK6bjjJjJorJdX1p3bo1kyZNYvjw4XTq1InAwEAiow2YghV6KH7syrCwIbWAfnZ/fHRmem+fS0D+wWrbDgjSEtpeR7RiwClCyc7Oxul08vvmbURXZtK730VERsSxd4eVld+VsPqnUjZvsGC3C8xmM+PHjwcgJnMjuUWl50268aysHAy6ECKi9Zj0Uaiq2uBMiKqqcvjwYeLj49Fqa+9LK7VcjR7UXH311Xz99deo6vnXcfh8ERQURMeOHdm5cycOh4PcbDsGo0JAkJaMkkqySivR6lxNk3IyHQ2+2Vh+sIjMUjtTe0dUGxhQq1GI9NM3KK2zzaFSVqnW2PwMXLUK/kYtO7NP74f30KFDGHTBREQGeaaZzWZCQkKwq67xahrrxmpPjoU9uVbGdwlBV+VYFBcXYzAYKMrXEhaha9DTGn9/f0pLS2nX0UhgsJZdW6wE690DcFb/UT98OBW7oiciKqrae+BqehYQpCUgyPuGu1WAkTLfQIRQObCv/hvgfIuddWl1d+I8OfBmw55K+Z5I61xW6rqhFkKwY4eFwdpAQqO0XDzU1S8hONTIkFF+dOhq5PhROx3zfYkWBj7bcfLJuaoKso/b2fxbOSuWFLN1o4V1K0vPOkVqfUornBwqqD5SNsClbQMJNev4fEf9tTWWcpXkLcUUWBxMqKcvTVpaGmVlZV61NEIIUlMqiI3uioJgx/adDT6/wyNNWMtVT3PHs/XzoWJ+P1bG1kzv72x5eTnLli1jwYIFLFy4kD/++KPRElWsP1LKjmwLC7fmNlrab3cq16ioKMLCwhpUU1NU5PqOBIfUHtRER0dTUVFBYKiFY2mVlJd6B5QpKSl8+eWXfP755xQUFJxx+bdnlVNoczIsIYDSYleqdaPp5M9wXJwRFUFRpvOsjtm2bdvIz88nKCiIFStWcPjw4dNaXghBZnol61aW8fuacspLnaQYrWwOKqXvADMGX4WuGjMH85quCZqn+RkKIX6matdqxS8AzdR7IOMI6tzHQdHgN2QUQ4cOZerUqXTt2pXDaftIz1+MKioYktTHMx6ZotGi9BkIuzYhKrxv1hVFoVOnTmRlZtIlwMle65n3qykvc+JUrQjVia9/ANd2DUU4HKhvPgPlZWge+A+ay8Y36Heobz8zehRS91Ww+dd8WmmMdOulJ9yahvhlaY3LXNTDlxSsaCvCcTqdbN++ndKULdjNURid3fj5hxJS9lUQGq4jsbORrHQ761aUUlLkJCgoiHHjxqFW2uhVupXlO482+32d0+kkPz8Pgz6UDl1M+JgiUBQNGRkZDVr++PHj2Gw2ygqisVeeHzVPUuNq9KDmhx9+4JtvvmHq1KncddddXi/ppIEDB2Kz2di7dy952Q7CInVYHSqPrjzCqxtc1cQR0Xos5SplpfVfSMorHXyzI59ukWb6xlQfIRhcyQIa0vzMfaNeW/MzjaLQPdLMjixLg2/SLBYLmZmZmI1tvG7mwVVbU1qeTYXN0aAn+UKIerf7zZ58AoxaRp0ySKJrjJoAKivqTuVcVUBAACUlJWg0Cj37+1BZIXCcaMZ7alpnVVVJO5JGnj6MmABTtXWVFjspLnTSOr56wBgXZGSX4npat39v/Rfpr3bn89L642TX8Zm6a2rqG3jTzWiC/NLfWfnLpxQUFLBnmw1zvo48YyUXD/FDqzv546vRKHTs5sMlI/0wGRVGaYKpSBXsS7Owa6vr6d8f68rJzXbQpq2BgcN8CQrRsmWDhYN7mq7pyo7sclRR80jZeq2Ga7uEsi/PWmcGvwqbyobkMioOw2R9OJEOfZ3l3bVrF2azmYSEk7WQ+bkOykpUOnYJwy+iNX7FaRzIadiDgPAo17lTeBpN0H766SeWLl1Kenp6tbLuPtGcaf0RV62JEILdu3fz8ccfk5qaSu/evQkICOD333/ngw8+4LvvvuPw4cNndRPzw4FCDFqFjJJKfj/WOLU17v40kZGRhIWFUVhYWG+tZmFhiWuMGn89qhD8cTAbS6X3dcadLMA/uAiNBrb9efLalpmZyfLly4mIiEAIwVdffeUJrtyOH6tk0/ryegdrXJ1agq9BQ/9YP0pLnF61NAB6g4IhWCHWaWDvGSZjKSkpYePGjSQkJHD99dd7+kccO3as3mXtlYLUAxWs/rGUTest2CsFPfr50GeEmdXlxfSONbNy5Uoyc5cS6LSSmtF0g3A6HA7XwJsKhNYSkCrd+6IMuwKKCqBLT5QQV18VPz8/hg8fztSpU+nWrRsdO3YkPt57vDCl7yVQWYnYUb0JWseOHQGIqshkf6kNk1k5o5YE5WUqdqfr3L+qRyt0GgWx+gfIykAz7V6Ujt0bvK6QED35PnbMxToCy7VYQpwkdPRDGTIKsXk9oqB6gK/XarBGOqk0uB7K/Prrr2i1fiT6DqMgz0liJyOXjgmg/yW+dO7hw8BhfjgcgnWrSjl6uIKoqCiuuPxy/B2lsHM5b7/9Nl999RVr165l3759FBQUnNNmaQUFBaiqE7MplOBQLWERJnxMDe9Xc/jwYRRFS2hI6xqThkgtX8Pu6k7DPffc09irvCDFx8cTHh7Oli3bCDa2IjxSx5e78imyOSmvtGF3CiKi9YCVnON2T2fSmgghWPlzCWOcISS0Mdb61CfKT8+eHCtCiDqfDLlv1GtrfgbQI9LMb0dLySqz19l52s39pNBsbE1AoPcNdqtWrdixYwcV9nxys3wJDK77tPz+++/RarWMGTOmxvcP5ZXzZ0Y5N/Tw7lckhCAvL4+ggGhQGx7UuJqf2bDb7QQG60nsbOTgngpiFUO1mprs7GwqbDby/cKI8qseuKSnVaIoEBtX/ZjFBxlZk6ajj9GXgoJsigoc1VKOVt2XLSc6vG85Xs4VHWr+DKwWgdGkoGlA1i2ArVu3UmI5gKJo+N//viHCfzQHNBq6dvSpdR1BITqGXObPzm0W1BQfDm6sRKOByBg9reINRETpPE9Ig8N0bP/Dwr6dNixlKt371b7eM1V1pOyajEoM5Mvd+XyxM48eUdUDH6dDsHFdORaLk9+cpVziF8DW360c2ldBpx4+RER51/CVlpZy5MgR+vbt69WkIS2lEr1BIbaNgSRNP5Z99y2r/thOx7GD692H0HAjigYK851Et6p/ny0WCwcOHEBRFA4fPkxERAS9e/cmMTGRUrsgvaQSg1ZhY3oZufkFrFuzmvT0dGJiYrj00ksJDnYltCgqKmLPnj3s2bOHpUuX4uvrS+fOnenatatXs7r6HMy3cjDfxq19I/jpYBFf7s5nUBv/s27HnpWVRVBQECaTifDwcFRVpbCwkPDw8FqXKSk+mc557fajvLLbyk9//sCjoxLRhUcAEBwcjMFgIL8gm269E9n2h5XUg5WERFg9x2HcuHFUVlby7bff8s033zBu3DhiYmLIy7azZYMFIaC0RK320MbNalf5/VgpwxIC0WkUSoudnuyHVXXp4MOOjVY2HSinWw2BuVtZhZMvduUxun0QrQJc4x8JIVi9ejWKojBs2DCMRqOn9cT333/PhAkTiI6Orrau4kInaSkVZBypxOmEoBAtvS82E9Naj0ajsOrQ/7N33+FRnFfDh38z25u00q56BSTRm+i9GIx7bMctsZ24xenl9Zte7Ph1+hcncYoTx8El3bFjcG90MGCKQAgQINR7W7Xtbb4/Fi0sKgiQKPZzX5cum20zO7s7M2ee85zTCUCSq5aDR4+iUqnocb6BQZoP8wfe9ucjEAggocJPmMQU+4CPk265F3q6kZb3PR5YLBaWL1/e/xPzx0OcFWXvNpi1sM/zsrKyaGmtQtGnoY6DtpYA4bByVvurqmYfPcFI+mNeuh2lpxvltX/DhOkweeaQX6eXNVeFpzREjeLj1lmRQEVaeg3Ke6+gbH4b6aa7+jxnerqJf9a3MU9lIRT2oI9fRMp4A7Mmm/s0ZLYlq1myykLRDjfFuz042kJMKhzFFTfezm/fK2F2QoBwsJuSkhJCociFAY1GQ3Z2NosXL44W1hkpvRcTUlKSqe7ykZSiRlueSktLCT6fD51u4D5giqJw/Hg5Bk0aGdl9R/GFD4dhHakJh8P88Y9/JD8/nwkTJvT5E06SJIlp06bR1dWBx99A2Kzw6pEOkoxqAmGFqk4vRpOMJV6muXHwK0S1lX5U3TLIUF8cGDC9J9WixRMM03OGKlVt0ZGa/tPPgOjJYHHT0K48V1RUoNdZMOoTMJzWAC8jIwOAsNx8xtLObW1tVFVVUVlZOeDkwH/srUOvlrjmtCaJ7e3tuFwu9No0jKbIZOyh6C3r3DvhOH+CHpNFZpEcT7szdn2rqqpAkmjX2PsEe0pYoa7aT3KaOiblpFeONbJDjk9KxhdsHbTpW2NPIJpKOFg1r6E23oRIis3777+PzTqKtIRrCAaCNHa/S1GghVmZ5kGfq1JJTJthojulk52+SmZfaWLmAhOpGZpoQNP7uOlzjeRP0FFT6eeDLa5hTQM4vVN2baWf4t1ufN6TIw5alczHJyRysMXDwdOuhrc4/bzyTgedjiDrgp34EsJceW0chXONBAOwa4uL7RudOE4p4HHo0KE+BQK8njBNdQGyR2lRqSXG5GSiGBNw1hzBO4QO3Wq1TLxVNeSRmt6c8htvvJFly5bh9/t55513eP7559nw/i5U4QA3j0sgqaecf//rX7S0tLB8+XI+/vGPRwMaiKTGzp8/n/vuu49rr72WpKQk9u7dy/PPP8/atWspLy+PGb2pq/KzbV1PtIdTrzePOkjATbqnho+N1lPZ4TvrqnOnUxSF5ubm6KiK3R450T1TCprTFWm8qTVI/LPSTxwB9iqJrH7udcL/fhqluzPahLOpqSkSiKepObi/g1fWvoqiKHzsYx/DaDRitVq55ZZbMBqNrF27liOHq9j9vougKvIdfnt/54BpYztre/CFFJaOisPjVggGI/NpmpqaKC8vj6ZbZWZpCUkKPc3hAV+r1RXg2+9V8+qRDv667+S8ooqKCqqqqpgzZ070BFOv13PTTTdhNpt55ZVXoieGoVBkf7RtfQ9b3u2hrtpPeraWRSvNLFppITNHGz2B31PvIkPtpnTvDnJycrjrrruQNSbcbZvZsX33iFyt9/sDyJKaYDiI5cQxoj+STo/8uW8hFUwa8DH9Pk9WIRXOh5I9KO1952aNGzcOn9uJNdhJhyZEMBAJ/oaq3R2gxREgSCSd02KxoLz2T/B6kG+7/5wC/GlZJv4VasWRrJBjjYzmSkmpMHU2ypa3UQJ9j4kz0s10E8I2YR66vCW8pwkxo5+AppdOLzN3iYn8CTpqKyO/75wEG/bsPHbK+Xz8llv5/Oc/zyc/+UlWrFjBuHHjqKmp4e9//zslJUNPsT0XjQ3NSJKGFpWOr75ZRaPkR69NRVGUM86raW1txenswajPJi1z4HMb4fI2rEGNLMvIsiw6vA5RQUEBGrUBl6+Uf5a2oZYlvrEosvPubcCWkqbB0Roc8MTP2R2ipMhDg+Kje1SQBFskvaeqrO8Jce/IQeMZ5tX0jtQkGgYeyUi3aLAZ1EMqFuDz+aipqSHOnE1cQt95LAaDAbvdjj/YhKM1SHCQMtbFxcVAJIDub8i5qcfPuqOtrMqzYtHFBi3V1dUAKP7UM1Y9O1VvUNPTE0kjUKkkps02YpJkOK24UGVlJSqLHUmt7TPS1dYSxOtR+r06C5CbEAlqQqZEgiEXNdVduJ39H0SLGiMHysI0EweaXPgHmAAeabx55p95c3Mz7777LqmpqUyauBSdJpH5c68jEPIx27kXszR42mI4HKaoqIiuQ29i73yf9yubB3ysJEmMm2xg6iwD7S1B3l/f02/Dz3MR7ZQdZ2LbOif7d7mpqfCz5b2emGpiV+ZZsepVvHCwjbCiUNTg5Meb6/jLa61onDINZj+fWpLEL6/KQaOSycjRsuxqC5NnGHD1hHl/g5Mdm5wU73FSvP8g9sRMWhq0VJb5TnT29qAokJOnjb7nCZOnYAi5WFd0dEjvJcGmotMRGlKJ4YaGBtRqNenp6UyePJm7776b66+/nvj4eOoO7WFh5xYCB94m311GKC6Vu+66i0mTJg14YiXLMmPGjOGGG27gnnvuYfbs2bS3t/PGG2/w3HPPsWvXLhztPZQUueloD7FtXQ/1dR6qqqp4Z90GfEVvUti+je1bt+CvLCLZpOY/B8+tR1Cvnp4e3G53NKixWq2oVKpBiwWEw2G8XidajZnNtV00u0N8dekobhtn5c30+bx5pJ3wdx8kvPbvpNhstLe3EwgEmDBNS5NjE9093Vx77bUxgZ/FYuGWW24hLs7Ke+tex+WtYW2gDS9hahv9fH9dDa2uvvvYTZVdJJs0jE8yRINArT7AK6+8whtvvMGf//xnXn/9dY4dO4I2wU96WMvBfi4aVXV4+eY71bS7g8zKMLOrzkljjx+/38+mTZuw2+1MnTqVro4gh/Z5OLDHzdEDCmOyVoGi4aUX1/Du67W892o3+3a68XsVJkzTs/L6OKbNNvYZHQ6EFA40dDOuqxidTsfKlSuJj49n9PyrMepy2L1nB2+//fawH/cD/gCSpEYT9ETLOQ83afEqkFSE/++rKEXbY+4bM2YMGo2G0eEmynyR49xQU9AUReGPHzRhVlSYtR7MZjOq5obIaMqSq5Ayss/8Iv3ITdAxN9vCPbNjt4d8xfXg7EbZtaXPc5LNGrLjtRwKGykK6JmcYuzTf07Zt5PQD7+Msm8nAJIc2UfPWWzC61HY+m4Py4xWnK4QexucyLKM3W5nwoQJLFu2jE9+8pOkpKSwceNG1qxZEy3OMdj2qa2tZe3L6zlUUj3k99/Y2IJOnchbjZ0AFDlcxFmSkSTVGVPQIoWKJOy2bIxm0Xf+w2rYP9lrrrmGX//61xw+fJimpiaam5ujf0IsCRmLcRxOTwMHq5q4dZKNApseq17FsRM9AJLTNCgKtPZT7jgUUti7ww0SbAp1MSndyNzFZlLS1ZQUeTh60BNzEpF6YuSgqWfwE9R2dxCLThWTutVn3SWJyalGDja7z9hTobq6mnA4jFbOJH6A1IzMzEy6eloIhkIxV8FP5fF4OHLkCOPHj0ej0USDlF6KovDH3c1o1ap+myRWV1eTYLWhhA1DTj2Dk71qekdqABLtahq0fuKc6mjZ7Z6eHtra2vCYU0gxa6JlpHvVVvnRaCRS0vu/SpRoUGPWynSeaJbmD7RRcaz/0ZqiBhfpFg3Xjk3AF1I43NJ3wq6iKCcabw5+RbCnp4fXX38dg8HAddddx7hJJhZeYaZgShr7LIVolUjKzUCNDjs7O3n55ZfZtm0b2VlZSBIc2b9r0GUCZI/WMXeJCY8nzLZ1PXQ6zr+SUlGNi0VyHKFjEh53mGmzjSxaaUYC3t/gpLo8sj11apmbJiRyoMnNg2vLeXRjHcFmhcmyieQcNZ+9JplJdg09p3zmskoiN0/H8mvjGDdZj9sZpuxYJT6/GzmUR2mxl4NFHop3e6irCpCSrsZkPvl9XzpjIgGVjiMHi4f0XhLsasIhhjTPrL6+ntTU1Gj6myRJjBo1io9//OPUZS4iGJeGWq2GvHns0E1Gox96+oXFYmHu3Lncc889XHPNNSQkJLBz507+8c/naGjbTEJ6Oc0dG3j55Wd49dVXOXaklB6VmalzFzF9+nQqKyq4OiNSge3geZQq7p1P0xvUyLKMzWYbdKTG6XRGe9S8UNLO+CQDM9JNfGnlRGZlmFhdcCPF065GeeM/pLz5LxRFoam2hve3b8Drb8EetwCfq2/qk0ZjIC1hJVpNIg1tm9G7a0lN0TDWYKCiw8fX3qxkxynziNrdAQ40u1k6Kg5JiqSeARw5uB2/z8cKA0zMTKe5uZn33nuP8iMv0t65ng+2F8dUXDvQ5OI779UgAT9dmc3nZ6cgS/DG0Q527tyJy+Vi2bJlqFSRDvOVZT4a6wK0t4Xwew3kZV+FJMmU175DXIKbOUtMLLvGwpixerS6/vf3pa1usroOg7eHK6+8MtrsclyWBbdlNomW6ZSVlfHiM3+h8+lfE/r1IwSOl57dh9sP/4mgRhd0QuLIpLhJWaOQH/41JKcR/uPPCP/tSRRfZB+h1WoZPXo0Vk8TRxwu4hPkfo/D/Tnu8HKgwY1WkgmHnMTHxxP+z19Ab0C6/pPnvL6yJPGtRRnMH3Xa8W3sZMjIQVn/Wr8XDgrTzZQ0u2nsCTD1tJRbpWg74ad+Di2NhJ/8CeEXVqMEI+8zOU3DklUWEpPUeOoU7lAncWS3t0+J6/j4eG666SaWL19Oc3NzpL9OcXHMYxRFoaWlha1bt/LMM8+wZs0aauoOsWNnbM++gYRCITq72lBrEklN0jA3y8y+RifJqTr02qQzBjXHj5ej1yTjNqm55+XjuPwXphKncGEN+5yaZ555BiBarvhUL7zwwnAv7rLW4Qhh1uXTLh1gbKiWG8YVIkkSBXZDdKQmwa5Co5FoaQySnhV7hf9oiZfuzhCezCDe6jDjkwyo1JH69Ad2ezh2yIffpzCp0IAkSaSYIifTZ6qAdmqPmkAgQCAQiB7ITjUlxcimym5qOn3kJvSdFN+roqICvd6AWkrqMzG2V2ZmJvv37ycQbKW12XhiPlGsQ4cOEQqFKCwsxOv1Ul1dHTM/aGNlN/sbXTy0dHSfym1+v5+GhgZysyejeCK5w0NlMpmQZTk6UtOrOyFAQoua4t1ulqyyRFLPgCaVnTRL7PKDAYWmugCZudoBh/0lSSLXqqM6oCZbltEYHNRU+CmYGHvC4Q+FKWl2szLPGrnqJkvsbXD2mRgfDCiEgoOXc/b7/bz22mv4/X5uu+226Oes08lsqeqmU21l1tKr2Lf5bdasWcPNN9+MwRCZq6IoCiUlJWzbtg1Zllm5ciXjxo3jmVfWI9Uc5mh1A2Nz+i9r3cueomHhFRY+2Opi2zon1kQVtmQ19mQ1CXY1avXQUjTCIYXKMh/Bw5AvGxgzVkvBREO0H9LiKy3s3eHmwB4Pne0hJs0wcFV+Au8d7yJOp+ITuUm4jymkpKuZXqhj37597NmzB6/XS35+PgsWLIiO2KnVEvkT9ORP0PPKKxWYPCZuvWsiiiITCiqEQpF5OaenWWrUahJyxuGsKOZoTSNjs/vObThVbxPOjvbQgHOrIDIS2tbWxqxZs/rc5/SHOOYxUFi4mDsm29nX6GL9hlr2NbqYmxUJ1n3eMB5XmPgEVbRvUn9UKhV5eXnk5eVRcbyVLZuK8fjLKdpXjcUSR0rSWJRAGq16KySEWDI7G5/PR2lpKVL9Qaz6ibx4sJ3JKQPPExlMU1MTKpUKm80Wvc1ut1NRUTHgPMHeCxEBtRGHJ8jXF6QjSRIqWeKhBel8590a/p96AT9/aBEp7/0LgA0vv0S3zsjcnmbCliClRd0k7XoLU5waktNQ0kexp9yGx6Vh+ZXX8893X2GC8yD+gBXFN5r/d0UOv9ndyM+21HN1vpX7ZiSzpaqbsBLplQTQ0xGEUCuHjpYyoaORsW2VjPV5WJiaSevMxZTHJXPgcDXBhr0899x+5s6dS491NL/b1Uy6UcUPEuqwv/wqSmUZCyZ8gh1HevB0FDN58mTS0tLoaA/S6QgxqdDAqPxT5xnEMb39Zv773/9ytPJtcgtWIUmD/0Z3FpeS4atn6vRCsrOzUUqLUYp2kNFQw7HUe1hlnEx+/S72mQL8B4lVra1Ij/4P0td/jJSRc06fNYA/EESW1OgJIMkjd2VdSk5H/tbPUNb+A+Wdl1HKDiE/+A2kzFzGjh3L0aNHkbubMeVk0lgZIBhQovuVgZQ0uYk7cXrl8faQpjfB4f1It9+PNEC/pPN6D5KEtPw6lL/9AcoOQ8HEmPtnpJtYWxqp2jf9lOOEsnc74T//AkYVIH/xeyivv4Cy7hWU8lLkz34TyZaMwSgzZ7EZV0+Idz7owtCmYudmFyazTM4YLVmjtGh1MpIkMWnSJHJycli/fj2bN2+mrKyMuXPn0tDQwNGjR+no6ECWZdJSszGqCwnTSXtXCY0NXaSlDz5n73hdC4oSxq+18u3FGexpcLGz1glm0KlTaG0txuv1otf3PRfp7Oyko8NBomUWBzwukkxqTFpR0vnDaNiDGhG4DF1rUwCVrKNJm0a6u4Ggz4vWaKTApmdXnROnL4RZpyIpVU1LYyDmwN3aFKD8qI+cMVr+3dHFqAR99EcqyxJTZxvQ6iTKj0YCm+lzjOjUMokG9RmDmnZ3ANuJ1LO3336b1tZW7rnnHuTTDizT0kxoZInn9rXy8LLMPiMTEKlgU1lZSWbGGPDIA47UZGRkRN6buoXWpnQgdpJ3KBTiwIEDZGVlYbPZyM3NpbKyko6ODhITE+nwBFm9t5nxSQZumpKGoz22EWRdXV1ktEiVjiZOHnI1MDjZq+bUkRqABLOGHc3dXNGTwLFDXiqrKomPj6fGq2XcafNpGusChEIMmHrWK8eqY31FNzOSkgiE29AAOzY5ScuM5PnHJ6g43OLBH1IoTDOhU8tMTDGyt8HF/TNiX8tzog/GQEFNOBzm7bffpr29nRtuuCHmZBFgd52TeJ2K2eNHkRl3Pa+++ipr167lpptuorOzk7Vr11JbW0t2djZXXHFFdERr5aI5/OefZWzaupWC7NvOmDtuiVcxapaW7UU9WBSZ8iM+jpf6kOTIhGV7sppEe6RvU2/AEA5FRip7/x0pwxumCT9yBnxsWkKkW3c4jCRJaHUycxebOHrIS9lhH12dIWYuMPGH60fT6QiyfYOTOKuEPr6Kv/09UtY4OzubpKQkiouLqaioYPr06cycOROtNvIZdnd3U11dzezZs6MjJGcKwq6cX8iLFSVs2rGbgqzrB902BqOETi/R0R487cQ0VlNTE4qikJ7e9+T0SKsHBZiYHPk9jbcZGK3Vc/iQB3WNTKcjGP2eZI/WMmWm4YyfVyikUHVMR1babBauWILX644GfBu2d2OsUxgTiARLOr2OGTNm8P7773PVzLH8uzLEsTYPBfaBe/4M9j6Tk5MjKWdNAfQGmaSkJA4fPozL5cJs7jvvq/c3W+9VMz3NwMRTmrEaNSq+vzSTr79dxY+PSfy/B7+D9R/P0QlM1KuYobPi7VzHFt09FHsmMHfzY4DCgQmfoS19EVMa17Dek8oByzTuoJhDpdtIserRePP4+ZU5/L24lbWlDg63egiEwuTb9KRbNChFO+g+YsHh3INGgrn3Poickoay933Y+i7Jr/+TZJUa1/zv0iXb8Gv28f7779OtOsBEtZ2vb/kbpqAXxRIPmblct+ffeMbMRpJVzJs7B4DKMh9qNWT1s7+x2WzceOONvPHGG7z00ktMnDiRBQsW9Hsy2N3djatsF2FDAgvGjiH05E9g307QG1Bl5GCSHLiw4p18N7fN8PHGxk28qtZwW/MR7L9+GPmbP0NKHjx4H0ggEECStJg1I19GWFJrkG65B2XCVMLP/Ibwj/8X6bb7yFy0Co1OT6qvkR5tECUcqWo40Gh7r4MtbnKNOsK+AF6vG8vxKkjNQFraf3GbYXkPc5ai/Pd5wu+tRc6fEPM7Hp9kRK+WMWllMuIi3wllzzbCT/8yEtB89YdIBiPSJx5EKZhI+PnfEf6/ryHf9zWkqbMBMFlULF8Yx4NryrkuJZGEsJ7DxV6OlHjJSvEzcYYJlcmExWLhYx/7GKWlpWzZsoWXX34ZiBzjp0+fTnr6aHZtDmBLkSiYHOCl/5ZQXHSMtPS+F2V6uQMh/vn+MWzApPx04vRqplsj9x0PeDBoU+l0FVNfX8+YMWP6PL+3R15CfDZFnT3cMXngwhPC5W3Yg5qLaf/+/Tz77LOEw2GuuOKKaPOoS1VzU4A2guiyxqIcr6OkpIQ5c+ZED/jH2j0UpptJTtfQUBugqyNyxdbnDbPvAzfmOJm8STqOrvFy3djYSfGSJDFhmgGtXqK02Esg4GLWQlOkrPMQ0s/ybQbq6+uprKwEIuktWVmxebw2o4YHZibzx13NvHSwndv62VHU1dURCARIiM+lw8OAIzU6nY6kpCQ8/iZ6uiL9OU4NPCoqKnA6nSxduhSAnJzIFcDq6moSExP5855mfEGFL81N7Te4qq6uRq3W4Hcnkj7m7L/2vb1qYt6/QU1l0EfaGDVlpS5qWmvJHT0efwekmWNPJmqr/BjNMgm2wa8O5Sbo8QY7iUtJpvJYKbNX6qirCnL0oJejB0Grk+jWBimQDRScmCg6M93EX/a20Oz0k3LKcj0nepwMNKdm27ZtVFVVsXTp0uj27BUMK+xtcDI3y4JKlsjKyuLaa6/l9ddf56WXXsLlchEOh1m+fDkTJ06MOYBm2yz02MeibT1IdXU1ubm5g29c4LmDLRxwuJmQZODhj2XS4wjT3hKkrSXI8VIfihKbhqcoIbyBVjz+Rjy+BkJhJ8gKvmAITavC7/cTndCuUqlISUkhLS2NtLQ0psyyc3h/iC3v9jBxmoHDxW68wRpam/ZTfLSTlJQUVq5cGf2+T5kyhe3bt7Nnzx4OHz7M3LlzmTBhAocOHQJg4sTYq6KDyUy04LeNQtVczouvvMENV63o92QSIr/hBJuajjM04WxoaIhOdD/doRY3ahkSAxo2v91Nd3eY5YoVuqAzECTBrmZUogqPK0xlmR+dPpJLP5jyIz5cPWHmLDah02nQ6U5eYd3s7SKshnnuOLa818PshSamTJnCvn37UDUcwqyZzEuH2vnukiGUdDtFKBSitbWVKVOmEA4p7HnfhdWmJjv/ZLGA/oKazo5IUNOOhvum9k1hSjJp+O6STL73Xg0/3VLPTVOm0dnhYNmKFciyjAmYVOlj/y4D1Q/9i0BHN/W1egqkw5hp4i15Jgub93PD0Zf4T94c2rq20bShmZRcP/eMGcfk5Ax+u7OJLl+Iz+QphB//PsrRg7Qs/D+6lG4WLFiIKWc0ANKCFbBgBUpDDcq295hasobdk77BYd9E6sw2JveUIIe6KV5wDXMWLkCTPQZJlvFsWk/cgUNUaUch//J7eG/5LA21qeSO0Q44opCcnMxdd93FBx98wL59+6ioqGDx4sUUFBREf8uhUIjX3ngrMjfMYkP64ZdBkpBuuhtp5Y1IGg35e5o5cNyLyRuHokvklltu4emnn6bpqtux//cpwr/6QSSwSTz7k8iA348sGbEMsaDLcJAmTEd++AnCz/0W5Z9PIR3aR0HeTLzHjlPpcZKsMtHaPHhQEwpH0oGvsyYQdEfmPsY7mpE/9SCSeuROuSSdDmn5tSivv0D4599CvuMzSLn5QKQP2ien2NGrIyMq4d3bUP7ySxg9FvmrjyCdko4qzViAnDWa8FO/IPz7HyFdeVPkM1eridepmJuk4s3GVlb7N+CvbaXaOI3q8DKcz+9jRtnTqOPjIDGJcYl2MtMTqZO1ZGZkYElNJ2ROYPuOEIqiMHOBGbNFhUGfQG19BeHwzH4ry4XCCo9va0Dj7ESWNEzITyL8xn+IW/t3xiz4NkV1EqtsyTR3RubV9BfUHD9ejladiJxoQqnvOWPhG+HyNey/sIcffnjAK32PPvrocC8uKhwOs3r1ar7//e9js9n4zne+w8yZM6Md6y81fl+ILkeIurCPe+fnsT9wnJKSEmbMmEG+TY8EHGv3UphuJilFhctbzZq1B5kzdzrO9mwCfoW5S8yUd3kJhhUmJfefI583To9WK1G820PZYS+pFg37GwfOa/eHwnT5QiQaVLz//hZMJhN+v5+ysrI+QQ3Aqjwrh1s8/KukjXFJhj4lcisqKtBoNGjlFIxmadBh+6ysLPbt20ecPUhrczDmKuP+/fuJi4uLniDHxcWRkJBAVVUVXlse22t6uHtqUrS06akURaG6upqU5AyUkKrf1LYziYuL6zOHp7cQgC1PTWtzC+FwCHdbKndpk9HWylSrfSSlRpbV3hJk7KS+DeRO11sBTTElEgwGMcX3sGhlMj5vmNamIC2NAZw1IRbL8bz+YjGSupW5Vy4BIlXQrjmltPPJxpt9g5qDBw+yf/9+pk6dypQpU/rcf7jFjSsQjtn55+bmcs011/Dmm2+Sk5PDkiVLolfoTzdl8iTKNlWwactWPpWd3WeU71SHWtxU1TaySG6gqUriT85Krp2UjjXZQuZoMxqNmZ7OMN09nTS31NHUVEtTc/2JPhbSiUaMBZQ5fFQ6fFw71oZOLUcLl3i9Xpqamti3bx979+4FID7eiqwksXmTFZe3Al+gnYSEBK699lpGjx4d8zlZLBZWrVrF1KlT2bp1Kxs2bODAgQO4XC5yc3PPuozpJ65ZzlOvqQnXHOOZv/6d669e1e9vCyLpp031gROjHv1vw/r6epKTk6MjSKdv2zkWC/t2uDGZZQom6HBIQX6zv4GvTUtnRlbk96ookVGvssM+dDqZUQX9jwy5nCHKSr2kZWn6/I7qunwUN7m5c6qdBelmdm9z8f56J6MKdEyaWMiu3dtYNXUc/61zUtXhHTRl9XRtbW2EQiFSU1Npbw0SDEJHW5BpcyKji62trf0Gz63tnahkI5lJBvJs/S9vrN3AV+el8cv3G0i1pPOVlTNiPv/MXC0NtQFKD/pRwnqyR2kpmDWP5/blETzi4LZPrELbOZFVR0t5odZBcXcdk//2IhIw3WDi8TFT2BI3luXP/gt0Gly3fom2smKMxjimTp3aZ32k9Gyk2+4n+UY//rVdpGsTyE4PccfcT7Nz1272HTxI+ab3Wb5cR2JiIjtKj2FJSqMslMfuthLsa7ahjLmFnGQPMPDcKY1Gw8KFCxk7diwbNmzgnXfeobS0lGXLlhEfH8/OnTtpb22m1DyF27Y/jzRtDtIt9yCdMr8lz6bnzaMdLNTHUXnMx8wFJpKSkqjp6GLK1x4l/MvvEf71w8jf/CmSZeglwSES1GhUaqzWC1t+V4qzIn/5B5H5Kf99jrHlxzk0qpDa46WMS59DW1OA0zMJTlXR4cUTDGNXafDIkQthcRnZ51TC+azX/fpPgD0F5eW/Ev7J15HmL0e66VNI8QnReabh3VtR/vI4jB6H/NWHYwKa6OskpyF/+xcoL65GeXcNStkhiLNC+RGuluLZPOPLbGzwc3WChil5YRLUNZQwgQ8SH2Fm+8voHHUolUcxOXsYe+I1w8DBcffSlbmMGZXPYShrImxNZJR1LIebq6mp6iZ3dN/vyHP7WtjT4OIayYmssRH35tMoW9+B8VOZ3nKQl9ULuZ1SdJokamv7zqtxOp00NzdhNU3jqKcbmxwg54Vfo3zu2+ddYl649Ax7UHN6TfjOzk42btzIokWLhntRMY4fP05qaiopKSkAzJ8/n927d1+yQc3+I51ISGRmaMix6pCmT2ft2rUcO3aMCRMmkBmv5Vibh9bWVrZs2UJLVz2SpGLDho2kJVzL9FlpxFlVHDzgRgLGJw+8k80eraO9NXLFOy1XywZPN75guN9CAI4T5Zy1PY3UNTWxfPly6urqOH78OEuWLInpwwGRq8mfn51KucPLL99v4NdX50bnsyiKQkVFBTk5OTi7pQH7N/TKyMhg7969hJRW2poM0aCmpaWFxsZGFi1aFHNynJubS3FxMa8F6xiVoOfGCf13fe/q6qK7u5vUpEmEznI+TS+LxYLL5Yqphd/7PrsCIfRxzWg0GixjUzhU4WWSy8SBPR7AE23ylZlz5mAqOz7y2r3FAnpTbnR6mcxcLbokiR+VV3Gdphpn93EA9m9KJdsUx956Z0wZa487DBLo9LE7bq/Xy9atW8nKyhrwd7mr3olGlph2WpA6evRoHnjgATIyMmg/LcXvVItyE3jLmI+xs5jDhw/HlDs+3X+3HWBGzx70GjU5oTBKXQ1v152ckydJEhqNJlrC22q1MmHCBLKzs8nIyIh+Hm+9U4VshmWLc/tdTjAYpLm5mcbGRhoaGmhsrMXnK8NkNLNoSaQ06WDBV2pqKrfccgtlZWW8//77eDyeQd/XQLITDHzn9hU8sS4NT+UuXl6zhmnTC1k4f16f39ep82pSM/quW+976i8w9QbDBNoVxqmMxCeqmLvEhEYrEworaEpl3q/uZt6JeTWSJDF5RqSx7MF9HrQ6qU8vJUVROFjkQZJg4rS++5s3yzpRy9KJynJqFl9poXi3m/IjPsLhHDTqfYQrDpJqmMl/Dzr430WDz+U41alFAqrLIumzoRB4XGosFsuAxQLq2zpRq8wsHT/4CfWi3Djqe/z860Ab6RYtt046ObIgSRJTZhrZ/E4PCTYVk2ca6PKGePNYB0ty48hIT4L0JJInTCf/jd0cK9/Bgbu/zjR1AMqPklheyo1H9yItXol0wycoKSonECpl/oxVkeINA5C1WgrGmagq9TNvSgFGs5rly5dTUFDAhg0bWLt2LRaLhXA4zA2rVrB9SztvzvwES7oM2B0HMf7st4TnLAWdDiQZJOmUPxlkGbQ6bFodH09PoMSgYWdtPX//298Yn57Kwdp6vJIFtaQj4wv/gzSu73cs32YgBGCDpvoAbleYjIwMDh06RPiaa5C//APCv/kh4d88gvy/P0YyDn0+VTAURKtWk5iacOYHDzNJkpBW3IAyaQZpm96EZh9KVyOJLa9xLP0aPM0ODCn9H296y8TrwzJuT6Q8pvVjn7ggJ9CSLCMtWIFSOB/ljRdQ1r2Gsnc70nW3Iy2/HmXfDpS//AryxiF/5REk/cDnDZJGg/TJz6EUTCL8z6fA7UKaOouxY8aT3yHz1uQbufa6UUiSRA6gqw+wd4fMztwHmXuPCaNJheLzgqMNuhxU10nUtmcxhiOk2oIoXSqUiiNMdhdzOH8OB4tKyR09N2Yd3inr5NUjHVybH4dvZwcpunSkre8gXXMb0o13MrOunZe2tOGoLUWfXIDDsQ93pwOj9eRnU3HsGABWjZ3XWztZ2rQHKdwBbheYxIjNh82wBzW96UGnmjt3Lk8++SS33HLLcC8uyuFwxMwJsNlslJWVjdjyzoeiKGwqaiMBFTfNjKxz71yRffv2MX78eAriZFqO7eHfB+vQ6XRMGLuQnvZU6h2v0eHaRvboO4DIDnR0og7zGSa9TZxmoLUpiNSsRgKaXYHoCfSp2j1BJCWM49h+EhISmDBhAgaDgWPHjlFXV9cnTQnAoJH51uIMvv5WFY+/38BjV2SjkiWamppwu93k5o6mvCTcb8PJU6Wnp0dOKtUttDanR+cQ7d+/H41G06fXUU5ODvv27UN2tfHlK2ahHmCSc3SEJZCGPVk94ET9wVitVgCeeuop9Ho9ZrMZtd7IOGeYI8UtuOoryM7Opl0X5n2lm69el4rXqdDSFKC1KRjpi2M+cxqFQSOTatZQ51WTaDTS1NQUc8L6QXkThV27cIZ6mDFjBsfLKmhuO8DSlGtZ29yOPxRGq4qc/HrcYfT9NN4sKioiEAj0CRJ7KYrC7jonU1KNGDR979frzzzilGzWkJieg6emhp07d1JQUNDvSMJbW3YRX7cLfbydu2+9Eb1ez++317GzvIXbCgzkWRScTicej4ekpCSysrL6bQLp9IUoa/dyy0Rbn/t6qdVqMjIyon2RFEWhu7sbk8k06MnlqSRJoqCggNGjR9PS0tJvI8OhMOtUfOeayfx7fxLFu3Yg7SuiuqaG666+isTEkwdka4IKSYKO9iCpGX2D4paWFkKhUL/zaYoOu1gqW9FZJOYuMUeDa5UsMT/LwuaqrpiLG7IsUTjPyAebnezb5Uajk0hOPbnMpvoALY1BJkzT9xn9cwdCbCjvYmG2Bas+si11epnZi8z4vGGa6gOwfxpV9e+zXOXFX29lz14n48caYirEDaSpqQmTyYTJZKK5IVJQotMRor0liN1u7zeoaXMH8LmdxGlTGZUy8JykXrdPstHQ7efvxW0kGNSsGGON3mcwylxxXRxqdeQ7sKbUQTCscNuk2LSqKVOmUFtbw/YDJWTfcTv2+VcARPdlPp+PkkO70WtSGD8x/4zrNH6CgebqAAeL3Cy+0oIsS2RmZvLJT36SXbt2UVRUxNy5c7ElJnDdWIWN+7rwqfRMWVoATEfZtRkUBZQwKJz4rxL5O6XfkARMAUardWxNH8vBcBhrwMvrqctZNdaONK7/73maRYNJI1Or8ZKOnupyH+np6ezfvz/y+yiYhPz57xD+w48J/+4x5K89ijRIg8RThcOhSPf39Is3/0FKzUB1x2dIemM94fLDuNSRIKD1yb+QkRxEnrcMMnPBlox04oLEwWY3GXFafM4g4e56tCowjOqbEjWi620wIt1yL8qiVYT/sxrlpedQNr4ZCTDyxyN/+eFBA5qY15q5EHnGgph9/jUVXTyxo5EDze5oNbXUDA3zlpjZdaLoy9wlZuKsekjLpFOXyqESJ/YUNeMXz0GSI8GLEg6RtO41jKUNNLZW493QjW7pCiRZZnedk6d2NzEj3cQqs4tXCJPS2YR09xeRF68CoCDDhkXr4ODspWTW++kA6n75Q/JWXIWUkoGycxPHm7vRmDMwuNvwWZKZc+0KVBPvG94NLlwyLsicmsTExD6pO8OtvzKG/Z14rVu3jnXr1gHws5/9LNrA7ULaWt6OxgW6RBV52Sfz4BctWsTatWvZsWMHqkMHsAcCTJw+g+uvWomrR+K1F+tIty+irmUd+/fvZ9mKKznWfpSbp6QN6X0sWGZkw1tNTJFMuCU9dnvfE0B/eyupvkbcrk5uuOMOkpOTSUhIYN26ddTU1DBjxox+XhnsdvjWCg3/984xXi5z8fkFuezduxeVSsXonEmUl7SRmW3Fbh/8ykhGRgYedwuasIJKjkOrC1BWVsaMGTOiJ6O9ynsgiIq58R7mFJwckVOr1THbo6GhgYSERAI+E6PyrNjt1jNuq9NZrVYsFgudnZ3RkZ/Ori6S/O20HIsMeU+fPp2X6iXS4vSkpSRDCpzLsawgpYUqh4dp2dm0trZG38uxY8co3/oGpnCYT3ziE4wfP57i4mL++9//EnTXs0KTRmWXigUFkc81FPBhiVfFbAuXy8WBAweYOHEi48aN63f5VQ43Tc4Ad83KHvB7dfo27s/Vk/w805TPrO5dHD16lGXLlkXv6y1SULZ/J12GVL71hfswGyLpQQ9fb+d/XznEX6u6+fWNE1maZT3jNjt4vC1SXWpcOnb70NNcButEfyb9zWE5W19ZmcT7YzL47StbGN1xkH/+619cc/XVpKSkRLevLcmLs1vud3sfPnwYgMmTJ8dUKCw/2kNbaSctBPj8TXlYTytccfVkNe8c76TMKbM0L/Z1r/pYIm+tqWfv+26uujGDpBQ9AX+Y9cU1JNq0zJqX0SdQXnOgEU8wzCdm52K3901JzMiEaTNTeeKJw3iUEvxKEg3HAzjqwtz26VzUg5SPh0h6WXZ2NlqNFberm6kzkygt6aK7UyI7O5uqqiri4+PRaE4GYavXHUMOe9BpzKSlJcUcDwb6/j56nY1vv1bKHz5oItVm7bNtABwuP2+VHePKcclMGR0bTBoNQZK2LaCl+3Xee+89PvvZz8YE85F+Ll6yM1eRnp486HvuNXexgY1vN9HWpGHCFGv09htuuIFVq1ZFRypvn22l7cAxgmqFCQvGIy96fMDX9AfDHGnpYVKiFvw+FK8Hxecl0eflk14v1Q0NVMaP4r87HVwxMWvQfeb41CbK3QHmjbJRW+Hh2lsn8Oabb9LZ2cnkyZNh2Sq8Wg1dv3oY9epfYv3Oz5E0g1/gCofDKIQJS2rG5mRgvMiVqhbPn8d/yw9RPa0QUxt0TLmWrB2/ILw/0tcFlQpVcjqkZ3LYcj3LLX78gUQCiofEpOTz2s/0Zyj7XyByYH70CXxFO3E+/3vkzBys3/7ZkAOagXzMmsjz+1tZV+XiikknL3Ta7ZCU7OPd1xrYvtGFlK9mW4ODhb44DEY1K6/NQm847bP85ANM/M8adh/cT+XWRiYWb2XbNV/il3s7yEsy8VihhY1PrwEtjF+2mORrlsY8fU5uO0V1XcwflUNjp5pGewZj/vEnFMBnslA/eg5x+hyaJkzGUNfGsgXT0J5hfzPk7StccoY9qNmwYUPMv/1+Px988AEFBQXDvagYthON03q1t7fHNEzrtWLFClasWBH995m6UQ+3QCjMnzZWs0JKID9bG7P89PR0DAYDe/bsISk9i1ddWUzPzMflcqFICrl5WtKzCjhwqJnt27fj1sThDymMiZOG9D5McWBPV1NYb6asop1xcX0DwYqGFkZ7jpOUnEJSUlL0dUeNGsXhw4eZP39+nxSZXjPsMqvyrPx9Tx1ZuiAH9u4lOzub5t4GcrKLthOlqgeSmprKnj17MNkDFH3QjDdcQigUYuzYsTHv0RsM8/MNleQYbCR0NdDa2ho9aTn1ym1v9bWsjHHgBVOc75w/8/T09D5XxO96qYz5mUY+NSkek8lEdXE1yUbVeX2v0owS2yo8xOclcOTIEWpqajhw4AC7du3CpbYQP2VR9LNJS0sjLi4OP4ewKJkc3tROrjGETi/T3e0jzhq7Ltu3b8fv9zNt2rQB13Ht/kgzw/HWgX8fA10dP9WURIkejRVdUhbbtm1j9OjRmEwmAoEA77zzDhUVFdToc1iyaAFelxOvyxl97v/MTebb73r4zmuH+fmqHLL6GVU81ZajTRjUMika/wX/TZ+vsXHw/Rtn84sNNuIainj99ddBkhg9ahQA5jiF2ioPLS2tfYKJsrIyEhMTcbvd0T5CtZV+9u9y060OctTgJujrpu20dkfZeoU4nYq3DtYzydp3nWYs0PP++iDvvFrPgivM1Fb4cTuDTJ9jxuGITTtUFIUXimoZk6gnRT3472vWrJm89957qAtqWNdhY6U3kdKDTaRlDnyS6/F4cDgcjBs3jiOHWoDI79iaCLWVHvKmGFEUhWPHjkXTjxt7/KwrqWYeCkajuU+q5GDf3/+Zm8QjLi+PvHWUh5e5+vT1eLaohUAozMfyzP2+hsVixGxdxOGyd3jllVeiwXxnZyc7d+4kMT4fu33w/jqnMsUp2FPUFO1sJz7R32duVW8Bk66OEMlo2e3v5nh984DNk13+ED/ZXMfBFg+Tkg18fnYqmfE6MGjAEElHTEjN4l8fRH5TGbrAoOuaY1Gxtq6L5MkK1RVhyo/2YLfbKSsrY/z48ZEHjZ2CdPcX8T//O1p/9xPkT31p0Pfcm2oalmTc3R2ce3ej4ZFuNeBWW6gtK2XBuLE0t2ai/PRp5MoylJYGaGkk1NJAeWcAt0VNdmUN/tTRePVqkgdJjzxXQ9n/xsjOgx/8hqCi0O50gbNvU9eztWJ0PC8fbudwVSPJ5thR5II5WnZscqI5GGKMpMOjhAiODdHjdOB09b3YnDd5HLsP7qN01AyKG0v4154Opqp7+HaqB+8Pvklj3pXIkhfbjAl93vdEm4Z1xwIopjA6TTLV8RYWf+1R8Lqp1sWhbNhInDmH1xrbmZZqpLvTccb3dtbb9yz0N6ouDJ9hL/6+devWmL/9+/czduxYvvKVrwz3omKMGTOGxsZGWlpaCAaDbN++nZkzR35i3tkqaXaj80Q2e0pq7I5ArVZz/fXXc9NNN3HbzTcS0lk41h4JAiI570ZsyWoWLVpEQkICB3ZsRhv2M2GAIgH9mT7TQEBS8FeB0k+n8uaKI+jDPhYtjB1uLigowOfzUVNTM+jrPzAzmVEJOl7YFOnxUVhYSHdnCLUajKYzf90yMzNRFIX4ZAc1FR6Kig6QmZndJ0D9R3Erzc4AMyfk0dPdTWdnZ7+v19DQQDAYRKtKw2SWh5TqcjZsBjUOrxKtvNTY4yfVfPaFCE6VY9URVgBzZMTlxRdfZNeuXaSNKmB33GwKR6dEHyvLMjNnzqSjo5UqbTUEJLZvdOL1hE803jy5zT0eD8XFxeTn5/cp39zrQJOL/x5uZ362Bbvx/N6HzahhYrKBUl0eoVCInTt34na7efnll6moqKAreTIO+0RW5ffNTTdrVTy8NAuNSuL/NtbR6Rm8Mef+JheTU40DpiBe6tIsWn567VjiJi2lSx3HS2+t5/c7GyhqcBJvUxEKEm3Y2CscDtPY2BhzkKyp8LF/lxtbsorXA+1MSOn/iqxKlpiXZWF3nRNfsG/JXL1BZu4SE5IEOzc5qTjmI3u0lkR73xPlkmY3tV1+ri2wnjEtcezYsSQkJGBsOUJ92EdIpVBfPXiJ+d7GzampqTQ3BIizyhiMMrZkNaEQ6DSR709ra2v0Of880IZJiew7LWfZF0SvlvnB0kwyLFp+srmesvaTjW07PUHePNbB4tw40uP6D8QS7CrC/lSmT59OSUlJtJzs+++/j0qlwqKbOmAVyP5IksSkQgPBoMKRAwNfFKo67kOW4UjYw1vHOvp9TKc3yPfX1VDa6uG6sQlUdvr46puV/KO4NeZ7oCgKexqcTEvr233+dPk2AyEFOlVB4uJlKo/5yMnJoaGhIVqBEEBeuBJp4UqUDzajBAavwBlw9laavDQ6v0uSBLZscLZjtLjxeRVcbhVSwUTkhSuRb/4Uqs99m9KPfZE8SY8/dT4ZNjeuUCCaunwpGM55PVflWwF4u+zkd01RFNaXd/KNDdW8EXagMUvY0FAf5+PPh5v5zY7Gfvc3drsdozGeNncTb2auZEmglu+u/wm63z4C1kQ6dRrMJjsqVd/vQ2F65KJDddCLXptKZ2cHnlFjkWYsoLyqBpVsIDEtiXZvkNmi6tmH3rDvMR555JGYv29/+9vccccdZ10h6GypVCruu+8+fvzjH/M///M/zJs3b8CKQhdTYbqZj2UmYjCosMT33fypqalkZWWhkiXGJOo51ta3U7xareaqq64iFPBR6C/F1M+8h4HoDSqO6z1ofTKVZbGXb30+H4G6w7gMSdHgoq7aT02Fj6ysLHQ6HcdOTLobiFYl880FaaS5qvDprCSlpNHdFcIcr6LJGaCowclbxzp4tqiFv+1vJXxa2mBaWhqyLKPWtZKU2Ugw6AFfAS2NJ098jrZ5eO1IB1fnW5k3OTIC2Nv48nTV1dWoVCr87iSS04Y/29JmVOPwRNatxx/GFQiTZhk8teJMck+Uau5WWZAkCafTyRVXXIE3awaSrGJKSmwQO27cOEwmE2b3Md4OOnC7wry/3kk4FOl10qt3Ls3s2bP7XW6rK8D/29ZAukXLl+eef2oVwMKcOCo9GnILJnD48GFeeOEF2tvbmbhgBXtCaXx8oi06B+h0yWYN31+aSac3yI8211Ha4sbZTxfoxh4/zc5An6IGlxu9WuahhenMKCxEH3Rz6Gg5j26s47FdtQAUHXfhD508IWhra8Pv90fTMqvLfRTv9pCUqiZunIwnpDBxkAseC3Ms+EKR0t39MVkixQWCAQWNVmL8lP6rh715rBOLTsXCnDMHD7IsM3fuXLo7O1gS18WxoIemhgCBQN8LLL2ampoi5a2tdjraQtFyurakyO/Z5zai0WiiV1arOrxsrepmTlLkux8ff/bNDs06FT+8Iot4vYpHN9ZR2xXZVw40l+ZUiTY1Pq/CtKlzSEpKYv369Rw5coTy8nKmTC6MlCmOO7uLK5Y4FaMLdNRU+ulo7xvg+31h6qr9ZOZqmZpp4u2yzj4njy3OAN95t5q6bj/fXZLJZ2am8OT1o1mYHcd/DrbzlTcq2d8YuYJf1emj3R1kRvqZTwJ7q8qVO3yMKtDR3RUmIT4dv7/vqKlUOB/8PjjStzn3qQKNkZReSXXpdJ3IPJFL3NIZCVJbm/oG4xW1Xhar4rElqxkz00w4HB6wQuTlLsmkYU6mmXfLu/CHwnR6g/x0Sz2/3dnE6EQdv7g2h6uuimfBFWY+f3UKd06xs7mym2++U03jaW0l/CGFblMqXn8T1ySa+NqnV6D7/LeQll2D98s/xuPrxGbrP4XPqleTl6hnT7uLOHNk7lddXR3BYJDq6mqMuiya1AFkKdL+QPhwG/ag5t577+339gceeGC4F9VHYWEhTzzxBL/73e+4+eabR3x550JRFJztYdKyztzkrsBuoKLDRyDU98pGfKKNClM+JlczBw8eHPA1Ojs7WbduHc8++yy7d++OlMG1KrTIfkpLvLicJ08S9+7dixQKEEifhLM7xI5NLvbtdFO8x4PPK0U6iVdUEAwOftXc3VqHPuTmmCabh96qork1wI7WHj73agWPbqzjT7ubefWIg5cOtXO4JTZoU6vVpKamUltbS039IeLirCRaM/hgi4vSAx7CYYVn9raQaFTzqelJ0dLOA83Zqq6uxm5PA0V9TqWcz8RmVNN2omJc7446zXJ+y0k1a9CqJGqcYa6//npuv/12Jk6cSFGDk3FJhj6dkNVqNYWFhXg7mvEEWlFGKfh8sT1q3G43Bw4coKCgoN9RGl8wzE+31BMIKXxnSQZGzfCMaM3PtiBL0J4QKRQQDAa56aabeLfNhM2o5sq8wee/5NsM/O+CdModXr79Xg13vljGvS8f55H1NfxlbzPvHu/knbJOILZT9uVKkiSumj2JhIQElhoa+e6SDCZmGPESpui4m7tfOs4/iiMjEg0NDUAknaGrI0jJXg/JaWpmLTRRemJ0YfwgQc3EZCPxOhXbqnsGfEx8gppFKy3MX2ZGq+t7uGh1BfigroeVY+L7rabYn7y8POx2O+b2I9RJHpQwNNYNfOW+qamJxMREOttlFAVSTvyOdXoZS7yMoy2EzRZJ53L6QjyxoxGjRibPFPkNJCSe2wW1RIOaR5dnoZbgkQ21lLV7oqM0GQOM0kBkpAagqwOuuuoqgsEg7777LhaLhezMyQD9XtA6k/yJenR6iYNFnj5zSGsr/YRDkJun4/qxCXT7QmypOtksuKbLx7ffrabLF+L/lmcxMyMSrFj1av5nQTr/d0UW8on3+fi2BtZXdAEwI+PMQY3dqMaqV1HW7iE9S4ssgxKM7GN6v6NR4yaDTo9yYPegrxloqgdANYJ9Xc7WuAw7nWorZeXHMJokWptjj4NdXUGyOvSE1AozFxjpcUa2f3+FTT4srilIoMcX4s+7m/nKG5XsbXBxb2ESP1qRTYpZi1otRRonSxK3Tbbz8LJM2twB/vetKnbVRfY7Pb4Qj2yopcifACioHA1ICkjT5yJ/8nNUNbmAMJmZA19oK0w3cczhITUjCVnSUFdbR01NDaFQEIsxmw86exhnNxCnv3S+T8LIGPagJhTqeyU1GAzGDEN/lPV0hfH7FNIzz5wyVmDXEwwrVHX6+txX1ualSptNfHI6W7duxeGIzRPt6Ojg3Xff5W9/+xtHjx7FbDazY8cO/va3v2HzNrEp0IksQ/HuyAHS6XSyf/9+OgzpjFKlsvmdHro6goybHLkKV33cR35+PoFAYMBREYgEbXv37iUuLo5r504iUa1Gg0xumo6vzkvjJyuzeeamMfzrtgKMGpn1FZ19XiMrK4vW1laam5uZPn0qi1bGkT1ay/FSH5vW9VDT5uP6sQnRE++cnBzq6+sJBGKvnPX09OBwOLAYM5BVJ6/sDiebQUOXN0QgpESbmp7vSI1KlsiO11Hd6SM3Nxe73U6HJ0hFh4/CtP5PMiZNmoRer2dsoJKibidzFptJsKmiJYGLiooIBoP9jtIoisKfdjdR7vDyP/PT+u31c67i9WqmpJrY3uDj9ttv584776SJOI60ebh1og3NAKM0p5qbZeEvN47hB0sz+fS0JKamGunxh3mnrJM/fNDEmlIHKWbNeQeTlwpZlpk/fz7NTU1kq5x8bUE62elaxpsMTE4x8J+D7VR2eKmvr8disWAymdm/K1KGefpcIyqVxKEWDznxOuJ0AwenKlliXraFPfVOvP2khPQyx6kGTJd681gHinIyFWUoJEli3rx5OLu7WZjsoEcJceBI/7MmFEWhubk5mnqm1UlYE0+uiy1JjaP1ZAW0R9bXUNPl538XpOPu7kElGzGfx/cizaLlh8uz8AbCfOud6jOO0kCkwbBKHemjk5CQwJIlkT5SCxcuxOOKfN/NZzlSA6DRSEyYaqDTEaK28mQQqIQVqo77SUxSEZ+gYnKKkVyrjteOdKAoCkfbPHz33WrCisJPVmT3G+hOTTXxxLWjuGOyje21Pbx2pIMxiboB5+WcSpIk8m16jju8qDUS9hQ1rY0ycXFx1NfXxz5Wo4Xx01AO7O63uE8vf3OkFLJKd3770uFUYNPTpEvD3d2JMa6b9tYg4VDkPfi8YXZsdhFWFKwTZLRama6uSGD4YQ5qJqcYyY7X8l55F4kGNb+6Opcbx9v6bYANkUyVX12dS6pFw4831/NsUQvfea+asnYvn10yFpMpjs6eKtpaTgaMdTWR9NPc0QMHNTMzzIQV6NEp6DTJ1NTUUX68HFnSkJqVQXmnT6SefUQM21leb9PNQCDAI488EnNfe3v7iBcKuFzIMmSP1pKeZcTjHTyvuMAWyYc/1uYl3xabG3+wxR25qnvllbzy0r95++23ue222+jq6mLXrl2UlZWhVquZNm0ahYWFmEwmamtr2bp1Kz1Ht5OvthJfuIT26nhqKvyUV+8iHA6TY5yJtUtDWraGCdMM6A0yXR0hqiv8LL82A4PBQFlZGXl5ef2uc0NDA83NzSxZsoSpE+zMjQ+we5uLFZPi++TjL8yxsLmym8/MDMWMDGRmZvLBBx+g1WoZP348KrXE1FlGbElqina5uEllZ6rl5IE5NzeX/fv3U1dXx6gTk6vhlFLOoROlnNXDP9+itwGnwxOg0RlAAlLOc04NRObV7DklLWjfibSQwgGGzzUaDdOnT2fHjh0U1TVhWZzBwhWRK9SnjtKcWi6415vHOtlQ0c3tk23MyRr+NNFFORZ+t7OJ1pCOPIOef22txm5Us2LM0A/2NqMGm1ETvcIMEFYUWpwBarp8JJs0H6pGatOnT2fdunUUFRVx7bXXkmhX09IQ5AtLU/liSyX/KWkjsaGB7Oxsjh/x0d0ZYuYCI9oTfWhKWz0sG3XmtJcF2RbeLutkb72TBUNIHztVjy/Em8c6WZBjIcV8diefubm5pKSk0FNxgEBiKqZuM42dftKssa/T2dmJz+cjJSWFurIgKelqpFPmTdmS1VQd96PVJuD3+2l0dPKtpXnMyDDzr83dqFXmfpvPntW6Juj5wdJMHt5Qy8KcwUdpIFIaO8GmxtEWucA3ceJERo8ejcFgYO92F0azjPoc90UZORqqy1WUHvCSmqlBq5VpbgzidoUZPzWyT5QkievHJfC7nU3880Abrx5xYNVHRp1SB7ngolXJfGJKEoty4/hncRtzz2JfkGczsKfehTsQSQ8s2eshyZ5GQ0NNtJx1L2nqLJT9O6G2ErJH9/t6XY4OQIvuEgpq4vRqSMhEcR2h211JKDiFjvYQVpuK3dtc+L1h3g118tPsbCDSH02SpOh8yw8jSZL44pw0jrZ5uKYg4YzzrwBSzFp+dmUOT+1uZm2pA6NG5pFlmZHG3QV57Nu3j8qyHpJST8yVa2tBpdJitQ58vMhL1GPRqSj1uEjQpuLo2Yv7uAuDLpNOXeSCzSwR1HwkDNtIzfLly1m2bBmyLLNs2bLo3/Lly3nggQf4+te/PlyLuqyZ41RMnWXEZD5zPGk3qkkwqPudV3Ow2U1ugo6UxDhWrFhBW1sb//rXv/jHP/5BVVUVM2bM4J577mHRokWYTJET4aysLO644w7yZyzEGHKzZ9cr9Ph3sOeDSg4ePIRZl49GZUaTD4XzTOhPTDLPzdcR8Cs01gbJy8ujsrKyz6hIr6KiIvR6fbSnTHdn5MAe18+V3itGW/GFFLbXxKa/pKSkoNfrmTx5ckw51LRsDe+pOpHUCseLfASDkatk6enpqNXqPilo1dXVmExmgl4LSakjcxU/GtS4gzT2+LEZ1QPOETkbuQk6uryh6AT5fQ0urHoVuQkDj6JMmTIFlVpDhqsi2gAOImmFoVCo31GaQy1uVu9tZlaGiTsmj0wJy7mZFtQybKvuYV+ji6NtXm6dNLRRmsHIkkSqRcvsTMtZdae/HGi1WqZMmUJ5eTmdnZ3REbeAE64bm8C+qmY8Hg+2xDTKDnlJz9JEK4hVdHjxBsODzqfpNTHZSLxexfs1A6egDeT1ow68wTC3DtIbaCCSJLFkyZLIewgXIymwZrujz9X73qabBn0yAb8SnU/Tq3f0taghcvvd+RpmZ0ZOxp3OHjQq85AKlJzJ+GQjf7lxDF+cM7S5Zgk2Fd1dIYIn5goZDJGLUt1dISxx574+vUUD/H6FYwcjRQOqjvvQG6SYPkaLc+OI16v4z8F2Uk+cRA4W0JwqM07HNxdlsDh36EFufqIeBahw+KLrYdCl4PF46OiILVogTZkJkoRyYNeAr+fojuy/DPpLa/R1TEo83Xo79Q3HUVBobQ6w/wM3He0hauK9qMyRuSYA3d3dWCyWAauFfliMSzLwsfGJQwpoemlVMl+em8b3l2Ty/67KiQQ0QEFBPqBQXllJIBBJo3a62rHGJw160UolS0xPNbG7xYXNFimcEgwGMBuy2et0km7RDmsGgnDpGragZunSpSxdupRf/OIX0f9funQpS5YsYdq0aUNubiecJEkSBTY9x9pjg5pAKMyRNg+TTpy0jB49mqlTp+JyuZg9ezb33HMPCxYsiOlb0UuWZaZPmcR260JsYybi6Cqnvu1dJElFzrjp/DfURlJK7GdlS1IRFy9TVRZJQestk3w6h8NBZWUlU6ZMifaL6O4KRa5MavrukMba9WTEaVlf3hVzu1qt5lOf+hTz5s2Lub24yUWN10fSuMhE3OpyX/TxmZmZVFVVRU+KQqEQtbW12BIzkSRpRIoEQGQEAaDNHaSxJ3DeqWe9cqyRHXBVp49QWGFfk4vpaaYBh/UBdDodU6ZMIdnfzO7jkfQNl8tFSUlJtOrUqdrcAX6+tZ4Us4avzU8f9LXPh1mnYnqaia3V3fzzQBvJJjVXjLaOyLI+TKZMmYIsy+zbtw9r4skmnNePSyQ51AlAR3MCKnXkRLdX7zy1Ccln7kXR24hz9xlS0E7nDoR47WgHczLN5xxQpqamMnfuXBrrK+gJlqHqkth62vyepqYmNBoNXqcJSabPxQlFDS45hDpoBSCRyIhmKBTC43Wh0ZxsOnq+4vXqIVfXS7SrQYEOx8k0mnBIwdUTPqvKZ/2uR4Ka3DFaKo/7aaj109oUJGeMLqbct1Yl8+lpSSzItvDjldkkDCGN7HzknygWUNbuQW+QsSfrCPkjF0lOn1cjxSVAbj5Kcf/zahS/j+5QZH3NhkvrRLTApqdWnYrT6USjb6P8iI+G2gDjpujZ0d3DpFOKuHR1dX2oU8+Gw6xMc0ywkZycjMloxumuprHWT2uTD3+wg5SUM/d0Kkw30eUNYUlJRJa0SJKKjMxsDrS4ROrZR8iwz6lJT09n3bp1PProo9HRmcOHD7N9+/bhXtRHQoHdQENPgB7fyblKZe1e/CElZge6ePFiPvvZzzJ37tzoVcGBJJk0KCo14Ywp3H333YwZPZYF8xehzdYT4uToQy9JksjNj1S10WlSMJlM/VZB27dvHyqViilTpkRv6+4M9TtK0/u6V4yO53Crh4bu2FQ8vV7fp9v9hoouzFqZBeMt2FPUHC89OVqTm5sbaYh5orRzU1MTfr8fnSodo1nGbBmZq2U2Q2/6WZAmp3/Y5nXknghqqjt9lDu89PhCFA6hEtGMwukgqWguKwEGHqUJhML8fEs9vqDCd5ZkYh7h5nYLc+Jodwcpa/dy6yT7WV3V+6gymUyMGzeOw4cP4/d7sMSr6GgPEadTMd7gIixp8TjNTC40xPQuOdTiJs2iiQbcZ7IwJ9Lv6s0BygD3582jnbj84TPOLzmTGTNmkJWVRUfnbmxhN3/f3Uq392Qg0NTUREpKCi2NIWxJajSnXBzxBcP8aFMd1UEvWRoz8fHx0WpbTqcTUDAZLRclLTHBFvk9dbSd3G87e8IoCucd1ACMnaRHo5Eo2uFGkiFnTN+LKVeMsfLNRRkj/tuGSGpWsklD2YkWBNmjTHh6TBgMxj7zagCkqbOhqgylv54hTfX0aCL7ujjTpZN+BpHjcZs2CVmlxhOoJByOpJOrUhSc/tjRURHUnD1JksgvyMPrb6Cq3ElNdSsQJjs75YzPnZ5uQgIaCWIx5GMxjMVvkQmGEUHNR8iwBzUvvPACGzdujKZEQaQx5iuvvDLci/pIKDjlClivg81uJIjZgUqSNOSDt0qWSDZpaHL6iY+P59rrVlE4Y3K0ild//UkycrRotBLVx/3k5+dTXV2Nz3eygIHL5aK0tJTx48dHR4iCwciVyTjrwAfVpaPikKVIwDIYpz/Ezloni3Pj0Khkxk7U4/cpVB+PrENOTqSrcW8KWnV1dWSOlzeZ5NSRu0pp0sroVBK1XT66vCFSz3JuwUDi9WoS9CqqOn0UNbqQgGmpZ04nMhqNxGfnE+eq52B5LSUlJYwbNy6mV0Jtl4+fb63nWLuXr85LJfsMjS2Hw+xMM1pV5Hu3fLQ40A9VYWEhoVCIkpISEu0qOtqDKGEFrasdkzYFtyFEevbJ32tYUTjc4h5S6lmvickG5mSa+WdxGzVdfYuSnM4bDPPKEQcz0k3Rcr7nSpIkrrzySrRaLa1dW0kJyPxlb6TBZiAQoL29HVtiCs7ucEzqmS8Y5seb6zjY7KawwARhiI872dCyuztSeWqkWwkMRKPtrcx2MkDr6Y4EOGdbzrk/Wp3M+Cl6FAXSszR9GnJeDL3FAiAS1ETKcKdSX1/fJ61QmjoLAKVkT5/XURprcWsi398Ey6U1UjMqQYekUqNKzKC1vZLxUzRMnmHg0InR0d7sCbfbjdfrFUHNOcjPz0chTH19dbRIQErqmYMaq15Nnk3Pnk4nSdYZ2ONmUuJxYdGpGGc/86i18OEw7HvCzZs3861vfYsFC042b0xOTqalpWW4F/WRkGfTIxEpFtCrpMVNjlWHZZDKRmeSatbQ1BM7L6bdHUCnkjBp+34t1GqJ7NFaGusDZGWOIRQKUVFREb2/uLiYcDhMYWFh9LbeZoFx1oG/ZjajhulpJjZUdhHqpxlor23V3QTCSvSEODFJHRmtORIZrYmPjychISFama26uhq7LRVJ0Y5IKedekiRhM6o51BLJAR/OClw51kgFtKIGJ3k2/ZDLUS6eE2k6u/Gd1wmHw8yaFTmBONrm4Seb6/jS65UUN7m5tzCJ+dkXpoeCUaPia/PS+N8F6Zdtg8yLITExkdzcXA4cOIDFCqEgNDZ043L1oNcm85rLQeMpv+PaLj89/qHNp+klSRJfmJ2KXiPzxPZGgoP8DgHeKeuk2xc671GaXiaTiSuvXEkg2Mko31E2V3Wzp95Ja2sr4XAYjTqynJR0NZ5AmA0VXXxvXQ0Hmtx8ZV4aiydGvsM6bSJdXV34/X56eiJpbOfSo2a4JNjUkSD0xAl9T1cISQLzecypOVX2KC3jpuijFSovtjybnmZngG5vEGuiFqNJRiMn43Q6o59HVEYuJCahFPczr6ahFq8m8p5MpksrqNGqZEYl6GnRp+Hz+VDpW5BliYMtblIMMt1N1bz55ps8++yzAAM2ORYGlpqaislkxuWrxuVpQ6PWDbnXT29p56RMDWlZGnY1OZmZbkIljjkfGcMe1ITDYfT62J2s1+vtc5swNEaNiux4XXReTSCkcKTVE5N6di5SLVqanbEpX23uIDajesARn9y8yAHG05OAxWKhrKwMAL/fT0lJCWPGjIkZEYgWCRhkpAbgitHxtLuDHGjuv6wrREZysuO15CWe/B6NnRQZrak6ZbSmvr6ejo4OWltbsZgykOVIhaSRZDNqaDhxYjlcc2ogUnWputNHWbt3wKpn/RmdmkiXOQslGGDcuHFUuNV8b10N33ynmkMtbm6fbGP1jWO4cfyFPeAuyIljXJK4Yna2CgsL8Xg8tDsiv7c9H1QBUDAhC7+s8OKh9uhje4PriUOYT3Mqq0HN52encNzh5b+nvN7pfMEwaw63MyXFOKyfZW5uLqNyJuPsOcYUuYM/7mqipj4yFyPoSURtgD8VN/Pp/5bxxI5Gun0h/md+GstHx0f71RCyApFqmx0dXYBEQsLFC2oS7WqCAXB2R+Yq9XSFMZplVMOUeinJEvnj9RhNl8ZE9N55NccdXiRJIiVDQ8gXaZjYp7SzJEVGa0r3o/hjRweVxhoCmsh3S38J9hXJt+kp9cWh1+spLS2loqICz9GdTGxYx5tvvkl9fT0TJ07klltuITc392Kv7mVHkiTy8/Pw+Bvw+pux2QYvEnCqGemR0s6e1BD60RJOf1iknn3EDHtQM23aNP76179Gq2MpisILL7zAjBkzhntRHxn5dj3H2r0oisLxdk+f+TTnIsWsoccfjunQ7vAEB83DN5pkUtM11FQEyBuTT01NDV6vl8OHD+Pz+WJGaQC6OkKo1Jyx+tDsTDMWrcz68s5+76/r8nG0zcvy0fExO7dEu5qkVDXlR3wEAwo5OTmEQiHWrVsHgBRKw5asPufyqUNlO2US7nCln0FkpCYYVggrDNifZiBpY6fQrk3ibXc6j26so7Hbz32Fyfzlxjw+OSVJNCG7jGRkZJCcnMyh0mI0Wmh3NCLLambOzGBVvpVNlV3Rxq+HWtzYjZH5DWdrQXYci3PjeKGkjQqHt9/HrCvvosMb4rbJwx8QL122EK06kdSOAzh7nOw8UoOkM9HhUFPkclHU4GTpqHh+tjKbp24YzZJRJ1N7bElq/J5IANPa2kpnRzcq2YjJcvG+571NOHtT0Hq6B55f+GEwJjGSVdA7ryY1Q41atqLR6PqfVzNlFvj9cORA7B2NtQRVKiRJ3W/D14utwGbAE4LU7NEcP36c119/nXhvCwkZudx0003cf//9LF26lPT09Iu9qpetvLw8FCVEINRNesaZiwREn3eitPPeBie76p2oZYlpH4KmzMLQDfse49Of/jQdHR3cc889uN1uPvWpT9Ha2sqdd9453Iv6yBhrN9DjC9HkDFDSeyX2PK+Spp04+T41Ba3dHehTJOB0owq0BPwK8eZcwuEwZWVl7N+/n7S0NNLS0qKPq6v2U13hJzntzP1DNCqZxblx7Kx14vT1bd66oaILWSLmJKZXwcSTozUZGRmo1WpKSkrQ6w2E/NYRTT3r1bvNrHoVBs3w/aR6iwWYtXL0KuhQzctLYb9lOh7ZwJfnpvLUx8bwsfGJw7p+woUhSRKFhYWRIhiaenyBFtLS0lCpVNw0PhGVJPHSoXYUReFQi4eJycZznhz/4MwU4vRqfrO9kUAothpaIKTw8uF2xicZonMHhpMlTkN+7lKUUIhF4VL8Xa30EI+MxKLJFp67OY8vzEllfD/vz5asRlJMaDU62tra6OruHrZyzufKZJbR6iQ62kKEQgouZzgyovQhZdSoyIjTRoOaRHskKLGYUvpUQANg7GTQ6VEOnKyCpgQC0NJIGAlJii0McakoODE/Q5U+lqlTp5JauIytCUtZtXIFWVlZfQrcCGcvLS0t2ooiJeXM82l6qWSJ6Wkm9jW4+KCuhykpxpgeeMKH37D++sLhMDt37uSrX/0qTz75JD/+8Y/53e9+xze+8Y0zVuQSBtZbLOBom4eDzZH5NOd7pT31xNyP3hS0sKLQ7g72WyTgVLYkdWQCbIuF+Ph4tm/fTnd3d8woTV2Vn30fuLElqZk2e2gnP1eMsRIIK2yt7o65PRRW2FjZTWGaqd/u1r2jNceP+EBRkZmZCYB9hEs5n6p3dGs4U88AMuO1yFKk2/fZ5gRPTjHxx+tH8/vrRrFijFVUG7vM5eXlERcXR1tnMf5gJ1lZGUDku3dlXjwbK7oobnLT4Qme1Xya01l0Kr40J5XqLh//PNAWc9/Gyi7a3EFum2QbsYpiY/KTSLTMIdzdij7sY2JyJhqNxMIJlkH7GtmSImmzJlMibW1tOJ09qFUmDBcxqJEkiQSbCkd7EGd3CJThKRJwKcuz6Tne7kFRFGQ5sv+VlWQ6OztxuVwxj5U0WpgwDeXAnpOFBFoaCCmAEkaW1KguwQHldIsGs1amyqNmyZIlVIQTsZu0Z92AVhiYJEmMGTMGiMzJPhsz0k10+UI09gRE6tlH0LDu8WVZ5q9//StarZb4+Hjy8vJi5lgI5yYrXodeLVHa6hmW+TRwsut9ozMyUtPlDRFS+pZzPp0kSYzK19HTpZCZmYfP58NqtTJ6dKQzdF2Vn327IgHN7EWmIad+jU7QkWvVsf60KmjFTS4cniDLB+k+P3aSnoBfofK4L1oFTa9Jx2iSMZlH/qQm8cQ2G84iARCZlPr1hencNTXpnJ6fHqcdsd4zwoUlyzLTpk3D4YgEGqemttw8MRJk/GZHpDfR2c6nOd3MDDMrx8SzttRBaWtkZDgUVvjvoXbyEvVMH8F0jrQsDXHGMaSl5AGg+O2RE+MzBPU6vYwlTkarTqCtrQ3viR412mHqUXOuEu1qXD1h2lsiKWjDUc75UpZv09PhDVHR7kZRFFIzNGhVkZPSAUs7d7RBbaTojNJQS6fGjKyEkKSB53deTJIkkW8zUHYiJfxQi3tYjslCrFmzZnHFFVecdQW5wrRIaWeI7MuEj5ZhP+ObMWMGe/b0LdMonDuVLJGXqGdTZTe+kMKk8zxpgUiqQLxORdOJXPw2dyS4OVNQAyfLO2uUHCRJYubMmUiSRG1lZITGfpYBDUQOFMtHx1PW7o0pK9vbm2b2IDunBJua5LTI3Jq8MWNZuHARYV8GyWkX5qBoP7HNhnM+Ta8F2XGkx4krgAJMmDABnU6HLMukpp7sbG83algxJp4OT5B4XSQF6HzdNyMZu1HNEzsa8QbDbKnqpskZGNFRGogEJ/YUNVbDXJYsugpZsZGcPrSLBbZkNUownmAwCCiYDBenR82pEuyRfUNNhR9JBpPlw52aND4pcnL/qX/s41P/Pc5TR5rQqBOQZDVHKmsIhE4r7Tx5JkjSyUacjTU49PHISghZvgSHaU7It50s4tLtC4mgZgSYTCYmTpx41s+L06sZl2Qg36Yn6RzmFgqXt2HfawQCAX71q19RUFCAzRZ7APzSl7403Iv7yCiwGzh4ohb++aSXnCrVoqH5xEhN+yA9ak7XW9654qiZT37iHhJtZmor/ezf5caeombWwrMLaHotHRXH8/taWF/exb2FydHeNCvz4gdNPYHI3Jpt65w01MDE8QuoL2u4IPNpADLitGTEaZkiDmzCCNJqtSxcuJCuri7U6thd98cn2HjveCcTzmM+zamMGhVfmZfG99fV8lxRCwea3eRadcy6AOkcGdka9u8K4ulOR5KDQ+4zZUtWoy5NiP7bbLl4lc96WRNUSDL0dEfm05xpxOlyNyZRzy9W5dDgVXGwrp3KDh8NBFGp7ZQcr+F5x1GuLkjggRmReRJSnBVGFURKO19/BzTU4rBnIyshVOpLN6gZazcQVuCVI5HmoSMxx0w4d99elMHghemFD6th32tkZWWRlZU13C/7kVdgi4zO5MTriB+mylWpZm00vaQ3qBnKSA1Abp6W8qM+WhrUuLr9FO/2YE9RM3uhCdU5VhuL16uZmWFmU2UXd09L6tObZjDR0ZqjPsIh5wUp5dzLqFHx5PWjL8iyhI+2ga5cJps1PLwsK5pWOhwmp5i4fmwCrx3tAOAbC9MvSDpjaoYWWfbQ2hQkMUk15ApYtiQ1GrUVkAAFq/XiBzUqtUS8VUWnI/Shn0/Ta6zdwAK7nWWZkRHDijIv729JJejfz4RENe+UdXL31CR06sjnKk2ZhbL27yid7SiNtTgy5yMFQqhVl+483N7CLdtrerAZ1cP6uxPOn7Wf+bfCR8Owf/K33nrrcL+kABTYIzvRiSnDt6NPMWvYWh0kEFJocwdQyxJxQ2zoaTSpSE3XUHnMRygESalqZi0494Cm1xVj4vmgzklRg5MNFd19etMMZuxEPVvXOTl2uJuk1JEv5SwIl5KRKF1697Qk9jW6UEkS87Isw/76/dFoJZLTNDTVB0g5i9FWnV4mPl6LvjMOr78ba8KFWd8zSbSrI0HNh3w+zUDSMrTotSnggsU2PwfaZEqa3dH5DtLU2ZGgZv8H0NyAY3wKUnsNGs2le2Iar1dHGlg7A0waptFRQRDO34c7wfdDxGbU8OW5qdw0jA0T0yxawgq0uAK0n2i8eTZXYkcVaE8GNOcxQnOqGelm4vUq/nWgjaNtnj69aQZjPTFaAww5ZUUQhIHp1DKPX53LT6/MvqBdubNHa5FlSM08uyvgtmQ1atmORhWH+SL2qDlVb7+aD3M558EYjDJJSclIkgqtuw29WmZXnfPkAzJywJaMsv41CAXpMCSAEkKtvrRHP3pHa8R8GkG4dHw097KXqRVjrCQP4zB3qvlkWed2dyCmieRQ2JM1LFppjgQ0w1QyWC1LLBsVT0WHb8DeNIMZP8VAol1HWpaYXC8Iw0GvljFpL+woQ0q6hlU3xmO2nN1ybclqbJZZpCasxGi8NA5vqekaJk43XLA5fpei9CwDWrWNhvoGpqcZ2VPvjJZxliQp0oizKVIdzaE2ghJEcwnPqYFIUQQJmCyCGkG4ZFwae33hooiWde4J0DaEHjX9sSaqhy2g6dU7h2ag3jSDibOq+NjtWRgukRMaQRDOjfocGi/aktTIsha1ynhRe9ScSlZJjC7QDft+8nKSmqFBr02hra2V6Sk62j1BKjtOVrmUpsyK/n9HSENYCaLRXtpB4JV5Vv7fVTnD3p9MEIRzd2ns9YWLItGgRquSaHT6o+lnl4Icq44HZiRz97Rz688iCMJHU2+/GpUKtLqPbhBxqbHEy8RbUlEUhSxVDxKwq/6UFLSxk0FnAFsyPZ4gEEajubSDGo0q0q9GEIRLx4icxRYXF1NVVYXX6425/fbbbx+JxQnnSJIkUs0ajrd7CYSVSyaoAbh+XOLFXgVBEC5DWaO1dHWExOTtS4gkSeTmplHTJNHR1ESBPZ099U7umGyP3K/RIF1xPT5FIuQKAaC9xEdqBEG49Az7Wezq1avZsWMHEydORKfTDffLC8Ms1aKlqCFyxexc0s8EQRAuJWPGDq1aonBhZeaY0O5JpKa2gZmTC/hHcRsOTzCaYizfdBddPX70a48BoNWJ45EgCGdn2IOa999/n1/84hfY7fbhfmlhBKSYNQTDkf+/lEZqBEEQhA+PxCQ1Om08Pd2tXJlh5h/Fbeypd3JlnjX6mHZPEN2Jtok6MVIjCMJZGvY5NRaLBZNp+PslCCMjzXxykqMIagRBEISRIMsSFosZn89FdryWJKOaPafOqwEc7iB6JZJ+ptOLoEYQhLMzLGexzc3N0f+/7rrr+O1vf8tNN91EfHxsOd6UlJThWJwwjHrLOssSWPUiqBEEQRBGRny8hYbmME6nh5kZZjZUdOEPhdGqItdXHZ4g2hOlnvUiqBEE4SwNy1nsV77ylT63FRUV9bnthRdeGI7FCcMoxRI5cCQY1Be0uZ4gCILw0ZKQaAagpamL2ZlxvFXWyYEmNzMzIrc7PEH0UiQfWozUCIJwtoYlqBHByuUrxaRBAuwi9UwQBEEYQUlJkeyNtrZuCsekoldL7K53ngxq3EFMkhipEQTh3Az7nJpnnnmm39ufe+654V6UMAw0KpkUs4YUk2ggJgiCIIwce7IFgA5HD1qVzNRUE7vrnSgnUs4cngAGOTJSo9WKY5IgCGdn2IOazZs393v7li1bhntRwjD57pJMPl0oGl0KgiAII8doNCJJMj3dkQIBszPNtLuDVHb4gEj6mYZIUKNWi+wBQRDOzrDtNTZs2ABAKBSK/n+vlpYWLBbLcC1KGGY5VtFPSBAEQRhZkiSh05pwuSOjMzPTI2lnu+udjErQ0e4OoiZS/UyjEelngiCcnWELarZu3QpAMBiM/n+v+Ph4vvjFLw7XogRBEARBuAwZjWZcThc+r4LVoCbfpmd3vZPrxibgCynI4UhQI0ZqBEE4W8O213jkkUcA+Pe//80dd9wxXC8bY8eOHbz44ovU19fzk5/8hDFjxkTvW7NmDRs2bECWZe69916mTZs2IusgCIIgCMK5iYsz093VSE9XCL1BZnaGmX8caKPc4Y08IBwCJFQq1UVdT0EQLj/DPqemN6Dp6uqiubk55u98ZWVl8fWvf53x48fH3F5XV8f27dv51a9+xfe+9z1Wr15NOBw+7+UJgiAIgjB8rFYLwbCbrs4gALMyIylo7x3vijwgHESlUiNJosWAIAhnZ9jHd/fv388f//hHOjs7+9x3vqWfMzMz+7199+7dzJ8/H41GQ3JyMqmpqRw/fpyCgoLzWp4gCIIgCMMn3moBwjhaXTDOQK5Vh92oZnttDwDhUBCVLFLPBEE4e8O+51i9ejUf//jHWbp06QUryehwOMjPz4/+OzExEYfD0e9j161bx7p16wD42c9+ht1uvyDreDq1Wn3Rlv1hJ7btyBPbeGSJ7TuyxPYdWYNt3/T0dAC6ut3Rxywa08WakiYkIBQOotFoxeczCPH9HVli+16+hj2ocTqdrFy58pyHjh977LF+R3nuuOMOZs2a1e9zemvcD8WKFStYsWJF9N9tbW1nvY7DwW63X7Rlf9iJbTvyxDYeWWL7jiyxfUfWYNu393jd4eiktaUVSZaYbFOzBojXqFCUICpZJT6fQYjv78gaye3bG9QLI2PYg5rly5ezceNGli9ffk7P/8EPfnDWz7HZbLS3t0f/7XA4SExMPKflC4IgCIIwMszmyBwaf9CFyxnGHKdicqoRnUoiWa8hrATRi3LOgiCcg2EPasrKynjrrbd45ZVXsFqtMfc9+uijw704AGbOnMlvf/tbrrvuOjo6OmhsbCQvL29EliUIgiAIwrkxGAzIskwo5Ka7K4Q5ToVWJXNVvhW1X8ZTH0StvjCp64IgfLiMyEjNuY7SnMmuXbt45pln6O7u5mc/+xm5ubl873vfIysri3nz5vHQQw8hyzL3338/sjzshd0EQRAEQTgPkiRhNpsJ+l10d4ZIz4rcft+MFNpaAry0L4hGY7q4KykIwmVp2IOapUuXDvdLRs2ePZvZs2f3e9/NN9/MzTffPGLLFgRBEATh/JnNZjodHnq6YlsvBPwKYSWIVivSzwRBOHsjUjdx48aNbNmyJTq3ZfHixSxbtmwkFiUIgiAIwmXEYrHQ3lZPd1co5vZgQEERQY0gCOdo2IOal19+mc2bN3P99ddHK0i8+uqrdHR0iJEUQRAEQfiIM5vN+ANuXD0hggEFtSZSLTXgjwQ1Gq3oUyMIwtkb9j3H+vXr+eEPf0hSUlL0tqlTp/LII4+IoEYQBEEQPuLMZjOKEiYU9tLTHSLBFjkVCQQi6Wc6nRipEQTh7A37bHqfz0dcXFzMbRaLBb/fP9yLEgRBEAThMtNb1jkUjhQL6OXzBgHlgjXuFgThw2XYg5pp06bx29/+loaGBvx+P/X19fz+979n6tSpw70oQRAEQRAuMxaLBYAwbnpOmVfj8wWASEd3QRCEszXse4777ruPZ555hm984xsEg0HUajXz5s3j3nvvHe5FCYIgCIJwmekdqVFrPHSfUgHN5wsCoBHNNwVBOAfDHtQYjUa+9KUv8YUvfIGenh4sFovoGSMIgiAIAnCyAScqN92dIRRFQZIk/H4xUiMIwrkbtj1HW1tbv7c7HI7o/9vt9uFanCAIgiAIl6HeBpxhxUPAr+DzKugNUjT9TIzUCIJwLoYtqPniF794xse88MILw7U4QRAEQRAuUxaLBb/PiU4F3V0h9AaZQEAENYIgnLthC2qys7MJBAIsWbKERYsWkZiYOFwvLQiCIAjCh4jZbKahuwGzEXo6QySnagiI9DNBEM7DsO05/t//+3/U1NSwefNmHn74YTIyMli8eDFz5swR5RkFQRAEQYgym824XC7SEyIjNYqiEAiIQgGCIJy7YZ3Bn52dzd13383vf/97rr32Wvbu3cuDDz5IRUXFcC5GEARBEITLmNlsJhwOYzD76e4MEwyAooigRhCEczciZcmampo4fPgwZWVljBo1Klq+URAEQRAEofe8QKvz4uwO4feHCZ8IakT6mSAI52LY9hxOp5Nt27axefNmvF4vixYt4tFHHxUVzwRBEARBiNHbgFNSeQiH4+h0hMRIjSAI52XYgprPfvazJCcns2jRIgoKCoDIiE1TU1P0MZMmTRquxQmCIAiCcJnqHalRJBcAjtagGKkRBOG8DNuew2q14vf7Wb9+PevXr+9zvyRJ/P73vx+uxQmCIAiCcJnqbcAZCLqRpEhQoyhBZFlGpVJd7NUTBOEyNGxBzR/+8IfheilBEARBED7EehtwulxOTBaZ7q4wihJErRapZ4IgnJsRKRQgCIIgCIIwGIvFgtPpJC4+MjITVoIi9UwQhHMmghpBEARBEC44s9mM0+nEciKoUZSgKBIgCMI5E0GNIAiCIAgX3MmgJnIqokhBNBoxUiMIwrkRQY0gCIIgCBdcbwNOjdZ74paQGKkRBOGciaBGEARBEIQLrresczDsRqUGEHNqBEE4dyKoEQRBEAThguttwOlyuYhPUKEg5tQIgnDuRFAjCIIgCMIF1ztS43Q6mT7HhFoj0s8EQTh3IqgRBEEQBOGC623A2dPTg9EkEwqJkRpBEM6dCGoEQRAEQbjgehtwOp1OAAKBgJhTIwjCORNBjSAIgiAIF0VvA05FUQgGxUiNIAjnTgQ1giAIgiBcFL0jNaFQCEVRxEiNIAjnTAQ1giAIgiBcFL1BTSAQABAjNYIgnDMR1AiCIAiCcFH0NuDs7u4GECM1giCcs8tq7/G3v/2NvXv3olarSUlJ4Qtf+AImkwmANWvWsGHDBmRZ5t5772XatGkXd2UFQRAEQRhUb1nnjo4OQIzUCIJw7i6rkZopU6bw+OOP88tf/pK0tDTWrFkDQF1dHdu3b+dXv/oV3/ve91i9ejXhcPgir60gCIIgCIPpbcApghpBEM7XZRXUTJ06FZVKBUBBQQEOhwOA3bt3M3/+fDQaDcnJyaSmpnL8+PGLuaqCIAiCIJyBGKkRBGG4XFZBzak2bNgQTTFzOBzYbLbofYmJidGARxAEQRCES1NvA87eoEbMqREE4VxdcnuPxx57jM7Ozj6333HHHcyaNQuAl19+GZVKxaJFiwBQFGXIr79u3TrWrVsHwM9+9jPsdvv5r/Q5UKvVF23ZH3Zi2448sY1Hlti+I0ts35F1tts3Pj6erq4uAJKSksRncwbi+zuyxPa9fF1yQc0PfvCDQe/ftGkTe/fu5eGHH0aSJABsNhvt7e3RxzgcDhITE/t9/ooVK1ixYkX0321tbcOw1mfPbrdftGV/2IltO/LENh5ZYvuOLLF9R9bZbl+j0RgdqXE6neKzOQPx/R1ZI7l909PTR+R1hYjLKv1s//79vPLKK3zrW99Cp9NFb585cybbt28nEAjQ0tJCY2MjeXl5F3FNBUEQBEEYit55NSDm1AiCcO4uuZGawaxevZpgMMhjjz0GQH5+Pg8++CBZWVnMmzePhx56CFmWuf/++5HlyypeEwRBEISPpFODGjGnRhCEc3VZ7T1+97vfDXjfzTffzM0333wB10YQBEEQhPMlRmoEQRgOYjhDEARBEISLpjeoUalUIstCEIRzJvYegiAIgiBcNL0NOMUojSAI50MENYIgCIIgXDS9IzViPo0gCOdDBDWCIAiCIFw0vQ04xUiNIAjnQwQ1giAIgiBcNJIkYTabxUiNIAjnRexBBEEQBEG4qAZqmC0IgjBUIqgRBEEQBOGiuvLKKy/2KgiCcJkTQY0gCIIgCBeVXq+/2KsgCMJlTsypEQRBEARBEAThsiaCGkEQBEEQBEEQLmsiqBEEQRAEQRAE4bImghpBEARBEARBEC5rIqgRBEEQBEEQBOGyJoIaQRAEQRAEQRAua5KiKMrFXglBEARBEARBEIRzJUZqLpJvf/vbF3sVPrTEth15YhuPLLF9R5bYviNLbN+RJbbvyBLb9/IlghpBEARBEARBEC5rIqgRBEEQBEEQBOGyJoKai2TFihUXexU+tMS2HXliG48ssX1Hlti+I0ts35Eltu/IEtv38iUKBQiCIAiCIAiCcFkTIzWCIAiCIAiCIFzWRFAjCIIgCIIgCMJlTQQ1giAIgiAIgiBc1kRQIwiCIAiCIAjCZU0ENYIgCIIgCIIgXNZEUCMIgiAIgiAIwmVNBDWCIAiCIAiCIFzWRFAjCIIgCIIgCMJlTQQ1giAIgiAIgiBc1kRQIwiCIAiCIAjCZU0ENYIgCIIgCIIgXNZEUCMIgiAIgiAIwmVNBDWCIAiCIAiCIFzWRFAjCIIgCIIgCMJl7ZyCmubmZlpbW4d7XQRBEARBEARBEM7akIKa3/zmNxw9ehSAjRs38tBDD/HQQw+xYcOGEV05QRAEQRAEQRCEMxlSUHPw4EHGjBkDwOuvv84PfvADfvKTn7B27dqRXDdBEARBEARBEIQzUg/lQcFgELVajcPhwOl0Mm7cOAC6urpGdOUEQRAEQRAEQRDOZEgjNbm5uaxZs4aXXnqJwsJCABwOBwaDYURXThAE4XJTVVWFJEls27btYq8KAD/84Q/Jy8u72KtxVnJzc/nRj350wZb3+OOPc911112w5QHs2LGD7Oxs3G73BV2uIAjCh9WQgprPfe5z1NTU4Pf7ueOOOwA4duwYCxcuHNGVEwRBOFeSJA36l5ubO+jzH3jgAZYuXToi6/bcc88hSRKpqakEAoGY+1pbW9HpdJdUYLRixQruueeeQR/z61//GoPBgMPh6Pf+66+//pI8ZjgcDh577DEee+yx6G0//OEPkSSJm266qc/jzyXgUqvVPPfcczG3zZs3j0mTJvGrX/3qnNZbEARBiDWkoCY1NZWvfvWrfOlLXyI+Ph6AuXPnctddd43oygmCIJyrxsbG6N8rr7wCwK5du6K37d69+6Kun0qlQq1W89prr8Xc/uyzz5KWlnber68oSp+AaSR9+tOfBuBvf/tbn/vq6+t56623ePDBBy/Y+gzV6tWrKSgoYPr06TG36/V6XnnlFTZt2jRiy37ggQf4wx/+cEE/J0EQhA+rIZd0Li4u5pVXXuGFF16I+RMEQbgUpaamRv8SExMBSEpKit62e/duZsyYgU6nIzk5mS984Qu4XC4gcqV+9erVbN68OTqy03ul/YknnmDatGmYzWZSU1O54447aGxsPKd1vO+++3j66aej/1YUhb/85S/cf//9fR77ve99j/Hjx2M0GsnKyuJzn/tczLzG5557DrVazcaNG5k+fTo6nY533nmnz+s4HA4WLFjAkiVL6OzsBODf//4306ZNQ6/Xk5uby0MPPRTdFvfccw/r16/n+eefj26L/k70ExMTueWWW2LeT69nnnkGi8XCrbfeynvvvcfSpUtJTEwkPj6eJUuWsGvXrkG3U3+jI/2NpP3ud79j3Lhx6PV68vPz+fGPf0wwGBz0tf/xj39w44039rk9IyOD2267jYceeohwODzg84PBID/84Q8ZNWoUer2eiRMn8tRTT8WseygU4t57741uv17XXHMNDoeD9evXD7qOgiAIwpkNKahZvXo1v/vd76ioqKC9vT3mTxAE4XJz4MABbrjhBhYvXsz+/ft5/vnnef311/nc5z4HwNe//nU++clPMm/evOjIzu233x59/i9/+UtKSkpYs2YNNTU10bTcs/XAAw+wbt06qqurgUjJ/NbWVm655ZY+jzUYDPz5z3/m8OHDPPfcc2zatImvfOUrMY8Jh8N885vf5PHHH+fIkSPMmTMn5v6amhoWLlxIWloa7777Llarleeee47Pf/7z/O///i+HDx/mr3/9K+vWrYtuiyeeeIJFixZx2223RbfF/Pnz+30/n/3sZzl06BA7duyIWafVq1dz9913YzAYcDqdfPGLX2Tnzp1s376d/Px8rrrqqvM+nvzwhz/kl7/8JT/96U8pLS3liSee4KmnnuLRRx8d8DkdHR0cOHCA2bNn93v/z3/+c0pLS3n++ecHfI0HHniAl19+maeeeorS0lIefvhhvvWtb7F69WoAdu/ejUql4je/+U10+/XS6/VMnTqVjRs3nuO7FgRBEKKUIbj33nuV1tbWoTxUEAThkrN161YFUCorKxVFUZS77rpLmTVrVsxj1q5dq0iSpFRVVSmKoij333+/smTJkjO+dlFRkQIodXV1iqIoSmVlpQIoW7duHfA5zz77rKJSqRRFUZSrr75aefjhhxVFUZTbb79d+fKXvzyk13j55ZcVrVarhEKh6GsCypYtW2Ie98gjjyhjxoxRiouLlfT0dOULX/hC9DmKoig5OTnKH//4x5jnbN68WQEUh8OhKIqiXHHFFcqnP/3pM24LRVGUCRMmKPfee2/032+//bYCKCUlJf0+PhQKKVarVfn73/8es06PPfbYgP9WlNjPx+VyKQaDQXnrrbdiHvP8888r8fHxA67rvn37FEA5fPhwzO2920xRFOXb3/62kpaWpjidzj7rUlFRoUiSpJSWlsY8/9FHH1WmTp0a/bdKpVKeffbZftfhpptuUm655ZYB11EQBEEYmiGN1FgsFkwm00jFVYIgCBfUoUOHWLx4ccxtS5YsQVEUDh8+POhzN23axKpVq8jKysJisUQnv/eOtpytBx98kGeeeYampibWrFnDZz7zmX4f9/LLL7N48WLS09Mxm83ceeed+P1+mpqaYh43a9asPs9tbW1l8eLFfOITn+APf/gDsixHb6+uruahhx7CbDZH/66++moAjh8/fk7v54UXXqC7uxuAp59+OjopHqCyspK7776bvLw84uLiiIuLo6ur65y3H0Q+T4/Hw8c//vGY9/HZz36Wrq4uWltb+32ex+MBIiMmA/nud79LKBTi5z//eZ/79uzZg6IozJw5M2a5P/nJTygrKxvSuuv1+uh6CIIgCOduSEHNddddx29/+1uOHTtGc3NzzJ8gCMLl6NS5DUO5HSLpW9dccw25ubn8+9//Zs+ePbz66qsA+P3+c1qP6667jnA4zF133UVhYSGTJ0/u85gPPviAW2+9lcWLF7NmzRqKior405/+1Ge5KpWq3xN0q9XKokWLeOWVV6irq4ve3jtX5IknnmD//v3Rv+LiYsrKyvpdlzP51Kc+haIo/OMf/6C5uZlXX301pkDAddddR01NDX/4wx/YuXMn+/fvJzk5edDtJ8syiqLE3Hbq5Pre9/Hiiy/GvI+SkhLKysqic6pOl5SUBDBgxTaIXNR77LHH+OUvfxmz7U5d7vbt22OWe/DgQQ4cODDga57K4XBE10MQBEE4d0NqvvmXv/wFgKKioj73iWIBgiBcbiZOnMjmzZtjbustCjBhwgQAtFotoVAo5jG7d+/G4/Hwm9/8Jtqna+/evee1Lmq1mvvuu48f/ehH0XkYp9u2bRt2uz1msvxLL7005GVoNBpefvllbr/9dpYsWcKGDRvIyckhJSWFrKwsjh49OuAIEfS/LQaSkJDAihdZ+QAAkDBJREFUrbfeytNPP013dzdGo5HbbrsNgPb2dg4fPsybb77JqlWrAKirq6OlpWXQ10xOTqahoSHmtn379kWDlYkTJ6LX66moqOCaa64Z0noCjB49GqvVyqFDh5gxY8aAj7v//vv5/e9/z3e+852Y23ufU1NTM2ifm8G2X0lJCddff/2Q11kQBEHo35CCGhG4CILwYfKNb3yDwsJCHnroIR588EGqqqr48pe/zJ133kl2djYAo0aN4sUXX+TQoUOkpKRgsVjIz89HkiQef/xx7rzzToqLi/m///u/816fhx9+mK9+9askJCT0e//YsWNpbW1l9erVLFu2jG3btvHkk0+e1TI0Gg3/+c9/uPPOO6OBzejRo/nxj3/M/fffj9Vq5cYbb0Sj0VBaWspbb70VreI1atQoNm7cSHl5OfHx8cTHx6PRaAZc1mc/+1kWLFhAVVUVd911F0ajEYgEPElJSTz99NOMGTOG9vZ2vvnNb56xkfOKFSt48sknuemmm8jJyeFPf/oT1dXV0aDGbDbz3e9+l+9+97sArFy5kmAwSElJCfv27es3dQwiI0CrVq1i8+bNfOpTnxpw+SqViscff5xVq1ah1Wqjt+fl5XHffffxmc98hl/84hfMmzcPl8vF3r17aW1t5Vvf+lbM9rv66qvRarXY7XYAysrKaGxsjKb7CYIgCOfhbCbgtLa2KkePHhVFAwRBuKycXihAURTljTfeUAoLCxWtVqvY7Xblc5/7XHQyuKIoSnt7u3L11VcrcXFxChCd6P373/9eyczMVPR6vbJgwQLlrbfeUgBl48aNiqKcfaGA/vT3Gt///veV5ORkxWg0KldffbXyz3/+M+Y9DfSap056VxRFCQaDyp133qlkZmYqx44dUxRFUdasWaPMnTtXMRgMisViUaZOnao8+uij0eeUl5crixYtUkwmU8x7HcykSZMUQCkuLo65fdOmTcqUKVMUnU6nFBQUKC+99JIyZswY5ZFHHok+5vTCAN3d3cpdd92lWK1WJSkpSXnkkUf6LeTwl7/8RZk6daqi0+kUq9WqzJ49W3nyyScHXc9NmzYpcXFxitvtHnCb9br22msVIGbdgsGg8vOf/1wZO3asotFoFJvNpixevFj5z3/+E33MW2+9pYwbN07RarXKqYfdhx9+WLnyyisHXT9BEARhaCRFOS1RuR8dHR385je/4dixY1gsFnp6eigoKOCrX/3qgLnKgiAIgnA5WLFiBddddx1f+9rXLtgynU4neXl5rF27lrlz516w5QqCIHxYDalQwNNPP01OTg7PPvssf/7zn3n22WfJzc3tt8maIAiCIFxOnnzyyUHT6UZCZWUlP/rRj0RAIwiCMEyGNFJz//3389RTT6FWn5yCEwgE+NznPjfgxFZBEARBEARBEIQLYUgjNSaTqU8py4aGhujkT0EQBEEQBEEQhItlSNXPbrjhBh577DGWL19OUlISra2tbNq0idtvv32k108QBEEQBEEQBGFQQ0o/Azh48CDbtm2jo6ODhIQEFi5cGO0QLQiCIAiCIAiCcLEMOaj5sDq9oduFYrfbaWtruyjL/rAT23bkiW08ssT2HVli+44ssX1Hlti+I2skt296evqIvK4QMWD62csvv8zNN98MDN58U6SgCYIgCIIgCIJwMf1/9u47Tq6qfPz4595pO2XrzPaWbLLpvZACpBEEKRKxYEElNhQVBX8K6pemX7CDIGBFEL8qqEAQBIEQSIAA2TTSE9I22V5mtk6fe35/THZISHazSXay7Xm/XvOa2anPnr175z73nPOcbpOa5ubmE94WQgghhBBCiIGk26TmS1/6UuL2ddddd1aCEUIIIYQQQohT1W1SU19f36s3yM3N7bNghBBCCCGEEOJUdZvUXH/99b16g57m2wghhBBCCCFEsnWb1EiyIoQQQgghhBgM9P4OQAghhBCDn2r1YTx6P7HGuv4ORQgxDHXbU3PrrbeiadpJ3+COO+7o04CEEEIIMbgow8B4+FewfRMdugZXf62/QxJCDDPdJjVLliw5m3EIIYQQYpBSr/wHtm+CwlKCr72EvvQKtLyi/g5LCDGMdJvULFq06CyGIYQQQojBSFUdRP3rEZgyG/1z38D4/pdRzzyO9qVv93doQohhpNukZs2aNSxYsACAVatWdfsG0qMjhBBCDE8qEsb44y/B7kD/3DfQ0jJwXPIR/Cv+hrrs42j5xf0dohBimOg2qXnjjTcSSc1rr73W7RtIUiOEEEIMT+rJR6G6Ev3629DSMgBwLvs0/ueeQD3zGNqXv9O/AQohho1uk5rvfe97idu33XbbGX3Igw8+yMaNG0lPT+eXv/wlAB0dHdxzzz00NjaSnZ3NDTfcgMvlAuCpp55i1apV6LrO8uXLmTZtGgD79+/ngQceIBwOM336dJYvX46maUQiEe6//372799Pamoq3/rWt8jJyTmjmIUQQgjRPbVtI2rlv9GWXIY2eWbifj0tA23Jpaj/Pom69Cq0wpJ+jFIIMVycUklnv9+P1+s95tIbixYt4vvf//4x961YsYLJkydz3333MXnyZFasWAFAVVUVa9eu5e677+YHP/gBDz30EIZhAPCHP/yBa6+9lvvuu4+6ujo2b94MxIfHOZ1Ofv3rX3PppZfy17/+9VR+LSGEEEKcAtXeivHIvVBQgvaRzx33uPaBD4M1BfXM3/shOiHEcNRtT83RtmzZwu9//3saGxuPe6w3i3ROmDCBhoaGY+6rqKjg9ttvB2DhwoXcfvvtXH311VRUVDB//nwsFgs5OTnk5eWxd+9esrOzCQQCjBkzBoAFCxZQUVHB9OnTWb9+PR/72McAmDt3Ln/6059QSvWqJLUQQggx1Kid76De3Q5Z2WieXPDkQqYHzWQ68/dWCuPR+6GzHf1bt6NZbcc9R3OloV1wOeq5f6CqDqIVjTjjzxVCiJ70Kqn57W9/y0c+8hHOPfdcrFZrn3xwa2srmZmZAGRmZtLW1gaA1+ulvLw88bysrCy8Xi8mkwm325243+12J3qKvF5v4jGTyYTD4aC9vZ20tLTjPnflypWsXLkSgJ/85Cd4PJ4++X1Oldls7rfPHuqkbZNP2ji5pH2Tayi3r9Hqo/3h+wiufiFxn+q6oZvQPTmYcvIxl5Th/MhnMWWdejv4X1xB++a3cS2/Hue02cc93tW+xic+T9Or/8Hy4pNkfPeu0/yNxPsN5e13IJD2Hbx6ldREIhEWL16Mrp/SaLXTopQ6pfu7e6y7XpqlS5eydOnSxM9NTU2nGGHf8Hg8/fbZQ520bfJJGyeXtG9yDcX2VUqh3nwF9c+HIBBAu+wTaBctg/Y2aKpHNdVDUwOqqZ5Icz2RF58m8Op/0T75JbQ5i3o9skHVVWE89CuYMA3/3CUETtCOx7TvkssIPfs4jRvXoZWU9d0vPIwNxe13IElm+xYUFCTlfUVcr5KaSy+9lKeffpply5b12ZCu9PR0fD4fmZmZ+Hy+RK+K2+2mubk58Tyv10tWVtZx9zc3N5OVlXXMa9xuN7FYDL/fnyg6IIQQQgxlqqEW4/8ehJ3vwKhx6J/5+nuT81MckJ3H+7+5VV0VxiP3oR66B7X+DfSrv4qW4T7uvRPPb29FvbQCteo5sNrQl38TrRcnOrWlV6Befhbjmccwfe37J32+GNpUZztq+ybYugG1czPazHPRPvElmS4g+kSvkpo5c+Zw5513smLFClJTU4957P777z+tD541axarV69m2bJlrF69mtmzZyfuv++++7jsssvw+XzU1tYyevRodF3HbrezZ88eysvLWbNmDRdffDEAM2fO5NVXX2XMmDG89dZbTJw4Uf5BhBBCDGkqFosnGs/8HXQT2qe/grbg4t4lG3lF6N/9MerlZ1FP/QXjtq+jfeLLaHOP7bVRbS2oF59Cvfo8hENos89Hu/yTPSZAx3yO04W29HLUM4+hDu1DKxl12r+vGHyUUnB4P2rrBtTW9bB/DygDXKmQW4ha9SzkFqAtuay/QxVDgKZ6Gtd1xHe+8x1KS0uZN2/ecXNqJk+efNIP+dWvfsWOHTtob28nPT2dj3/848yePZt77rmHpqYmPB4PN954Y6J35cknn+SVV15B13WuueYapk+fDsC+fft48MEHCYfDTJs2jc9//vNomkY4HOb+++/nwIEDuFwuvvWtb5Gbm9urBqipqenV8/qadB8nj7Rt8kkbJ5e0b3INhfZVsRjGz78H+3bBtLnon7oWLbN3icZx71VXHa9ktm8XTJmN/pnrQNNRLzyJWv08RKJocxagXfJxtPyik77f+9tX+Tswbv4SjJmI6ev/c1oxivf09far9mzHeOovaFkeGFGONrIcikeh2Y4vANHr91QK9fpLqH//DVqOVMotHY02eSbapJkwshzQMB68C7auR//WHWjjp/bNL3SGZPjZ4NWrpOZzn/scDz/88FmZU3O2SVIz9EjbJp+0cXJJ+ybXUGhf1VCL8YNr0a74FPplnzjz9zNiiV4bzBaIRiAWjc+3ueRjaHmFvX6vE7Wv8cxjqH//Df1/7kYrHX3G8fYFVVcdXyB06YfiB/Jn4zNDQdS6NXB4P0QiEI2gImGIRiESjre7pqPl5ENOPlpOAeQWQk4emiV+Urkvt19VfQjjZzeB1QaaDr4j76vrUFAab5eRY9BmzENzpvb8Zl3v2dEWr4636S0on4B23oVoE2egpWce/9ygH+PH34UWL/r3f4GW2/8H/ZLUDF69Gn42a9Ystm3bxpQpU5IdjxBCCCFOxhefY6qNGt8nb6fpJrQLr0BNmY3x5J/RHC60D340fnDdF+9/weWolU9j/OcfmK4bGHNrjMf/ANs2oirWoC2+FG3Z1Wh2R1I+SzXUol59DvXGSvB3gsMZTyQs1ngSabEcubbGE53Nb0N763uV6zQNMj2QV0j401+GnJP3mJ00Jl8zxn23g8WKftNP0Ty5qBYvHHwXdeBd1MF3URvWwmsvoh5/CG3xJWgXXoGWltH9e+7YhPHwvdDehvbR5fHn93BCXEtxoH/9fzDu+jbG/f+L/r2fozmcPcfd3Ih6+1W0KbOlVLg4Rq+rn/3sZz9j/PjxpKenH/PY17/+9aQEJoQQQogTU74j68ad5pCz7mi5BZi++r0+fU8AzeFEm7sY9dqLqHDohGvbnE1q5zuwbSPaZZ+AznbUK/9BbXwT/ZNfhulz+2RerjIM2LEJY9V/YNsG0HW0GfPRFl8Ko8ef9DOUvxMaalD1NVBfE7+9Zzstd92E9v2fx3txTjc2fyfGfXdAZyf6d++Kr2UEaBlZMG0O2rQ58ecpBYcPxIcivvAUatUz8XlbH/jwMcMdVSSMevIvqJVPQ34x+jdu6fX8KS07D/0r38O45xaMP/w8/lr9+PWUlGHEE8Mn/wKhAGrFX9HOvQDtik/H4xbDXq+SmuLiYoqLi5MdixBCCCF640hPDb2csD8QaJNmxieG79kGk2b2WxzKMDCe+HN8YdJLPopmsaLmLsL4ywMYv/kxTD0H/ZPXormzT+/9G+tQm9+OF1doqIG0DLRLr0JbeFGvCyxAPBFkRDnaiPeGxqnGOtRd/w/j/jvjvRqn0bOkohGM3/4Eag+jf+PWHpMPTdOgpAztS/8PdfknUc//C7XqWdSrz8WHlV38EQgGMf74C6g6GO/N+cjyU56Po42dhPbJa1H/9yDqiT+jfezzx8Zccyg+pG3fLpgwHf3Kz6LeejWejK5bg3bRlWgfWIaWYj/l9hBDR6+Smo997GPJjkMIIYQQveVrAodzcB3EjZ0EFitq28b4ZPF+ota/DpV70ZZ/KzFPRSsbi/6Du1EvP4P6998wbvtavAdg8SVoZkvP7xf0w+5tqO0b4+WKG2rjD4wah/ahT6LNnH/S9+gtLTuP9O/8L747voXx0N3o132/V9XuErEqhfrzr2HnO2jLv4k2cXrvPzuvEG35N1GXXYX67xOo115CvfZifC6O3RHvYZly/GKsvaUvvBijuhL14gqMglL0cy9ARSOo559APfcPsNnRPn9DokKfVjoKtfgS1JOPop75O2rNf+N/s3MvOGFPjxj6epXUCCGEEGLgUL7m+ByLQUSz2mDsJNS2jf0Wg4pGUCv+D4pGoM1deMxjmtmMdtGHUTPnY/ztd6h/PIT6x0PgTIXU9HiPS1oGdF2Uig9j27cLYtH4HJmxk9GWXIY2cTpa3pnPezkR65RZaB//Iuqx36P+/Te0ZVf3+rXqqb+g3noV7YpPo8+/4LQ+X8vOQ/vM11CXXoV6aQWEgmjLPo2WdnwhgFN+76u+iKqrQv3fAxiRMOqV/0DNIbRzFqBd9cXj5vNoOfloX7kJtW8Xxj//hHr0ftTLz6AtuTTe/jn5kJ4ly3wME5LUCCGEEIPNIExq4MgQtMf+gGqsQ8vOO+ufr1b/Fxrr0L95W7dn8zVPLvo3boFtG1AH90JbC6qtJX59aD+0t0DAH39y0Qi0pZejTZwBoyegWfqmR+ZktCWXxtd/+c8/UEUj0Gadd9LXGK8+h3r+X2gLLkK79ONnHkOWB+2qL57x+xzzniYT+rXfxbjr/6H++hvI9KB//Ra0qT33AGmjxqHf9FPY+CbGE4+g/vLge0UWrLZ4ctNVTS4nH23e4j7rPRMDhyQ1QgghxGDja0IrKevvKE6ZNnEGClDbNsQnzJ9FKuBHPfs4jJsCE2f0+FxN02DyLLTJs078XuEQRCNoDlcyQj0pTdPg019F1R7GePhe9NxCtOKRJ3yuMgzUutWov/0epsxG+9RXBnTPheZMRf/m7ahNb6ItvBgtpXfzhjRNg5nz0afPgeZGaKhFNdTEr+troOYQ6p2KeMGGc5cm+bcQ/UGSGiGEEGIQUZEItLUMyp4acgsgOw+1dQOc7aTmv09CRxv6R68544N6zWqL9wD0I81iQf/q9zDu/DbGA3ei/+ButNS0xOMqGEC9+Uq8OENdFYwcg/7l76CZBv58Ey0nH+2iK0/vtboJsvMgO++4OUMqFoNW3ynNQxKDR6+TmnfeeYeDBw8SDAaPuf+qq67q86CEEEII0Y2WI5XP+ric89mgaRrapBmoN1aiIuHERP1kUy3NqJUr0GafP2AW/+wLWkYW+nXfx/jZzRi/+yn6t+4AXxNq1X/ia+IEOuMV1L5wI9qsc4f9kCvNZIKsQXgyQPRKr5Kahx56iDfffJOJEydiO8UyfUIIIYToQ10Lbw7GnhqOzKt55TnYsx1OofrWmVD//jvEDLQPf+asfN7ZpI0sR/vs11F/ugfjh9+M98roOtrMc+NFC0aN6+8QhTgrepXUvPHGG/zsZz/D4xmcO1AhhBBiqFC+pviNQdhTA8DYKWC2xOfVnIWkRtUeRr2+Ml4Rqx+KE5wN+rzFGHVVqDdeRrvkY2iLPnhKa+IIMRT0KqlJTU3F6XQmOxYhhBBCnEzX8LNBOoxGs9lgzCTUtg1whtWzlK8Z9czfwWSCglK0whIoLEVzpiaeYzz5KNhsfVLxayDTP/wZGII9UUL0Vq+Smssuu4z77ruPD3/4w6Snpx/zWG5ublICE0IIIcQJ+JrB7uh1VaiBSJs8A/X4Q2dU2tmoeA31f7+BSBjMFgh0vlfGNz0LCkvQ3Dmw+W20ZVejpab39HZCiEGuV0nNH//4RwA2bjx+wazHH3+8byMSQgghRLeUtxEG+dAibdLMeFKzbSPa4ktO6bXK34H62+9Qb6+OV/T6wo3xdUh8zVBTiao+BNWVqJpDqL07wJ2DtvRDSfpNhBADRa+SGklchBBCiAFikC68eYzcQvDkxoegnUJSo3a+g/HwvdDqRbviU2gf/Nh7JYqzPJDlQZs0873nGzEwFJpZVrAQYqiT/3IhhBBiMPE1oxWW9ncUZyRe2nkmau3LvSrtrCJh1FN/Qb30NOQWot/8c7SR5Sf/HN0EsiSJEMNCt0nNnXfeyQ9+8AMAbr311m4XqrrjjjuSE5kQQgghjqGiUWjzDf6eGo4MQXv1OXh3B0yY1u3zVHMDxq9/BNWVaIsvQfvI8nixASGEOEq3Sc3ChQsTt5csWXJWghFCCCFED1p9oNSgrXx2jHGTwWyOl3buJqlR7W0Yv7oNWlvQv3nbMUPLhBDiaN0mNeedd17i9qJFi85GLEIIIYToia8RAG2wrlFzFM2WcqS080b4+BeOe1yFghi//iE0NaDf8EO0MRP7IUohxGAhI02FEEKIQUL5jqxRMwSGn0F8CBq1h1HNDcfcr6JRjN/9DA7uRf/ydyShEUKclCQ1QgghxGDha4pfD4GeGiAxnExt3ZC4TymFevR+2Loe7eqvoE2f21/hCSEGEUlqhBBCiMHC1wy2FLA7+zuSvpFXCO6ceGnnI9RTj6LeXIV2+SfRF1zcj8EJIQYTSWqEEEKIQUL5miDT3W1F0sFG0zS0yTNh1xZUJIKx8t+o559AW3Ax2uWf6O/whBCDyEnXqWlpaWHLli0cPHgQv9+Pw+FgxIgRTJkyhYyMjLMQohBCCCGAobHw5vvESzs/j3r8D6jV/4Xpc9E+fe2QSdyEEGdHt0lNVVUVjz/+ONu3b6esrIzCwkIyMjIIBAKsWbOGRx55hIkTJ3LVVVdRVFR0NmMWQgghhidvU7fljwetcVPipZ1X/xfKJ6B/6f/FF80UQohT0G1S8+CDD/KhD32I66+/HovFctzj0WiUiooKfvOb33DnnXcmNUghhBBiuFOxWHydmiFSJKCLZktBmz4PVV+D/vX/QbNY+zskIcQg1G1Sc9ddd/X8QrOZefPmMW/evD4PSgghhBDv0+oDZQy54WcA2hduRNN1GXImhDhtJ51T06WmpoaOjg5cLhcFBQXJjEkIIYQQ73eknPNQWHjz/TSTDDcTQpyZkyY1q1ev5q9//Sutra2J+9LT0/nUpz7FokWLkhmbEEIIIbq0DK2FN4UQoi/1mNRs2bKFhx56iI997GPMmTOHzMxMvF4vb7/9Ng8//DBZWVlMmTLlbMUqhBBCDFuqa+HNLElqhBDi/XpMap5//nk+8YlPcMkllyTuy83N5UMf+hBWq5XnnntOkhohhBDibPA2gdUKDld/RyKEEANOj0nNvn37+MpXvnLCx+bNm8cTTzxxxgE8++yzrFq1Ck3TKC4u5rrrriMcDnPPPffQ2NhIdnY2N9xwAy5XfCf+1FNPsWrVKnRdZ/ny5UybNg2A/fv388ADDxAOh5k+fTrLly+XCYdCCCGGDl8zZHjku00IIU5A7+nBUChEenr6CR9LT08nFAqd0Yd7vV6ef/55fvKTn/DLX/4SwzBYu3YtK1asYPLkydx3331MnjyZFStWAPG1c9auXcvdd9/ND37wAx566CEMwwDgD3/4A9deey333XcfdXV1bN68+YxiE0IIIQYS5WsacuWchRCir/SY1AAopTAM44SXvjhbZBgG4XCYWCxGOBwmMzOTiooKFi5cCMDChQupqKgAoKKigvnz52OxWMjJySEvL4+9e/fi8/kIBAKMGTMGTdNYsGBB4jVCCCHEkOBrRpMiAUIIcUI9Dj8LBoN84hOfSNqHZ2Vlcfnll/PVr34Vq9XK1KlTmTp1Kq2trWRmZgKQmZlJW1sbEO/ZKS8vP+b1Xq8Xk8mE2/3e2Su3243X601a3EIIIcTZpIwYtHqlp0YIIbrRY1Jz//33J/XDOzo6qKio4IEHHsDhcHD33XezZs2abp+vlDql+09k5cqVrFy5EoCf/OQneDz9c9bLbDb322cPddK2ySdtnFzSvsk1GNs35m2iKRbDVTICxwCPfTC272Ai7Ztc0r6DV49JTXZ29gnv71qE80xt3bqVnJwc0tLSAJgzZw579uwhPT0dn89HZmYmPp8v8bjb7aa5uTnxeq/XS1ZW1nH3Nzc3k5WVdcLPXLp0KUuXLk383NTUdMa/x+nweDz99tlDnbRt8kkbJ5e0b3INxvZVB/YA0GlJwT/AYx+M7TuYSPsmVzLbVxavT64e59SsXr36mAn3+/bt46tf/Spf+MIX+OY3v0lNTc0ZfbjH4+Hdd98lFAqhlGLr1q0UFhYya9YsVq9enYhh9uzZAMyaNYu1a9cSiURoaGigtraW0aNHk5mZid1uZ8+ePSilWLNmDbNmzTqj2IQQQogBo2uNGhl+JoQQJ9RjT82zzz7L1772tcTPv//975k8eTKXX345L7zwAn/5y1+46aabTvvDy8vLmTt3LjfddBMmk4kRI0awdOlSgsEg99xzD6tWrcLj8XDjjTcCUFxczLx587jxxhvRdZ0vfOEL6Ho8L/viF7/Igw8+SDgcZtq0aUyfPv204xJCCCEGEuU7MhpBCgUIIcQJ9ZjUNDU1UVJSkrh96NAhbrnlFlwuF5/+9Ke5/vrrzziAj3/843z84x8/5j6LxcKtt956wudfeeWVXHnllcfdP2rUKH75y1+ecTxCCCHEgONrArMFXGn9HYkQQgxIPQ4/03WdaDQKwJ49eygoKEjMpbHZbITD4eRHKIQQQgx3vmbIdMvCm0II0Y0ek5oJEybw2GOPUVlZyfPPP8/MmTMTj1VXV5ORkZHs+IQQQohhL77wpgw9E0KI7vSY1CxfvpwDBw5wyy23YLPZWLZsWeKxNWvWMHXq1GTHJ4QQQghvE5oUCRBCiG71OKcmKyuL22677YSPffrTn05KQEIIIYR4jzIMaPFKT40QQvSgx6Rm27Ztx91nMpnIzs6WhYmEEEKIs6GjFWJRKecshBA96DGp+c1vfnPcfbFYjNbWVkaPHs0NN9zQ7SKXQgghhOgDR8o5a9JTI4QQ3eoxqXnggQdOeH8oFOKvf/0rjzzySGINGSGEEEIkQdfCm1mS1AghRHd6LBTQHZvNxqc+9Sl27drV1/EIIYQQ4ijvLbwpw8+EEKI7p5XUQHxuTSwW68tYBPDi3hZW7W/t7zCEEEIMFN4mMJnBld7fkQghxIDV4/CznvznP/+hrKysL2MRwD+3NWO36Cwpky8vIYQQxIefZWSh6ad9HlIIIYa8HpOaW2+99bjVi6PRKE1NTVitVm6++eakBjfc+CMxGjojWHSNmKEw6bJytBBCDHfK1yzlnIUQ4iR6TGqWLFly3H0mkwmPx0N5eTlm82l39IgTONQSBiBiKBo6I+SnWvs5IiGEEP3O14Q2ory/oxBCiAGtx6xk0aJFZykMAVDZEkrcPtwakqRGCCGGOaVUvKTzjHn9HYoQQgxopzxA93Of+1wy4hBAZUsQqyk+5KyqLdzP0QghhOh3He0QjcjwMyGEOIlTTmqUUsmIQwAHW0KMzEwhM8VEVaskNUIIMez5GgHQpJyzEEL0SEqpDBBKKSpbQozIsFGYbqOqLXTyFwkhhBjaEmvUSE+NEEL05JSTmrvvvjsZcQx73kCUjrBBaYaN4jQrVa1h6RUTQohhTvma4jekp0YIIXrUq6Rm+fLlidsez3tni774xS/2fUTDVFeRgNIMG0XpVjojBr6gLG4qhBDDmq8ZTCZIy+jvSIQQYkDrVU3mWOz4g+toNIphGH0e0HB18KikJmrEe2iqWkNk2aVsthBCDFu+JkjPQtNN/R2JEEIMaL1afDMSiXDbbbcd81hzczNjxoxJanDDSWVLPIFJtZkoTo+Xcj7cGmZKnrOfIxNCCNFf4gtvytAzIYQ4mV4tvrl3714WL16cuF/TNNLT05k0aVJyoxtGKltClGbYAMiym7GbdSkWIIQQw523Ca2krL+jEEKIAa9Xi2+Wl5dTWFh4NuIZlqKG4nBrmKlHemU0TaMo3SplnYUQYhhTSkFLE0yd3d+hCCHEgNerCRsFBQWsXLmSN954g/b2dn7xi1+wY8cOWlpamD9/frJjHPJq2sNEDcWIIz01AMXpVjbV+vsxKiGEEP3K3wHhsJRzFkKIXuhV9bPHH3+cV155haVLl9LUFC8v6Xa7efrpp5Ma3HBR6XuvSECXojQbvkCUzrBUQBNCiGHpSDlnWXhTCCFOrldJzerVq7nppps499xz0TQNgJycHBoaGpIa3HBR2RJC10gUCAAoOnK7qk2GoAkhxLAkC28KIUSv9SqpMQyDlJSUY+4LBoPH3SdOT2VriIJUKxbTe3+OorR4r01VqxQLEEKI4ei9hTclqRFCiJPpVVIzffp0Hn30USKRCBCfvPj4448zc+bMpAY3XBxd+axLnsuCWdekp0YIIYYZ5W3CePU51KvPg6ZDemZ/hySEEANerwoFfPazn+X+++/nmmuuIRqN8tnPfpYpU6bw9a9/PdnxDXn+SIz6jghLy9KPud+kaxSkWjgsFdCEEGLAUtEoavV/Ue9uQ5s8C236PDTHqa0vppSCw/tRm9eh3lkHh/bFH8jOQ/vwZ9BMsvCmEEKcTK+SGofDwXe/+11aWlpoamrC4/GQkZGR5NCGh66k5f09NQBF6TYO+IJnOyQhhBC9oLZtwPjHn6D2MLhSURvWov7vNzBlNvqchTB5FprFcvzrwiE4fAB1aB9U7kXteCdeFEDToGws2pWfQ5t2DuQVJeaxirPvcGsIXdMoTLOe/MlCiH7Xq6SmS0ZGhiQzfezgCSqfdSlKs/LW4XbCMQOrqVcjBYUQQiSZqquKJzNb10NOPvrXfgBTz4EDe1Bvr0ZVvIaxcS3YnWgz56NNnY3yNkHlPlTl3ngSZBjxN3OlwegJaFd8Kt7Tk5bRr7+biNvZ6OfWlw8TjilGZto4vzSN80pTyXVJgiPEQNVjUnPVVVf1+GJN03jsscf6NKDhprIlSIpZI8d1/Nm84nQbhoKatjAjMqUogxBCJJPasQm1dyfkF6PlF0FuIZrlvYNY5e9APfM46pVnwWpD++hytCWXvdcbUzYWrWws6uNfgJ3voNatRlW8jnr9pfjjqelQOgpt6hy00lFQOhqyPNIbM8BUtYW489Uq3A4zF5dn8EZlO49ubuTRzY2Mcadw/og0zi1Jxe04/ntbCNF/ekxq7r333hPev27dOp5++mnptekDXUUC9BN8qRWlvVfWWZIaIYRIHlVbhfHAXRCO954riE/Sz86DgmI0dw7q7dXQ2Y523oVoyz6NlnbiCfyayQSTZqBNmoH6dAgOvgvZuZApCcxA5wtEuWNVFbqmcdviYvJTrSwb76a+I8zrle28XtnGQxsa+NOGBibnOfjyrFyK048faSGEOPt6TGry8vKO+Xnz5s08/vjj+P1+li9fzrnnnnvGAXR2dvLb3/6Ww4cPo2kaX/3qVykoKOCee+6hsbGR7OxsbrjhBlwuFwBPPfUUq1atQtd1li9fzrRp0wDYv38/DzzwAOFwmOnTp7N8+fIB/+WhlKKyJcS8ktQTPl6YZkUDqqRYgBBCJI0KhzB+91Ow2tBv/zWEAqiaw1Bbhao9BDWHUVs3wKhx6Fd9Aa1kVK/fW7PZYOyk5AUv+kwgYvCjV6toDUa588IS8lPf66XLdVn5yEQ3H5noprotzOuVbTy728eNzx/kc9OzuXRM5oA/5hBiqOvVnJqdO3fy97//naamJj7ykY+wePFidL1v5ng8/PDDTJs2jW9/+9tEo1FCoRBPPfUUkydPZtmyZaxYsYIVK1Zw9dVXU1VVxdq1a7n77rvx+Xz86Ec/4t5770XXdf7whz9w7bXXUl5ezo9//GM2b97M9OnT+yTGZPEGorSHjRPOpwGwmXVyXBYOt8laNUIIkSzq8YeguhL9+tvQsuMn87Sikcc+xzDQ+uh7Tww8UUPxs9eqOeAL8v0FRZS77d0+tzDNylWTPXxgdAa/fquWP6xvoKK6k+vn5smQNCH6UY976H379nHnnXfyq1/9ivnz53PfffdxwQUX9FlC4/f72blzJ0uWLAHAbDbjdDqpqKhg4cKFACxcuJCKigoAKioqmD9/PhaLhZycHPLy8ti7dy8+n49AIMCYMWPQNI0FCxYkXjOQVbZ0XySgS1GalWpZq0YIIZLCqHgNtea/aBddiTa5+7XXJKEZupRS/GZdHRtrO/nqOXnMLnL16nWZdjO3LCriK7Nz2dHg55v/OcAbh9qSHK0Qojs99tR8//vfx+VysXDhQlpbW3niiSeOe87Jign0pKGhgbS0NB588EEqKyspKyvjmmuuobW1lczM+FjlzMxM2triOwmv10t5eXni9VlZWXi9XkwmE263O3G/2+3G6/Wedlxny3tJTffzZYrSrGyt9xMzFCZduraFEKKvqIZa1KP3xyf4L7u6v8MR/eSxrU2s3NfKxye5+cDojFN6raZpfHBMJlPynNyztoafvVbD4pEdfGlWLk6rrC8kxNnUY1KzYMECNE2jo6ODjo6OPv/wWCzGgQMH+PznP095eTkPP/wwK1as6Pb5SqlTuv9EVq5cycqVKwH4yU9+gsfjOaWY+4rZbKYuAG6nlbLC3G6fN64wytO7fERtqeSmS7GA3jCbzf32dx0upI2TS9o3ucxmM+70NLw/+S7KZMZ9012YcvJO/kLRK4Np+31mWx2PbW3mkvE5XL+k/LTnxXg88MfSPB5Zd5g/VxxmZ1OIuy4bz9ic3vX6nIrB1L6DkbTv4NVjUvO1r30tqR/udrtxu92J3pe5c+eyYsUK0tPT8fl8ZGZm4vP5SEtLSzy/ubk58Xqv10tWVtZx9zc3N5OVlXXCz1y6dClLly5N/NzU1JSMX+2kPB4Pu+vbKE6z9BhDph4ferb1YB22wr7fOQ5FHo+n3/6uw4W0cXJJ+yaXx+Oh8Xe/RO3bhX7d9/HpFpD27jODZfvd1RjgZ6sqmZ7v5AvTMo85jjhdy8qdjM8s5eevVXPdP7dw0/kFzCjo2+/uwdK+g1Uy27egoCAp7yviuh0k3Nra2qs3aGlpOe0Pz8jIwO12U1NTA8DWrVspKipi1qxZrF69GoDVq1cze/ZsAGbNmsXatWuJRCI0NDRQW1vL6NGjyczMxG63s2fPHpRSrFmzhlmzZp12XGdD1FBUtYYZ0cN8GoCiI6UiD7dKsQAhhOgLwbdXo15+Bu2Cy9Gmz+3vcEQ/+ee2JlxWE989vwBzHw7vHuux89OLSslPtfC/r1axan/vjqeEEGem256aO+64gwkTJrBgwQJGjx59THEAwzDYu3cva9asYefOnfzyl7887QA+//nPc9999xGNRsnJyeG6665DKcU999zDqlWr8Hg83HjjjQAUFxczb948brzxRnRd5wtf+EIiri9+8Ys8+OCDhMNhpk2bNuArn1W1BIgYqsciAQCpNhPpKSaqpFiAEEKcMdXcQNuv74KSUWgfuaa/wxH9pKo1xPqaTj4x2Y3D0vdzX9wOC3ddWMKP11Rz75u1NPkjfGyiW8o+C5FEmupmQko0GmXlypW89NJLNDQ0kJOTg91uJxAI0NDQQF5eHhdeeCFLlizBbO5VZegBqauX6Gx7x6u49fnd3PPBEZRl9TxX5gcvVRIx4GcXlZ6l6AY36ZpPPmnj5JL2TQ4VjWL84vtoNYfQ/udutBwZCpIMg2H7ffDtOlbtb+WPHx5FRkryjmEiMcWv36pl9cE2LhqdwbWzc8+46M9gaN/BTIafDV7d/iebzWYuvvhiLr74Ypqamjh06BB+vx+n00lpaWm3c1ZE7+xr9qNrUJRuPelzi9JtvFbZhlJKzvIIIcTpOnwADu8n7es/oEMSmmGrNRjllQOtLC5LS2pCA2AxaXxrfj5uh5knd3jxBaP8v3MLsJm7LxEu3/VCnJ5e/Td7PB6pBNHH9jd1UpBqxWo6+doHRWlWOsMGLcEYmfbB2ysmhBD9SRtZjn7n70kZPYYOOdM9bD2/p4VwTHHFuLNzclbXND43PQePw8If1tdzy8uH+Oo5ebQGY9R3RKjrCFPfEYlfOiPEDMWcIhcLRqQxNc8pyzkI0UtyhNxP9jX7GXmS+TRdio8qFiBJjRBCnD4tQ0YZDGehqMFze3zMKnAmCvGcLZeOzSTLYebuN2r41nMHE/ebdch2Wsh1WRmVlULEULx9uJ1XDrSRnmLivJJUFoxIZ6wnRXpwhOiBHCH3A38kRk1rkEWlvSvz2DVErbotzJQ8ZzJDE0IIIYas1QfbaA3FuGJ8/yS384pT+cXFI9jnDZLjtJDrspBlNx/XGxM5J5cNNZ2sOdjGS/ta+c+eFnKcFhaMSOPz56b3S+xCDHSS1PSDw63xSmYnq3zWxW03k2LWOSwV0IQQQojTYijF0zu9jMy0MTnX0W9xlGbYTvr9bzHpzC1OZW5xKv5IjLcOd7DmYBtP7mimutPgpvk50msjxPucUlJjGAatra1kZmYmK55hobIlvuZMb5MaTdMoSrNSJWvVDDkv7m3hn9uayXVZGJFpY2SGjZGZKRSnW7H0Yr6VEEKI3tlY00lVW5gb5ucPqoTAYTGxpCydJWXpPL3Ty582NrCu1MGcotT+Dk2IAaVXSU1nZyd//OMfeeuttzCbzfzlL39h/fr17N27l0984hPJjnHIOdgSwm7RyXVZev2aonQrW+v8SYxKnG2vHmjlgbfrGJWVQjBq8MK78cmrACYtXvVuZIaNkgwbxelWitNt5DgtMmlUCCFOw9M7vbjtZs4rTevvUE7bpWMzeaWygz+ub2BanrPHKmpCDDe9Smr+8Ic/4HQ6efDBBxMLYY4ZM4ZHH31UkprTUNkSYqTbiX4KZ4qK02y8eqANfySWlIXCxNn19uF27n2zlsm5Dm5dXITVpBMzFLXtYQ74QhxsCXHAF2RrvZ9XD7YlXmfRNYrSrRSn2ShKtzIxx8GkfhxGIYQQg8F+b5At9X4+Ny0b8yA+MWTWNW5cVMY3ntjGEzua+dSU7P4OSYgBo1dJzdatW/nd7353zCKbaWlptLa2Ji2woUopRWVLiEWjT61EdlexgKrWMGM89mSEJs6Sd+o6+dnrNYzOSuH7CwsTZb1NukZRuo2idBvnH/X8znCMqrYwh1tDHG6NX+9qCrCmMp7sfPvcAhaMGLxnHoUQItme3uklxazzgfKM/g7ljM0oymBBaRpPbveyeGQ6+aknX+9OiOGgV0mNw+Ggvb39mLk0TU1NMrfmNPiCMdpDMUZ5Tq2KWVdSc7g1JEnNILa7KcBdq6soTLVy6+LiXvW6Oa0mxnrsjH3f390fifG/r1Zx35u1ZDvNjM+WHhshhHi/Jn+E1yrbuGRMJi7r0BjpcM2MbNZVd/DH9fXcsri4v8MRYkDo1WDMCy64gF/+8pds27YNpRR79uzhgQce4MILL0x2fEPOQV8QgDL3qR2A5rusZKaY+Me2ZtpCsWSEJpLsoC/IHa8cJiPFzO0XFJNqO7MvV4fFxM0LivA4zdy1upq6dqmOJ4QQ7/ef3T4UcPm4oXMi1u2w8MkpbtbXdLKuqr2/wzllsaii1RcjGlFn7TOjEUV9TYR9u4Jn7TPF2dWrnporrrgCi8XCQw89RCwW4ze/+Q1Lly7lkksuSXZ8Q87UPCcPXl7G2LxUOlp9vX6dSde4aUEht6w8zE/WVHHHkhIspsE7Lni4qWkLc9uqw6SYdH54QTFZfbSIaprNxC2LirnphYP86NUqfnpR6ZA5EymEEGfKH4nxwrstzCtOJdc1tIZpXTY2i5X7WvnjhgamJqFoQCyq8DZF8TZFicVA07ouGpoev61roJs0rFYNq03DYtWw2nSsVg3Tka+5gF/R1hKjrTVGe0uMtpYYHR0GKLClaEyeaSe/qPd/m0hEUXs4jNmiYbfr2J06NpuG9r65UrGYwtcUpakhSlN9lBZvDKVAN0HpKBtmixxDDTW9OrLSNI1LL72USy+9NNnxDHkmXaMwzUqKxUTHKb52fLaDb8zN4+61tTy4ro7r5+YNqrKUw1VjZ4RbXz6EoeDOpcV9/sVamGbl5gVF3LbqED99rZrbFhcP6omwQgjRV/69y0dnxOi3xTaTyaxrfHlWLre8fJgndzTzyTMsGmAY8d6Tpvp4EuBtimIYgAa6DsoAdQodK7oOmg6x6Hv3OZw6aRkmCkosOJwm9u8Jsf4NP/nFESbPsGNL6T4xMwzFof1hdm8LEg4dG4imQYpdw+7QsTt0QqF4QmbE4vFnZJoYNc6GJ9dMltuMySzfkUNRr5Kabdu2dfvYpEmT+iwYcXILR6ZT0x7msa3NFKZZ+ehEd3+HJHoQMxQ/fa2azojB/y4toSi9d2sTnapJuQ6+Niefe9+s5Tfr6vj6HEl4hRDD2zO7vPx9SxPzilOPm5M4VEzJc3J+aSpPHCkakHcaRQOa6iMceDdMU0OEaCR+X1qGzojR8STAnW0+pldDKYVS8QRHGfEekXBYEQ4pImFFOGQQDsXvM2IKV5qJtAwTqekmLO/rHSkstbBvV4g924M01UeZON1OUanlmO8vpRQNtVF2vBOgo80gK9vE+Cl2zGaNgN845hL0G/iaY5jN8d4YT048fotVvg+Hg14lNb/5zW+O+bmtrY1oNIrb7eb+++9PSmCie5+Y7KGmLcJfNjdSmGplXokswDVQPbGjmXebg3z3vAJGZaUk9bOWlKVT2x7mH9uaKUy1cqUkvEKIYaprkcq5xS6+fW5Bf4eTVMtn5FBR3ckfN9TzP4t6XzSguTHK7m1Bmhui2FI0CoqteHLNeHLMPfaYaJpGIucwgdmiYTvNrzdd1yifkEJekYV31vnZ/Laf6kozU2Y5cDh1Wn0xdrwToKk+itOlM+tcB3mF7yU9aRky3Fq8p1dJzQMPPHDMz4Zh8MQTT2C3D80zHwOdpml8Y14e9Z1h7l5bw13OEsrd8rcYaPZ7gzy+tYnzS1M59ywt9vbJKR5q2sP8eXMj+ZLwCiGGoSe2N/Po5kbml6Ty7XMLhvxwXLfDwicmu3lkUyMVVR3MLnL1+HxfczyZaayLJzMTp9spHWXFdIJ5ujFD8X/vNGIocDvMeBxmPA4LboeZjBRzny0GnZpm4twLXBzcG2bnlgCv/reN7FwLddURLNZ4jCNGWdFlLrHowWnNVtZ1nSuvvJKvfOUrXHbZZX0dk+gFq0nn+wuK+M4LB7lzdTW/uLgUj8PS32GJIyIxxb1v1pJqNfHl2Xln7XN1TeOb8/Jp7IxKwiuEGHb+sbWJv26Jn0y6YX5Bnx10D3SXj4sXDfj9+jrGeEaQnnL84V2rL57M1NdEsdo0JkxNoXS0DXMP80ter2zjyR1ezLpG1Dh2HotJiyc6eS4r5e4UxnjslLtTcJ/msYimaYwst5FbYGHLej8NtRHKxtoon2DDau3bIghiaDrtEkxbtmxB12Uj608ZdjP/s6iYm16o5H9freLHF5Zit8jfZCB4fGsTB1tC/GBhIWlnWLr5VFlNOt9fWMh3j2wXP79oBDkuSXiFEEOXUorHtjbx2NZmFo1I4/p5+cMmoYF40YDr5+XzPysP8aNXq/jfpSWkmHUiYUVddYTqQ2Ea66JYrBrjJqcwsvzk1b8Mpfjn9mZK0q3ce+lIOkIxmvxRmvwRmvxRmv1RmjojHG4Ls2Knl9iRnMftMDPGbWeMO4XR7hQK06xk2s3ovZzn6XDqzFngJBajx4RLiPfrVVLz1a9+9Zifw+Ew4XCYL37xi0kJSvReaYaN755fwI9ereJHrx7mg+WZTM934jrLB9LiPXuaAjyxo5klZemcU9Q/w78yUszcsqjovYT3AyU4pdSzEGIIUkrxf+808a/t8f3u1+fkDauEpstYj51vn1vA3a/V8MeX6pntTKWpPl7BzO7QGDMxhbIxtl5Pmn/7cAeHW8N8+9wCdE0jLcVMWoqZshPMDw1FDQ74QuxpDvBuU5A9zQHePPze+jlWk0a+y0peqoX8VCt5rvj1WI/9hCdjNU3D3DcrH4hhpFebzDe+8Y1jfrbZbOTn5+NwyArmA8GMAhfXnZPHI5sa+MUbNegajHHbmVngZEaBi7IsW6/PkIgzE4oa3PtmLVl2M1+cmdOvsRSn27hpQSF3rDrMz1+v4ZZFRcPyi14IMXQppXh0cyNP7vDygdHpfPWcvEH9fWcYilBQkWLXTqmCZTBg0FgXwVSt8xlzDrRp1HSGKR+dQmGJlYws0ym9n1KKf2xroiDVwrm9mJtpM+uMy7YzLvu94c6twSgHfCFq28PUtoep64hQ2x5mU20n4SPdOqlWnQ+Ny+LSsZly4k2csV4lNRMmTEh2HOIMXTg6gyVl6bzbHGRDTQcbazr565b42OL0FBPnFLr4/MwcHBbZaSTTX99ppKotzB1LigfEDnpqnpOvnpPH/W/X8fv19Xxldq6UehZCDBnPv9vCkzu8XFyewbWzcwd1QtPijfJORYC2lhgWq0aWx0Smx0yWx0xGpumYtVViMYW3MUpDXZTGugjtrQYQX8xy5GgbW4N+HjvQxCdNHia5T/0E9IaaTvb7Qnxj7un3eqWnmJmWb2ZavvOY+w2l8AaiHGoJ8dweH3/d0sSKnV4uG5fJ5WOzSJWRJuI0dZvU/PrXv+7Vwc/Xv/71Pg1InD6TriXOlHx6ajYtwSibazvZUNPJqv2tNPqj3LKoaMhXgukv2xv8/HuXjw+WZxy3E+9PF47OoKY9zJM7vBSkWofkInRCiOFnW72fP66vZ2aBky/PGrwJTSyq2L09yP7dIaw2jfFTUuhoN/A2RamvCQLxRSzTM0xkuk2EQzXUVvsxYvEFLrM8ZoqmWMnOM5OWEe+RmajsNGgR/r61iSyHmQ+Mzuh1PPFemmayHWYWjUzv899X1zQ8Dgseh4UZBS72eYP8Y1sTj29t5t87fVw6NpMPjcs8rtiBUor2sIEvEKU1GF/R06Rp6Fq8NLRJ0zDp8ffXNOjaGhJbhQbakZ8K0/p2EWwxMHSb1OTlnb2KTSI5MlLiO6RFI9OZmufg12/V8buKOq47RxZm7GuBiMF9b9aS67Lwuen9O+zsRD4zLZva9ggPb2wg12VhbrGUehZCDF4NHRF++lo1ealWvn3u4K1y1tQQYUtFgM4Og5IyKxOmpmA5qtJXKGTga4rha4ribY5SuT+MK1VRWmYlO8+CO8d8wsn0mqbxtTl5tAaj/GZdHZkp5pOWeu6ytd7P7qYA187OPSsnQUdlpfC9BUUc9AX55/ZmntjezDO7vMwrTiUYiycxvkAUbyB2XAW206Fr8NSnxvVB5GKg6Tap+djHPnY24xBJtnRUBrXtEf61vZk8l5WPyMKMfcJQipZgjL++00h9R4Q7LywZkBXodE3jhvn5/GBlhLvfqOGuC0sZ7U7uYqDi1BlGfOXsFFukv0MRYsAKRQ3uWlNF1FB8f2HhgBjqe6oiYcWOdwIc2h/G4dSZt8iJJ/f4KpU2m05eoU5eYfwxpRTZ2dk0NTWd9DPMusZ3zivkf1Ye4mevV/O/S0sY6zl5if9/bmsmM8XE0lF930vTkxGZKXznvEI+MTnEv7Y1s6mukzSbiSy7mQk5DrLsZrLsZjLtZtJTTOhoxJQipuL7zqNvGwren/4odeYJkRjYel1bIhqNUlNTQ1tb2zH3T5o0qc+DEsnx6akeGjoiPLq5kVyXhfPO0oKQQ0HUULx1uJ2a9jANHREaOyM0dEZo7IwSOXLm6IpxmUzMGbjFM2xmnR8sLOI7/z3I/66u4ucXlZLt7NtSz1FDUdceJhA18EcMAl2XqEEwYjCjwMmITEmmTqStJcbmdX5afTHWv9FJfrGFUWNsZLiHXgkgpRRGLD6kRh+kZ9iHG8NQNNVHqa2KEA4p0jJ00jJMpGeasTtObVL7mVBKcd9btRz0hfifRUUUpdnOyuf2pca6CJvX+QkGFaPG2hgzKaXXpYtPtZ3tFp1bFscrYd768mG+t6Cwx+HROxv9bKn38/kZOVhN/XOCrjjdxg3nFvTLZ4vBrVfflrt27eLuu+8mEokQCASw2+0Eg0Hcbjf3339/smMUfUTXNK6fl0eTP8Kv1tbitpsZP4APwgeS31fU88LeFgDSU0zkOC2MzEzhnCILOU4L+akWpuYNnHk03cm0m7llcTE3v1jJDc8d6LOqM0op3qrq4JGNDdR1dN/L8NK+Vn592UiZ13UUw1Ds3RViz/YgFovGtHPsRMM2dm1voeZQhCyPibKxNvIKLGiDoN0iYYMWbwxfc4xWX4xwyCAajc8biEZV/DoGKEixa8xd5CI1bfCdaR8OjJiisSFK7eEIddURImGF2Qwpdp26mkjiVLjFqsUTnAwTGVkmMjOTd0b8yR1eXq9s5zPTsplV2LvhVAOJtzHKutc7cTh1zj/PSUZW8k9aZKSYuevCEu54pYofvnKY6+fldztX5p/bmkm1mbioPCPpcQnR13r13/TnP/+ZD33oQ1x22WUsX76chx9+mH/9619YrTLRarCxmHS+t7CIm144yJ1rqvn5RaXkp8rfsSdvVLbxwt4Wlo3P4lNTPNjMA2942akozbBx14Ul/N/mxkTVmfjEzNOrOrPfG+ShDfVsawhQnG7lG3PzSLeZsVv0+MWs47Do7Gj089PXanhpbwsfHJOZhN9s8Dm6d6ag2MKkmXZsNh2Px0NxmeLQgTD794RY/4Yfh1OnbIyN4pHWky6ad7YYhqKtJUZLcwyfN0pLc4yOdiPxuDNVJ8WuY3eA2axjMmuYzPH1J0wmjQPvhnjzlQ7mLZbEZqCIxeI9MjWHw9RXR4lEFGYL5BVYyC+OT0Y3mTSiUUV7azxxbWuJXx/cF8LYA3XVNUyd3ffb6frqDv6yuZHzSlP5yITkFzwJBQ00Day2vtnnt7fGWPd6J3aHzvwlLmx99L694XZY+PGFJdy1ppp71tbi9Uf58ISsY3p+9nmDbKjp5OqpHlIG+fecGJ56ldTU1NRwySWXHHPfsmXL+NrXvsaHPvShpAQmkifNZuLWxcV854VKfvjKYX560Yizvur9YFHfEeaBt+sY407hM9Oyh0wPw8jMFG5ZXJyoOvOPbc38e5ePS8ZkcMX4LDJSTr5r8Aai/PWdRl7e10qqzcRXZufygdEZ3U7YnVecyoRsO49tbWLRyPQBOffobHl/78zM+Q4Kio89uWC2aJSNsTFytJXa6gj7d4fYtinArm0BikqtjBhtIzX97P7fKhVPYpoaojTVR/E2RonGixBhtWlkuk0UjrCSmRU/Y3/0hOcTySu0sPaVDt58pYP5i124Bmli4+80iIQV6ZmDM/5IRNFQG6GuKkJ9bYRYlHgiU2ihoNiKJzeeyBzNbNbIdJvJPGp4pGEoDh8Is3VDAH9nmHPOd2JL6Zv/8+q2MHe/UcOITBvfmJuf1OFusZji3R1B9u4KgYKcfDOFpVZyCyynvcJ9wG/w1poOdB3mLnCe1YSmi9Nq4vbFRfzqzVr+vLmR5kCUz8/ISeyz/7mtCadF5xI56SQGqV4lNQ6Hg0AggNPpJCMjg6qqKlwuF8FgMNnxiSTJT7XygwWF3PLyYX68uoofXlCMpZ/Gzw5UUUPxyzdqUMD/O69gyCQ0Rzu66sy/tjfz1A4vz+72cW5JKrkuC5lHJmV2Tc7MSDETMxR/XneYRysOETUUV4zP4mOT3LhOMoRN0zSumZHDd1+o5OmdXj4xxXOWfsuzy99p4GuKEgp1PwSn6mD4vd6ZGfYeD/w0XaOg2EpBsRVfU5QDe0Mc2h/m4N4wWdkmRoyykVdkOe6gszvRiKKzI0Znu0FHh0Fne4yAX2EyxYcRWSxa/NqqYbVqWKw6Ab9BU0OU5oYokXD893Km6hSWWnHnxA9sT2deRWq6ifmLXax9pYO1r3Qwf4kLV+rATwxiMUVzY5TG2igNdRE62uK9U8UjrUyabu+zHgplKBTJmXcUChrUVceHlXWtOm+1aRSWWMkvsuDJMaP3cpvqousapaNsZOdk8MoLtbzxcgdzFzlxOM/sb9oZjnHX6ipMusb3FxQltRehsS7C1g3xamSFpRZS7DrVlWHqa/yYzJBfZKGo1Ionx9zr4aCRsOLtNR1Ew4r5S1w4XP23jVtMOt8+t4AsewP/3uXDG4hyw/x86tojvHm4g49Pcg/KwgtCQC+Tmjlz5rBp0ybOO+88lixZwh133IHJZGLevHnJjk8k0fgcB9+cl88v3qjhV2/W8u1zCwZtnf9k+Ns7jexuCvLd8wrIdQ3tIXojMlP4f+cV8okp8aozG2s6aQ3FjnueBlhMGuGYYk6Ri+Uzck5p+OJYj515xak8tbOZi8szyLAP7knwylC0tcbXk/A2xXsugoGTzyew2k7cO3MymR4zmR4zoekGhw+EqdwbZuNbfqw2jZKRVlzpJmIRRSSqiEaOXKKKaATCIYPODoNQ8Nj4UuwadodONAIdbfEeh0jk+N/B7tDIK4wf7LpzzNgdfXNgmZpuYt4iF2++2pEYijbQEptoVOHvMGhuiCcxTQ3RxBoh7hwzJWVWwsF471tzQ5Tpcx1keU6+bStDUV8bpdUXJRRUhEOKcMggFOq6rdBNkJ1rJq/QQm6B5ZR6PpRSBAOKjvYYnW0GHe3x4YEd7QaBzngi5nDqjBgdT4yz3KY+mbdVMtLJvIUu1r3WyesrO5i70EVaxun9TQ2luGdtLbXtYX54QQk5rr4tbtIlFDTYvilA9aEITpfO3IVOsvPinzV+SgrNjVGqD0aoqQpTdTCCLUWjsNTKyHIbDmf3f5NYTFHxRicd7QZzzneSntn/+zxd0/jCzFzcDjMPb2ykNRjFZTWRYta4fKz00ojBS1M91Lh74YUXOO+883A6j50AvWvXLgKBAFOnTkXXB/fZ/Zqamn75XI/H06uSjGfDkzua+fOmRi4dk8GXZg3+Fef7om0313Zy26rDXDQ6g+vmDM81m6KGoiXYtT5ANLFWQHsoxkWTiii1R0/rfavbwnz92f1cNDqDr5wzeNo2HDLoOHJg2N5m0N4aw9ccJXqkLkKKXSPLYyYr20yWx9TjQb/ZovV49r2327BSisa6KAf3haiviR5Tw1TT4p9jNsevLVYNp8uE06XjTNXjt1P1Ew6nUSqe2ETC8YvFquFw6kndN7S1xHjz1fjwnPmLXTiTmNh0177tbTG8jVH8nQb+DiN+3WkQPqrXzenSyck3n3CNkObGKJve6iQQUIyZYKN8QsoJ/86RsMGh/WEO7A0nkguLVcNm07CmaFhtevy2TSMSVtTVRAj6FWiQ5TGRV2ghr9CC88gZ/1hU0dlh0NF2JGnpum6PETvq39RkBqfLhCtNJzXNRG7Be4s19qWu9m1vjfHW6g6iUcXs81x4ck79gP7vWxp5bGszX5qVw2Vj+34ejVKKQ/vD7HwnSCymGD3exujxKd32fMZiivqaCNWVEepr4v/8haUWRo9LOW44qFKKjW/6qTkcYfpcB0WlfXNyrC+PH9YcbOPeN2uIGrBsfBbLZwy8ddbOtmQenxUUSFW3ZOoxqbnpppuoqqpixowZLFy4kBkzZgz6JOb9JKmJ73gf2dTIip1ePj3Fw8cnD+5hQWfati2BKN987gBpNhO/uHjEoC8MkAxn2sa/XVfHi3tbuP+yMgoG4MrOAb9BU30Eb1Msfna77dgDW10HV5pOptucSGT6sqzt6bRvKGgQjagjiYyGbjr18q/9ra0lxtpXOjCZYP4SV+Kgva8d3b6xmKK2KkLlvhDexnjvpKaB3aHjcOk4nEcuLp2MLNNJY4qEFds2+ak6GCEjy8SMuY5EgtbRFuPAuyEOHwwTi0JWtomyMTZyCyw9JrlKKVp9Mepr4vNe2lrjiZAzVccwSCRGXewODVeaCVeqjivVhDMtfp1iPzull49uX3+nwdurO/B3GsyY5yC/qPf/728fbueuNdUsKUvj+j6eR9N1QmDP9iC+5hjubBOTZzlOqWBFwG+wb3eIQ/tCxGKQW2imfFwKmR4zSim2bw5yYE+ICVNTGDWu70rZ9/Xxw5a6Tp7d7eO6OXm9mk851ElSM3j1mNQAHDp0iDVr1vDGG28QiUQ477zzWLhwISNHjuyzIAzD4OabbyYrK4ubb76Zjo4O7rnnHhobG8nOzuaGG27A5YqXbnzqqadYtWoVuq6zfPlypk2bBsD+/ft54IEHCIfDTJ8+neXLl/dqByhJTZyhFPe+WcurB9q47py8QV3O8Uza1lCKO16pYkeDn19cPILSjMG3BsLZ0BeJ47X/3seMAhc3nV/Yh5Gdnlj0yByJuiiNdRHa2947e951VtuVqscPFNN0HA49qeWVB9r+4Wxq9cV7bDSNHof15BZYGD3edlrzTTweD5UH6qncH+bwgTDhkMLh0ikdZaWgyEKKQz/jeSw1h8Js2RDAMBSjx6XgbYpvX7oOhSVWRo6xnvZQJH9HjLrqCI31UcwWDVdqfLt0peo4U02nPZm9r7x/+w2HDN5e00mLL8a02XaKR558v1rVGuL//beSwjQrP/5ASZ+tmRIKHRm6uS+Mv8PAatOYMNVO0QjLaSdNoZDBwXdDHHg3TCSscOeYSUvXOfBumJHlViZOt/dpQjac9w9ngyQ1g9dJ96glJSVcffXVfPrTn2br1q2sWbOG2267jezsbBYuXNgn1c+ee+45CgsLCQQCAKxYsYLJkyezbNkyVqxYwYoVK7j66qupqqpi7dq13H333fh8Pn70ox9x7733ous6f/jDH7j22mspLy/nxz/+MZs3b2b69OlnHNtwoWsa35ibT3soxm8r6ki16cwvGX6Lc67Y6WVzbSdfPSdXEpokyrCbWTY+i8e2NrO7KdCrVa5PR9ewnK71UWKx+ET5WKxrronC2xQfcmQY8R6YrGwzRSOtZOdaSMtI7pArcbz0zPgcmz3b48OBTiQaVezeFqSpPsKMeU5S7L074FVKUVcdYcPaamoOB9A0yC20MGJUvMJXX/6tC0qsZHrMbH7bz+5tQWwpGmMnpVA6ynrGFcEcLhNlY02Uje2jYJPMatOZt9hFxWudbN0QwJNr6XF4Zmc4xp2rq7GaNW5eUHjGCY1SCl9TvOR07eEIhhHvJRs3yXFKRTa6Y7PpjJ1kZ9TYFCr3h9i/Oz63qqDY0ucJjRCie70+TaRpGlOmTGHKlCls376dBx98kL/+9a9nnNQ0NzezceNGrrzySp599lkAKioquP322wFYuHAht99+O1dffTUVFRXMnz8fi8VCTk4OeXl57N27l+zsbAKBAGPGjAFgwYIFVFRUSFJzisy6xk3nxyui/fKNWlxWE1MGwYKSfWV3U4D/29zI/JJULhqd0d/hDHlXjM/i+Xdb+POmBu5cWnLGX/xKxROYlub4XBdfc3z9jJ77oiE1LT5ROjsvPoysv89yi3hiM/u8nvc98dLBfla/0M6MuY7EpO4TUUrRUBtl19YAbS0GDpeZsZNSKCmz9johOh12h87cRU7aWw1cqfopVxMbSsxmjamz7bzyfDu7tgSYPvfEf994YYAa6jvC/OiCErKdp14YQClFwK9o9UVp9cV7tdpbDcwWKClLXjl0s0Vj1NgURoy24W2M4s7u20RZCNGzXic1zc3NvPbaa6xevRqv18ucOXNYtGjRGQfwyCOPcPXVVyd6aQBaW1vJzIxX4MjMzKStrQ0Ar9dLeXl54nlZWVl4vV5MJhNutztxv9vtxuv1nnFsw5HNrHPLoiK+91Ild62u5q4LSyjL6ruxwANVJKb41doa3A4zX5uTJ19EZ4HDYuITkz38rqKe9dWdzC46+ergylAEg4pgwCAYMAj447fjk/ZjiXLDJjNkZJkZNc5GWoYJiyW+6KPJFD+4SiwAae55wr4YuIpHWslwm9jwRidvre6kfIKNsRNTjhsW2NwYZdeWAN6mGA6nzvS5DqZMz8frbT4rcWqadtqVv4aaeA+Tjb07Q4wojx6zxk2Xx7Y2UVHdyZdn5TIx19Gr9/V3GrQ0xxOYFl98IdCufQEaZGSamDLLTmGp9ayctDCZtB6TbCFEcvSY1ASDQd5++23WrFnDzp07GT9+PB/+8IeZM2cONtuZD83ZsGED6enplJWVsX379pM+v7vpPyeZFnSMlStXsnLlSgB+8pOf4PH0z6R4s9ncb599Mh7gvo9k8JV/bOGHr1bz249PoSgjOcODkuF02vbvG6uoaY/wyysmMqJASlqeTF9tv5/KzOK5d1v56zYvH5hSmlgELhox8HnDNDeG8DaF8DWH6eiIEuiMHtfzYjJppKZbGDHKQXaujey8FDIyrYM6WRnI+4eBxOOBomKDt9Y08u6OdtpbdRZemIvDacbbFGLDW81UVfqxO0zMW5hN+fg0TCZN2jfJemrfuecZVB+sZPe2KJdeeWy1zTX7mnl8azOXjM/hs/NHn/Tkkr8zyqZ1Xt7d2YZS8eGjmW4bI0c7cGfbcHtsZLqtmIfYQr+y/SaXtO/g1WNS86UvfQmPx8OCBQu47rrrjukN6Qu7d+9m/fr1bNq0iXA4TCAQ4L777iM9PR2fz0dmZiY+n4+0tPjcDrfbTXPze2fXvF4vWVlZx93f3NxMVtaJSz8uXbqUpUuXJn7ur8l2A32inw7cuqiAm186xDef2MLPLyolbZBURTnVtm0JRvnTW4eYWeBktCs2oP8uA0Vfbb9KKa4am8nf1zXzt2f2katbaG2Jl6PtKk9stkBahgm3x0RKiY0Uu47doZNi10hx6FitR1d0imCoCIO9o3ag7x8GmvFTTbjS7GzZEGDFY5VkeczUVkWwWDTGT0lhRLkNszmCzxf/npD2Ta6Tte+YSVbeqQiwZVMthSVWYoZivy/ID1ceptydwvKpGcd8p79fLKrYvyfEuzuDGDEYMdpK8UgrqWmmo4b4RYAILa19+7sNBLL9JpcUChi8ejxKveWWWxLzVJLhU5/6FJ/61KcA2L59O8888wzXX389f/nLX1i9ejXLli1j9erVzJ49G4BZs2Zx3333cdlll+Hz+aitrWX06NHouo7dbmfPnj2Ul5ezZs0aLr744qTFPVwUpdu4ZVERP3jpED9eU80PLyjG0kcVaAaSv73TRChq8PmZUp8/maIRRVtrjPbW+FyX9tYYba3xxR4/aMoiWgW11ggej5n8IgvpmSbSM0zYk7w+ihgaikfayMgys35tJ/W1EUaPtzFqnA2rdejtswarjnCM/d4g1dEwUZvirbc7eHVzCzWdEaKGIj3F1GNhAKUUNYci7NwSIOBX5BVaGD81ZcAt1iqE6B89JjXJTGh6smzZMu655x5WrVqFx+PhxhtvBKC4uJh58+Zx4403ous6X/jCFxLr5nzxi1/kwQcfJBwOM23atEFbJKCpPr6Ylyd3YIzHHeux8815+fzijRruf7uOb83r27UC+tsBX5CX9rVw6dhMitKk2llfiUYVbS0xWrwxWr1RWnzxtV66mMyQlm4iv8hCWrqJNi3Kb7bUUeuPUNhi5fLcTJbkpcsaQeKUpKabWPiBVGKxeDlu0f8MpdhS52flvhbeOtxBxIh3wRbpVi7Ws5hicjJzrEZBmpXp+U48jhN/93mbomzfFKDFGyMtw8S0OSl4cgbG96QQYmA46To1Q91AWqfG32nw6vNtGAbMmOugoGTgLEr4+NYm/raliU9P9fDxSQN7rOmprMb+Py8fprIlxG8vL8Nlk7N9vfX+NlYqnsRUV0YS67x07VlsKRoZWSYysuKrl6dlxIePvT85jhqKNyrb+PcuH3u9QVKtOheVZ3LJmAzc3RzoDFUyvCS5pH2Ty+PxsP1gDS/vb2XVvlYa/VFcVp2FI9I4pyiVwjQrboeZjWv9NNRGWHJpWrdV6MIhgx3vBDl8IEyKXWPc5DNbU2YokO03uWT42eA1OCZJDBPbNvmBeDnTjW/5QYOC4oGR2Hx8kpvqtjB/faeJwlQr55YO/jVs3qrqYFu9n2tn50pCc5r8HTGqDkWorgzT0WagaeDOMTO60EJGlpmMLFOvS+aadY2FI9NZMCKNnY0Bnt7l5YntzTy1o5nzStO4fFwm5e7BU7BCiOEmHDNYe6idNatr2VDVigZMzXfyuek5zCl2HTesbPzUFOpr4sPJps85tsSzUorawxG2bgwQCStGj7dRPiFFSq4LIbrVq6TmzTffZN68ecfd/9ZbbzF37tw+D2o4qquOUF8djU9qHW3jrTUdbHwznuQMhMRG0zS+PjeP+o4Iv3qzlmynhTFJWjDxbIjEDB7Z2EBpuk3WpDlFoaDBzq0t7N7ejq85BsQXsps8005BsQWr7cyGjGmaxoQcBxNyHNS1h3l2t4+X9rWy+mAb5e4ULh2TyXmlqUNufldHOMYzu7w8/24LmrYXh1nDZTXFLzYTLquOy2rCpGv4wzE6IwadYQN/JJa4NusaqTYTqbb469KOXKfaTHgcZibnOrEM47VSRHLUtof577stvLy/lfZQjII0G5+e4mFxWXqP68w4XSbKxtjYuyvEyPIoGVnxQ5KA32DrBj/1NVHSM03MXWgnPVPOwQohetar4Wef+9zn+POf/3zc/cuXL+fhhx9OSmBny0AYfhaNKl59vg2zWWPBRanoukY0onhrdQct3hgz5zvIL+r/xAagNRjlOy9UEooa/OLiEae1MFqy9abr+IntzTy6uZE7lhQzLX/4LDB6OiJhhbcpSlN9lKaGKG0t8UQmNV2nsNRKYYkVhzO5CYY/EuOV/W38Z4+P6rYw6TYTF47O4OLyjNPeBmOGoqEzQkswij9s0BmJJwZdtzvDMRwWnYvLM8lxJW877wjF+PduL8/s8uGPGJxT5KIw00VjWycdYYOOUIyOcPzSGTZQQIpZw2Ex4bTqOCzxhMdu0YkaivZQjI6QQVs4RnsoRtR4bxefajOxoDSVxWXpjM5KGbZDeIb78J1mf4S69ghlWSnYT7PcccxQVFR38Py7LWyu7UTXYE5RKh8ck8HiiSV4e6hedrRIRLHqP204U3XOXeyicl+YnVsCGArGTUph5BjboC7PngzDfftNNhl+Nnj1eOqjvr4eAMMwaGhoOGY9mPr6eqzWgXGgPdi9uyNIwK+Yv8SZ2HmbLRpzFrp4e3UHG9b6mTmfAZHYpKeY+Z9FRdz0QiU/erWKn3ygBIfl5EO3DKVo6IhwsCVE5ZFLxFB8crLnrC/u6QtE+ce2ZmYXuiShOYFYVNHcGE9gmhvik/zpWgPCE1+JfdykbAzVftZiclhMXDo2Pr/mnTo/z+3x8eSOZp7c0cycIhdzi1OP6ZVwWU04LDomXUMphTcQ5VBrmMqWIJUtYSpbQhxuDRGOnficjq6B06Ljjxg8tdPLghFpXDnBTWlG3xWTaA/F+PcuL8/ujicz84pdXDXZw8jMlG6/VA2lUIrEej4no5QiFIsnOpUtIVbtb+XFva38Z08LxelWFo9MZ9HItGE3Z2m4aeyMsL3Bz7Z6P9sb/NS0xwvSmDQod9uZkudgcq6Dcdn2HiuPdYYNGjojVFR38MLeFpr9Udx2M5+c4uHCUemJ7Ug/hWTZYtEYNzmFLesDvPLfdjrbDTy5ZqbMsuN0ybBgIUTv9dhTc9VVV3X7woyMDD72sY8ds+bLYNTfPTXtrTFWv9BOUamVaXOOXz05ElG8/b4eG8NQBPwGnR0G/o73riMRhS1FIyVFx5aiYbPrpKRo2FLia3pYjlnP48xsrOngR69WMT3fybLxWYSiilDMIBQ1CMUUwahBOKpo8keobAlxqDVEMPreppbnsuCPGHSEY3xoXBafnOIhpY8qXZ3sLMuv36rl1QOt/PrSMgrS+j9RHAiiEUVDbYSaqggNNRFiMdB0yMwy4c4x48kxk+kxYzoydGkgnCms74gPeXlpX3zIy/tpgONIOd/O8HuV1zJTTJRm2CjJsFGaYSPLbsZhMeGw6jgtOk6rCZsp/r/S2Bnh37u8vLi3hWBUMbvQxUcmZDE+p3crnb9fOGZQ1x7htco2ntnlIxA1mFecyicmuxmR+V5yn8z27QjHeKOynVcOtLKzMZCY9/CV2bnkpw6P/4eBsP0mk1KKTbWdvHGonW31fuo64kmM06IzIcfBpFw7+alW9jQF2VLXyV5vEEOBRdcYl21ncq4Diym+/Td2RmjoiNLQGSEQfe//aFq+kw+WZzC70HVckn2q7asMxWsrO/B3GkycJoUATmaob7/9TXpqBq9eDT+77bbbuOOOO85GPGddfyY1jY2NrH2lg/ZWg8UfTMWWcuKD+qMTG7tDJ+A3jllVXdfB4dKxWDRCIUUoYBA7/hgPkxmcTh27S8fhNOF06jhcOg5nPAkyW7RT6uZ/bo+P31XU9/icVFv8ALI0w8aII9cl6TbsFp32UIxHNzfw4t5Wcpxmrp2dx6xCV68/vzs97ZD2eYN8+/mDXDE+i+Uzhve6NJGwor4mQm1VhIa6CEYsXqksr9BCXqGFrGxzt5NyB9KXaiRmUNcRSQzPaj9quFZ72MAwFEXp1vh2mG47rUVk20Ixntvj49ndPtpDMSZk27l8XCaZKWbQQEOj6xhMAzQNWgIxatrD1LaHqWkPU9MWpskf7VpTlPklqVw16dhkpsvZat/a9jCvHGjlud0+TLrGHUuKTxjPUDOQtt++FDUUr1e28eQOL5UtIVxWnYk5DiblOpiU46A0w3bCXj5/JMaOhgBb6jrZUu/ngC8EgNOqk+O0kO20kHPkku00U5aZQl4PCfDptG80Ev/PMFskmTmZobr9DhSS1Axep1TSuampCa/X22/r1yRDfyY1mypq2LzOz5RZdkpH9TysJRJWbN8UIBZTOFw6TpeOw2XC6Yr3whxXHjeiCAYNQkFFKGgQ9Bv4O49cOuLXJ0x8TPEvFYslnuRYrBqp6SbKx9tOOAF8vzeIP2JgM2vYzDo2U9e1jtWk9WqYzPYGPw++XUdVW5hzS1L54qxcsuynPym0ux3S9no/979dR2c4xm8+VIbTOjyHNnS0x9i9LUhdVQTDgBS7Rn6RhfwiK1keE1ov/mbD9Us1GDV4aW8LK3Z6afJHe/Uap1WnINWauOSnWhjttlPYQy/h2W7fw60hbnv5MKGYwa2Lixk7iIuA9MZQ234DEYOV+1p4eqeXRn+U4nQrV05wc35p2mkVhugIxdA0TnsfOdTad6CR9k0uSWoGr14lNU1NTdx7770cPHgQgL/85S+89dZbbN68ma985SvJjjGp+iupSXVl8q//O4jTpXPuBa6z3tWulCIcUvHha50G4ZAiGlFEwopoVBGJvPdzqy+G2aIxfkoKJSOtvTroPVWRmOKpHc38Y1szVpPGZ6Zlc1F5ximNze7y/h1SY2eEP29q4LXKdjwOM9fPy2dq3vCbSxMKGuzZHqRyXxjdBCUjrRSUWMl0m055+xvuX6pRQ7GrMUDEUIm5hkqR6IVRKt5LWZBqIdU2ONq3viPMrS8fpiUY5fsLi4b0/8hQ2X5bglH+s9vHc3t8dIQNJmTb+chENzMKnKe17+wrQ6V9Bypp3+SSpGbw6tXp8N///vdMnz6dO+64gy984QsATJkyhUcffTSpwQ1l699sJhJWTJnl6Jexw5qmxefdpOhknmQtzbaWGFs3+tmyPkDlvjCTZ9jJ9PRteU2LSePjkz2cW5rGb9fV8duKel6vbOOb8wpOu/JUOGawYqeXf21rRgGfmOzmygnuAbdKfShoEAwc6VkLxG8n7gsYxGIKwyB+OXJbGfFrk1kjJ89MXqGF7HwLlhMM3YhGFPt2h9i3O4gRg5IyK2MmpvR6/RhxPLOuMSn39ObVDFS5Lis//kApt798mB++UsV3zytgTnFqf4cluvHK/lZ+W1FPKGowp9jFh8e7GZc9tHvYhBCiJ706Mt27dy8333wzuv7eQZDD4cDv9yctsKHM1xRlz44OysbYSMsY+EOg0jJMzF/souZQhB3vBHj95Q6KR1oZPyWl23lAp6swzcoPLyjm5f2t/HF9A9f/5wBfmpXDkrL0Xid/SinePtzOQxsbqO+IMK/YxfIZOeS6BsYkaCMWry5WXxuloSZCZ4dx3HMsVi1e5MGuk2LX0U3xuVO6rqHroB25DgUNGmqjVB+KoOngyTGTV2Aht9CCLUXj0L4wu7cHCYcU+UUWxk1JwZU68Lc50T+y7GbuvLCEO145zE9eq+ab8/JZNDK9v8MSRwlEDH6/vo5V+9uYmGPnunPyKErvu6p8QggxWPUqqUlPT6euru6YbrOqqio8npOc4hfHMQzFlg1+HE4TYycNngm5mqZRWGolt8DCnh1B9u8JUVsVZuwkO6WjrImqWL2llKKj3SAUNAgHVbzAwZE5QOGQwh4ycX1BPhUtHfzfW02sq+rgujl5pPcwyTscM9hU28lLr9VRcShesnagrEMTDBg01Eaor4nSWB8hFo0nKZ5cM6Wjrdgd8eQlxR7vPTuV9lSGwtsco746Ql11fAXurRsDWKwakbAiK9vEhCl937smhqZUm4kfXlDMj1dXc8/aWvwRg0vGZPZ3WAI46Avys9drqGkLc9VkN1dN8vS6vLcQQgx1vTrKufzyy/npT3/KsmXLMAyD119/naeeeoply5YlObyhp7EuSluLweKL8zBbgv0dzikzWzQmTLVTPNLKto0Btm8K8O6OIMUjrZSOsp50XYFQ0ODQgTCH9oXxd76vh0IDqzU+LM5q1ejwGpQF7ZSZ7URqDf75by9lRTYmlTnI8sQrc4VjBptq4qVL11V1EIgapKeY+eLMHD44JhPzaXzhx2LxuUbtbTE62gw62mK0txkE/Aa6DiaThm6KX5vMR37WSQwRi0UVRkwRi8XfKxaLF3qA+KT8olIrOfkWPLndVxc7FZqu4c424842M35qCh3tBvXVEVp8MYpKreQWmKU8qjglDouJWxYX8fPXa/hdRT3+iMFHJ7r7O6xhSynFf99t4aENDbiOJJ1ThvCcJyGEOB29rn62bt06Xn75ZRobG/F4PCxdupRzzjkn2fElXX8UCmjxRhlVnktzL1dcHqiUUjTVRzm4N0xdTQQUZOeZGTHaRk6+OVEeWilFc2OMyn0haqsiKAPcOWaKSi04nDpWm55IZI4uQqBUfD0eb2OMypoQldUhnDETuqahmaHeGWZVawsdUQOXVWducSrnlqSyZGIJLT7vKf0u4ZDB7m1BGuui+DuPLZltd2i40kw4nDpKvZeoJBKXqMIwVHxomOl9SY9Jw2SCFLtOTr6FtAx9SCQYMlE1uQZK+0YNxb1v1rLmYBufnZbNR4ZIYjNQ2rc3OsIxHni7jrWH2pmR7+Sb8/PJOI2y5GfTYGrfwUjaN7mkUMDg1as9444dOzjnnHOOS2JWrVrFkiVLkhLYUJaRNTTOnGuaRnaehew8CwG/waH9IQ7tD1Pxeicpdo3SUTbMFo3KfSE62gwsFo0Ro22UjrKSmnbyeR2apuFwmnA4TRSNsHJOzMnfNzWxbk8HEw0nRVEbHzVl4xltYs5UF9YjBQDM3ayIfSJKKaoOxucKRcKK3AILBSUWXGkmUtN0nKmmPulNEWIwMusa35qXDwoe3dyIrsGHJwyNxGYw2F7v51dv1tLsj/C56dksG5/Vr1XNhBBiIOtVUvPrX/+a73znO5SVlSXue/HFF3n66aclqREA2B06YyfZKZ+QQn1NhIN7w+zeFh9el5FlYto5DgqKLZjOIEGwmHQ+OyuH80el0RqMka9ZeXdbEN/eGK/XdTB2UgoFJb2vlNbRFmPLhgDNDVEy3SamzHIMisINQpxNJl3jW/PzMVA8sqkRXdO4YnxWf4c1pNV3hPnzpkbeONROjtPMXReWSmUzIYQ4iV4lNd/85jf5xS9+wfe//32Kiop47rnneP7557ntttuSHd+Qo5SisrISt3tonu3UdY38Iiv5RVY6O2IYMUhN79tEYeRRK57n5Jqpr4mya2uAjW/52btTZ9Z8O7rZICVFO+GaOrGYYu/OIHt3hjCZNCbPjBc7GAq9Z0Ikg0nXuHF+AYaq4U8bG9A1uHycJDZ9LRAxeHJHM0/t8KJp8MnJHj48IWvAlaEXQoiBqFdJzbhx4/jyl7/Mj3/8Y+bNm0dFRQW33XabVD87DQcOHODZZ59lz549nH/++djtQ/fs28mKBvQFTdPIK7SQW2Cm+lCE3duCrHq+7shjYEvR3qss5ojP3Tm8P0xnh0FhiYWJ0+19XpZaiKHIpGt8+9wClKrmjxsa0DWNS8dKVbS+YCjF6gNtPLq5EW8gyoLSND47PZts5+mt0SWEEMNRt0lNfX39MT/n5+dz4YUX8txzz3HjjTcSi8Wor68nNzc36UEOJSNHjuT8889n7dq1HD58mA984AMUFxf3d1iDnqbFq4oVFFsIBxzU1bYQDMQrlgUDivbWGA118VLKDqfOnIVOcvLkgEGIU2HWNb59biE/f72a36+vR9fgg4Oo3LNSih0NAQxfE77WNiIxg4ihiBqKSCx+nZFiZkaBE7fj7Owf3m0O8PuKevY0BxmdlcJ3zy9gfPbQWthVCCHOhm6rn1111VW9eoPHH3+8TwM62/qj+hlAJBLhsccew+fzMWPGDObNm4fJJPM5+kJ3lUuUUkQjYDZzwmFpovek+k5yDfT2jcQUP32tmorqDr4yO3dQJDYdoRi/fruWtw539Or5IzNtzCxwMbPAyViPvc/Xg4kZin9ub+bxrU2kp5j57LRsFo1MGxKFAAb69jvYSfsml1Q/G7x6XdJ5qOqvpMbj8VBbW8trr73Gtm3byMnJ4aKLLiIzc+AfHAx0ssNPPmnj5BoM7RuJGfx4TTUbajqZVeDki7NyyU+19ndYJ7Sz0c8vX6/BF4zy6anZXDChiPa2Fiy6hlnX4tem+HVte4T1NR1sqOlkZ4OfmAKnVWd6vpPp+U4m5zrIdZ3Z71nfEebuN2rZ1RRg4Yg0rp2di9M6dE5qDYbtdzCT9k0uSWoGr5MmNYZh8M1vfpO7774bi2XoDdfpz6Sm659m3759vPzyy0SjURYuXMiECRNk0voZkB1+8kkbJ9dgad+ooXh2t5e/b2kmZig+MjGLKye4B8zEdkMpntzu5a9bGslxWvh/5xVQ7rb3un07wzHeqetkQ00nG6o78AVjAOS6LEzOdTAl18HkPCdZ9t6tG6OUYvXBNn67rh5Ng6/MzmXhyPQz+h0HosGy/Q5W0r7JJUnN4HXSPbGu6+i6TjgcHpJJzUAwatQocnNzefHFF3n55ZepqqriggsuwGwe2AusCSGGN7OusWy8m/NL03hkYyOPbW3mlQNtfHFmDucUpfZrbL5AlHvW1vBOnZ/zSlO57py8U+4NcVpNzC9JY35JGkopDreF2Vrn5526Tt483M7Kfa0AFKVZmZzrYIzHzhhPCgWp1uOGkXWEY/xuXT1rKtuYkG3nW/Pzz7jHRwghxHt6NfzshRdeYP369Xz4wx8mKyvrmF6EwV4oYCD01HQxDIP169fz1ltvUVxczCWXXILNZuuX+AYzOYuVfNLGyTVY23dLXSe/q6inqi3M7EInX5yZS14/DEnbVNvJPWtrCEQMvjQrlwtHpR/zvdUX7RszFAd8IbbUd7K1zs+OxgDBqAHEh6uVZ6XEkxy3HZMOD75dhzcQ5ZNTPFw5wd3nc3QGksG6/Q4W0r7JJT01g1evkpqeigZIoYDT09M/zc6dO1m5ciVut5srrrgCp9N5lqMb3AbTDt8wDNra2nA4HFitp37wp5Tql6GKg6mNB6PB3L7vH5I2LttOQaqV/FQL+alWClKt5KVasJr6ZohazFBUt4c56AtR2RJivzfIxtpOStKtfOe8Qkoyjj8xlIz2jRmK6rYwe5oD7GkKsqc5QGVLCOPIN2x+qoUb5xcwxjN0y/h3Gczb72Ag7ZtcktQMXr0a3zTYE5fBZvz48djtdp577jn++c9/csUVV0gBgSGmra2N7du3s2PHDjo7OwFISUkhLS2N1NRU0tLSErdjsRidnZ10dnbS0dFxzG2TycSMGTOYOnWqDA8VA8LRQ9L+ua2Z/b4gbx5upy0USzxHA9wOM5l2M0rF577EjlwbKp4gAKSY9fjFomM369gtGnazjs2s4wtEOdgS4nBrmOiR55s0KEqzsWx8Fp+a4jmrc3tMukZJho2SDBtLR8XvC0YN9nmDNHREmFucit0yMOYaCTGYRaNRqqqqcLlcZGZmSuVYkSDVzwZgT02Xuro6/v3vfwPwoQ99iLy8vLMR2qA3UM9ixWIxDhw4wLZt2zh06BCaplFaWkpZWRnBYJC2tjba29tpa2ujra2NWCx2zOt1XcflcuF0OnE6nbhcLlpaWjh48CBOp5M5c+YwYcIEdD35B04DtY3fzzAMgsEgSqnEBUjc1jSN1NTUAVeYY7C076noCMWo7QhT0xamtj1CbXuYlmAUk66ha6BrGrqmYdJJzEcJRQ0CUYNgxCAYNQh0XUcNUq0mRmSmMCLDxohMGyMybBSmWbH0ogdoKLbvQCLtm1zDtX2j0Sjbt29n/fr1iZOBJpMJj8dDdnY2OTk5ZGdn43a7MZlMBAIB2tvbj7m0tbURDAb56Ec/2u3nSE/N4NWrnppYLMYLL7zAjh07aG9vP+axO+64IymBCcjLy+NjH/sYTz/9NE8++SSXXHIJI0aM6O+wxClqbW1l27Zt7Ny5E7/fj8vlSiQgqaknnkytlCIQCNDW1obZbMbpdJKSknLCg+/q6mreeOMNVq1axaZNm5g3bx6jRo3qlwP1rqThbH52NBqlvb2dlpYWWltbE5eWlhba2towDKPH12dnZ7No0SLy8/PPUsTDk8tmotxmp9w99IdfCSHilFKEw2GCwSChUChx3XU7NTWVgoKCbr8L4fhkpqCggMWLFxOJRGhsbKShoYF3332Xbdu2Ae8VuIpGo8e8j8ViSYyEiMVi0sMzBPWqp+ZPf/oT27ZtY+nSpfz973/nk5/8JC+++CLz58/n4x//+NmIM2kGck9Nl87OTp5++mm8Xi/z589n2rRpZ+Vs/GA1EM5iKaWora1l06ZN7N+/H4ARI0YwadIkSktL+/zvp5Ri//79vPnmm3i9XnJzc5k3bx5FRUVJ2Va62lgphc/no7q6OnEJBAKkpaWRnp5Oenr6Mbe7Kil2fakdfTsajaLrOiaT6ZiL2WxG0zSCwSCdnZ34/f5jrsPh8DGxWSwW0tPTycjIID09HZfLha7riUTr6OtwOMyGDRvo7Oxk4sSJzJ8/H7u9/w+6B8I2PJRJ+yaXtG9yDeT27ezspKamhtraWmpqamhqajrpiSUgkdx0XbKysojFYuzYsYP169fT0dFBfn4+c+fOpaio6LgTZ0op2traaGxspLGxkWg0SmpqaiKJSU1NxWaz9eqEm/TUDF69SmquvfZa7rzzTjweD9dccw2PPPII1dXV/P73vx/0PTWDIakBCIVCvPjiixw4cID8/HyWLl0q82y60Z87/Fgsxt69e9m8eTP19fXYbDYmTZrElClTejwT1VcMw2DXrl289dZbdHR0YLFYyMnJIS8vj9zcXPLy8nC5XMe9LhQKJXo3WltbCQaDWCwWrFYrFoslcbFarZhMJvx+P7t376ampoZAIACAw+GgsLCQ1NRU2traEj0m7086TkTTNMxmM4ZhHDfs7mhdvVZOpxOHw5G4drlciSTGbrefUk9ROBxm3bp1bN68GYvFwvz585k4ceIZJYOxWIxYLJZIpo5OqnpjIB+0DAXSvskl7ZtcA6l9W1tbOXz4MDU1NdTU1NDW1gbE99Vd3zt2u52UlBRsNhspKSmJ21arlZaWFmpra6murqampga/3w+AzWbDbDbT2dlJfn4+c+bMobi4+KyMApCkZvDq1fCzcDiM2+0GwGq1EgqFKCws5ODBg8mMTRzFZrNx2WWXsWvXLtasWcPf/vY35s6dy/Tp06XXZgAIBoNs376dd955h46ODjIyMli0aBHjx48/qxP4dV1nwoQJjBkzhr1791JXV0ddXR2bNm1KnC1zOp3k5eVhNpuPSWKOZjabj+u6f7/U1FRKS0spLCyksLCQ9PT0E37hBIPBRIKjlMJmsyW+0LquLRZL4rVKqURy03UxDIOUlJTTqhB3MlarlfPOO4/x48fz6quv8sorr7Bjxw4WLVp00pL1hmHQ2tpKc3Mzzc3NeL1empubaWlpOe7spKZpaJqGyWQiJSWF/Px88vPzKSgowO12y/+xEGLAU0pRX1/PgQMH2L9/P83NzQDY7XYKCgqYMmUKBQUFZGdn92p4V05ODjk5OUydOhWlFK2trYkEKRAIMGXKFEpKSgbcvEcxMPUqqSksLGTfvn2MHj2asrIy/vnPf2K328nKykp2fOIomqYxfvx4SkpKeOWVV3jjjTfYu3cvS5cuTSSd4uwIh8OJ7vXq6mrq6+uJxWIUFRWxePFiRowY0a87YbPZzLhx4xg3bhwQH5Pc2NhIfX099fX11NXVYRgGGRkZjB49OjE8LCMjg7S0NKxWK0opIpEIkUiEcDicuI5Go4wePfqkSU+XrjNzvV3TquvA/2yPd3a73Vx55ZXs2bOH1157jccff5yRI0diNpsTidXR15FIhJaWlmN6ltLS0nC73ZSVlZGSkoJhGCiliMViiWTNMAw6Ojqorq5mz549QHzIXFeCk5+fL/tW0aei0WiiJ7alpQWfz0dnZ2dieKfFYsFsNh9z+0TDQLtuK6WIRqOJ/UPXJRqNYhgGkyZNIjU1VRL1IaKr2tj+/fs5cOAAnZ2daJpGQUEB559/PqWlpWRmZp7xd56maWRkZJCRkcGECRP6KHoxnPRq+NnevXvRdZ2ysjJqa2v54x//SCAQ4DOf+Qzjx48/G3EmzWAZfvZ+Sin27NnD6tWrCYfDzJkzh5kzZ8qXCKfXttFolI0bN+Lz+bBarYlL15Arq9WKYRjU1dVRXV2dmE+iaRo5OTkUFBQwbtw4srOzk/RbDSwDafhDMoRCId5++20OHDiQmHRqMpmOuW02m8nMzMTtdpOVlUVWVtYp9coppWhvbz9m/HnXWU+Px8PMmTMpLy+X/+kkGIrbr1KKjo4OfD5f4tKVxHQNCerSNWTTMIxEMtKVpPRm/kN3unojDcPA6XQyduxYxo0bh8fjOdNfTxylr7ff+vp6du/eTSAQSMx17Lp0/ayUwmKxUFpaysiRIxkxYsSAmH+YDDL8bPDq15LOTU1NPPDAA7S0tKBpGkuXLuWSSy6ho6ODe+65h8bGRrKzs7nhhhsS8wCeeuopVq1aha7rLF++nGnTpgGwf/9+HnjgAcLhMNOnT2f58uW9OmswWJOaLn6/n1deeYV9+/aRmppKZmZmYnKcy+U65tps7lXH3KB3qm1bW1vLypUr8fl8pKamJnokTvTlbjKZyMvLo7CwkIKCAvLy8pIyJGqgG4oHhQNBKBSisrKSTZs2UV9fT2ZmJuecc44kN31sMG+/7x/yeHQCE4lEEs+zWCxkZmYmznwffdtmO35B0qPfPxKJHDP88+hLNBpF07REj47Vak308JhMJmKxGE1NTVRUVFBZWYlhGLjdbsaNG8fYsWNPOKdPnJq+2n5rampYt24dhw4dwmw2JxaB7hoafPQw4fz8fIqKiobFcYQkNYNXj0nNjh07TvoGZ9JF2LUzLisrIxAIcPPNN/Od73yHV199FZfLxbJly1ixYgUdHR1cffXVVFVVce+993LXXXfh8/n40Y9+xL333ouu63zve99j+fLllJeX8+Mf/5gPfvCDTJ8+/aQxDPakpsvevXvZtWsXHR0dtLe3JyZvd9F1neLiYsaMGUNZWVmPX2oQ/2Krra1l//79hEIhRo4cSUlJSZ/ND/H7/TQ0NCSqY/XlUKPetm0kEuHNN99k8+bNpKamcsEFF1BSUpJ4PBaLJc5WdZ3B7Kp/P9wN5oPCwSArK4t169bx9ttv09zc3GNy01X+u6OjA13Xsdvt2O32HpOgWCxGe3s7ra2ttLW10dnZid1ux+VyJdZCcjgcvUqklFKJynRdi8N2Xfv9fpxOJ9nZ2Xg8Htxu94BYJLa32+/RBTTa2tpwOBzk5eX1yVCbnnStr+T3+2lra0vM1epKYt4/5DEjI4OsrKxE8pKZmYnT6ey3IbBd7RsIBHj33XfZtWsXdXV1AEyePJlFixbJHIkzcCb7X6UUhw8fpqKigurqaux2O9OnT2fy5MknPS4YLiSpGbx6TLnvuOMO0tLSeszMf/Ob35z2h3ftfCE+yaywsBCv10tFRQW33347AAsXLuT222/n6quvpqKigvnz5x9T0Wnv3r1kZ2cTCAQYM2YMAAsWLKCioqJXSc1QMXr0aEaPHp34ORqNJhKcjo4Ompqa2Lt3Ly+99BK6rjNixAjGjBnDyJEjEwcZ4XCYQ4cOsX//fg4ePEgwGETXdcxmMzt27MBsNlNSUsKoUaNOq+vZMAwOHTrE9u3bOXDgQKInRNf1xHyOrm0iIyMDTdOOq2vfdTGZTIlqV13Xp3IGqbq6mpUrV9La2srkyZM599xzj+txMZlMiQNEIc4mXdcZPXo0o0aNYt++fbz99tu88MILrFu3jrKyskTi0PX/faKKcSkpKYnt1+FwYDKZEovPdXR0nDQGTdMSi7xaLJZjztQffR0Oh0/4+V2fXVVVxdatWxPvmZGRgcfjwePxJHo9+7MXKhaL0dLSgtfrTZxo60pk3l9Ao4vVaiUvLy9x6arw1FvBYPCY4WHt7e34/f7EJRAI8P7zjS6XC7fbTUlJCW63G7fbTWZm5oBIErtjt9uZMmUKU6ZMoaWlhQ0bNrB161by8vIG/dD1wUYpxcGDB1m3bh319fU4nU4WLFjAxIkTB/Q2JMSp6PEocObMmezdu5eZM2eycOFCysvLkxZIQ0MDBw4cYPTo0bS2tiaSnczMzMR4YK/Xe0wMWVlZeL1eTCbTMRPl3W43Xq/3hJ+zcuVKVq5cCcBPfvKTfhvrazabz/pnK6Woqqpi27ZtbNu2jf3792OxWBgzZgyRSIT9+/cTjUax2+2JsdCjR4/GbDZz8OBBdu3axc6dO9m/fz+6rlNaWsq4cePIzc1N9LicaOfY2trKxo0b2bhxI62trTgcDubOncuYMWMSdeWbm5tpamri0KFDPZb07SoJGYlEEqUfIX6w1DVJ2+12H3Mwd/Rtq9XK66+/zttvv01mZibXXHMNZWVlSWnvoaw/tt/h5Oj2zc7O5pxzzmHnzp28+uqrbNy4kbS0NNLS0iguLj5mPSClFJ2dncddukprp6enM2rUqGNOHnQNWQ0Gg4lS3G1tbYlLa2srkUgkUWL1/Rer1XrMWhBd110nGZRStLS0UFdXR21tLfX19dTW1vLuu+8C8Wp8EydOZPLkyRQXF5+0h6lrXltXQYZTOeMfiUTYtWsX77zzDvX19TQ2NuLz+RInWI7ejxQVFSXmSrndbjIyMmhra6OqqorDhw9TVVVFRUVFIvnoKifeNWynq2xtV7u1tLQkeluO3nfpup4YJux2uyktLT2mxywtLY2cnBxSUlJObSPqRyfaP3g8nkRCvnr1aiZMmCAFbk7Tyfa/wWCQhoaGxMKUXZf29nYyMjK4/PLLmT59+rAYSnY65Ptt8DrpnJqOjg5ef/111qxZg9/vZ8GCBSxYsKBP/+DBYJDbbruNK6+8kjlz5iTWwumyfPlyHn74Yf74xz8yZswYFixYAMR7iaZPn47H4+Hvf/87t9xyCwA7d+7k6aef5uabbz7pZw+V4WenSilFTU0Ne/bsYd++fZjNZsrKyhg5ciQFBQXdDrFSStHQ0MC+ffvYv3//cclj1wTUrnk9Pp+PyspKAEpKSpg4cSJlZWXdvr9hGInV4TVNSxwUdF2OPuAJBoOJksRdZzxbWlro6OjA7/cfd6bzaNOmTWPevHlyhuo09ff2O9T11L6GYQyJ+TWhUIjDhw+zZ88eDhw4QCwWw+VyMWbMGMaMGUN2djZ+vz+RDNXV1SWqDHbJy8vjnHPOobS0tMfkJhgMsnXrVjZv3kwgEEj0DnclLVlZWYlE71T2CeFwmIaGBurq6vB6vcdMrD76dtfE+RPNcenr4bcDQU/bb3t7O3/729/IyMjgox/96JD73c+G97ev3++nsrKSgwcPUlNTQ2dnZ+KxowuadA1BlzbvmQw/G7xOmqa7XC4uvvhiLr74Ympqavjvf//LN77xDW6//XbGjh17xgFEo1F++ctfcv755zNnzhwgfsbL5/ORmZmJz+cjLS0NiPfAdFUHgnjPTddZtKPvb25ulpKoJ6FpWmJ9kcWLF5/S63Jzc8nNzWX+/PmJM7ldQ2G6Ll6vl8rKSmw2G7Nnz2bChAmkp6ef9P27DjZ689yUlJTE8I+jeTweGhsbCYfDiaFrwWAwcekauijEYDQUEhqI97p2DZsNh8Ps37+fPXv2sHnzZjZu3IjNZiMUCgHx3zk7O5vJkycnhnsdOnSI9evX8+9//5vc3FzOOeec40qpt7e3s3nzZrZt20YkEqG0tJQZM2YwZcoUfD7fGf8OVquVoqIiioqKun2OUgql1JD5u52p1NRUFi9ezH//+18qKiqYO3duf4c06HTNee1KZBoaGoD4ScXi4uJERUa3201aWprMXxLDRq/6HpVSvPPOO6xevZpt27Zx/vnn93rNiZO9729/+1sKCwu57LLLEvfPmjWL1atXs2zZMlavXs3s2bMT9993331cdtll+Hw+amtrGT16dGJy7J49eygvL2fNmjVcfPHFZxyfOLmuYTAn0tVT0h871KN7eYQQA5vVak2sqxQMBhMLx2ZlZZGfn092dvZxQ2UmT57MhAkT2LlzJ+vXr+eZZ54hJyeHc845h/T0dDZu3Mju3btRSjFmzBhmzJiRKLl+Ns9Ud5U5Fu8ZM2YMlZWVVFRUUFJSMqzPXp9oDbG2trbj1g2yWCxYLBZ0XaexsZFAIICmaeTl5TFv3jxKS0vJzs6WbU0Maz0OPzt06BCrV69m7dq1FBUVsXDhQs4555w+K2G7a9cubr311mNWi/3kJz9JeXk599xzD01NTXg8Hm688cZEGcgnn3ySV155BV3XueaaaxLFAPbt28eDDz5IOBxm2rRpfP7znx8WJZ3F8aRtk0/aOLmkfU9NLBZj165dVFRUJOZgms1mJk6cyPTp04878SLtm1y9ad9wOMzf/vY3lFJ86lOfGjYnoAzD4ODBg1RWVlJXV0dzc3NiTpfT6SQvL4+MjIxEae2udYSOXk+oazmBkpKSQTXXarCQ4WeDV49JzVVXXUVBQQHnnXdeYuL++y1ZsiRpwZ0NktQMPdK2ySdtnFzSvqcnFouxZ88eAoEA48eP77YimbRvcvW2fWtra/nXv/7FmDFjuOiii7p9XtcitWazmZSUlMSlqwhDF6VUYi5T17Djo38+elHJrvu7yvUrpTAM45jbSikcDgfZ2dlnXJY8GAyyY8cOtmzZQltbG1arNTGUu+vS2zV8ZPtNLklqBq8eh5+NHz8eTdPYtm1bt88Z7EmNEEKIocFkMkmp4EEkPz+fOXPm8NZbbyWqaUI8OfF6vYmCNF1zRk7EbDZjs9mIxWKEQqEeC8RAfFHSrgUmrVbrMcO6dF1H07TEbYgnVLt37z6uLHlXktNVaCI9Pf2Eo0Oam5t555132LVrF9FolMLCQs477zzKyspknpUQfazHpKZrrRghhBBCiL42a9YsKisrefXVV7FYLNTW1rJv3z5aW1uBeIW7c889l5KSEpRSxxV+6SoG05XcHF1S22q1Jnp0upKY00kklFK0tbXR1NREY2MjTU1N1NXVsWfPnsRzuqqMdSU5DoeD3bt3U1VVhclkYty4cUyZMiUxr0sI0fekSLkQQggh+oWu61x00UX87W9/4z//+Q+6rlNUVMSMGTMoKyvD6XT2d4hompaoyjlq1KjE/aFQCK/Xm7g0NzdTXV3N7t27gXilt3PPPZcJEybIIs5CnAWS1AghhBCi36SlpbFs2TLa2tooLS0dNEUDbDYb+fn55OfnH3N/KBSivb2drKwsGWImxFkkSY0QQggh+tWJ1hwbrGQ5ASH6h5xCEEIIIYQQQgxq3fbU1NfX9+oN+mIRTiGEEEIIIYQ4Xd0mNddff32v3uDxxx/vs2CEEEIIIYQQ4lR1m9RIsiKEEEIIIYQYDGROjRBCCCGEEGJQ61X1s1gsxgsvvMCOHTtob28/5rE77rgjKYEJIYQQQgghRG/0qqfmz3/+MytXrmTChAns37+fOXPm0NraysSJE5MdnxBCCCGEEEL0SFNKqZM96dprr+XOO+/E4/FwzTXX8Mgjj1BdXc3vf/976akRQgghhBBC9Kte9dSEw2HcbjcAVquVUChEYWEhBw8eTGZsQ9rNN9/c3yEMWdK2ySdtnFzSvskl7Ztc0r7JJe2bXNK+g1ev5tQUFhayb98+Ro8eTVlZGf/85z+x2+1kZWUlOz4hhBBCCCGE6FGvemquueYadD3+1M997nMcOHCADRs28OUvfzmpwQkhhBBCCCHEyfSqp8bj8ZCRkQFAfn4+t9xyCwAtLS3JimvIW7p0aX+HMGRJ2yaftHFySfsml7Rvckn7Jpe0b3JJ+w5evSoU8LnPfY4///nPx92/fPn/b+/eQqL62jCAP6NTZlkxOZV5COxgZee0VNSM6qLTRaRkUVF5iMoKCpEC0wiMpLSiFIOiQsUMzO6ibkLRyqIuPKXiEZPInJk0HUv3zPouyvnq/9V8mntOf58fCCK6eN/H5eCavfbaB3Hnzh2LFEZERERERDQcw9p+9rt1j16vN21JIyIiIiIishWz28+OHDkC4PvpZ0OfD+nt7UVoaKjlKnMwXV1dyMrKwufPn6FQKLBx40Zs2bIFvb29uHLlCj59+oTp06fj5MmTcHNzw5cvX5CZmYnGxkasW7cOsbGxprHOnTsHnU6H8ePHAwCSk5MxdepUW7Vmc3JmK0kSbt++jdraWigUCuzatQvBwcE27M4+yJVxf38/UlJSTONqtVqEh4fjwIEDNurMPsg5h8vKylBcXAyFQgGVSoXjx49jypQpNuzO9uTM9/nz53j48CGMRiNWrVqFvXv32rAz+zDSfCsrK5Gfnw9JkqBUKrFv3z4sWbIEANDc3IysrCwMDAxg5cqVOHjwIBQKhY07tC058y0oKEBpaSl6e3uRm5tr487sg1z5fvv2DZmZmfj48SOcnJwQEBCAPXv22Lo9+pkwo6amRlRXV4s9e/aImpqaXz46OjrM/eiYo9VqRVNTkxBCCL1eL06cOCHa29tFbm6uKC4uFkIIUVxcLHJzc4UQQvT394t3796JJ0+eiFu3bv0yVmpqqmhsbLRq/fZMzmwLCwtFQUGBEEIIg8Eguru7rdeIHZMz458lJSWJmpoai9dv7+TKV5IkERsba5q3ubm5orCw0LrN2CG58u3p6RGHDx825Xv9+nVRWVlp3Wbs0EjzbW5uFhqNRgghRFtbmzh06JBprNOnT4v6+nphNBpFWlqaePv2rXWbsUNy5ltfXy+0Wq3Yu3evdZuwY3Ll+/XrV1FVVSWEEGJwcFCcPXuW89fOmN0/5u/vj8WLF+P27dvw9/f/5cPT09Na6y6HoFKpMGfOHACAq6srvLy8oNVq8fr1a0RERAAAIiIi8Pr1awDAhAkTsHDhQtPVGPozObN99uwZtm/fDgBwcnIa8+9wD7HE/P3w4QN6enqwaNEiyzdg5+TKVwgBIQS+ffsGIQT0ej2P1od8+X78+BGenp6m14Vly5ahoqLCip3Yp5Hm6+vra5qXPj4+GBwcxODgIHQ6Hfr7++Hn5weFQoG1a9eafmYskytfAPDz84NKpbJBF/ZLrnxdXFxMV8SUSiV8fX2h0Whs0BH9ybBOP3N2dsaDBw9QWloKnU4HlUqFtWvXYseOHVAqhzXEmNLZ2YmWlhbMmzcP3d3dphcYlUqFnp6eYY2RnZ0NJycnBAUFITIycsxfnh8ymmz7+voAAIWFhaitrcXMmTMRExNjOtmPvpNj/gJAeXk5QkJCOHf/YTT5KpVKxMfHIzExES4uLpg1axbi4uKsUbbDGE2+Hh4e6OjoQGdnJ9zd3fHq1StIkmSNsh3GSPOtqKiAr68vxo0bB61Wa3qQNwC4u7tDq9VarXZHMJp86f+TK9++vj68efMGW7ZssUrdNDzDutM/Ly8PVVVViI+Px6VLlxAfH4/q6mrk5eVZuj6H8/XrV2RkZODAgQOYOHHiX41x4sQJZGRk4Pz586irq0NpaanMVTqm0WZrMBig0WiwYMECpKenw8/Pj3uO/0GO+TukvLwcYWFhMlX27zDafCVJwtOnT5Geno6bN29i9uzZKC4utkCljmm0+bq5uSEuLg5Xr15FSkoKZsyYAWdnZwtU6phGmm97ezvy8/MRHx8P4PeHDtF/jTZfMk+ufA0GA65du4bNmzdj5syZliqX/sKwFjUvX75EUlISli9fDk9PTyxfvhyJiYl48eKFpetzKJIkISMjA+Hh4QgKCgIATJ06FTqdDgCg0+mGtd1p6LKnq6srwsLC0NjYaLmiHYQc2U6ePBkuLi5Ys2YNACA4OBgtLS2WLdyByDV/AaC1tRVGo9F0yZ/kybe1tRXA9ysKCoUCISEhaGhosGjdjkKu+RsYGIgLFy4gLS0Nnp6emDVrlkXrdhQjzVej0eDy5ctISEiAh4cHgO9XZn7erqPRaLh98gc58qU/kzPfmzdvwsPDA1u3brVeAzQsf32kM/1KCIGcnBx4eXlh27Ztpq8HBgaipKQEAFBSUoLVq1ebHcdgMJgugUqShDdv3sDHx8dyhTsAubJVKBQICAhAbW0tAKC6uhre3t6WK9yByJXxkPLycp6O+BO58p02bRrev39veo2orKyEl5eX5Qp3EHLO3+7ubgDfT/h88uQJ1q9fb5miHchI8+3r68PFixexe/duLFy40PT9KpUKrq6uaGhogBACpaWlCAwMtG4zdkiufOn35Mz3/v370Ov1Y/5ET3tl9uGbZWVlCAsLw927d9HY2IioqCio1Wp0dXWhqKgIc+fO5S/2h7q6OqSkpGD27Nmmewh2796N+fPn48qVK+jq6oJarcapU6fg5uYGAEhISIBer4ckSZg0aRKSk5OhVquRmpoKg8EAo9GIpUuXYv/+/WP6mUByZevt7Y1Pnz7hxo0b6Ovrw5QpU3D06FGo1WpbtmcX5MwYAI4dO4YzZ87wH+4f5Mz36dOnePz4MZydnaFWq5GQkIDJkyfbsj2bkzPfq1evoq2tDQAQFRXFxTlGnm9RUREePXr0yzvcQ48maGpqQnZ2NgYGBrBixQrExMSM+fvu5Mw3Ly8PZWVlpvuf169fj507d9qqNbsgV76SJOHIkSPw8vIy3U++adMmbNiwwSZ90f8yu6jZv38/7t27B0mSUFRU9MsfSmhoKCIjI3lzGhERERER2ZTZo8uG1jtKpRLR0dGIjo62SlFERERERETDZXZRYzQaUV1dbXaAoTO7iYiIiIiIbMHsomZwcBA5OTl/PChAoVDgxo0bFimMiIiIiIhoOMwuaiZMmMBFCxERERER2bWxe6QWERERERH9K5hd1PD5NEREREREZO/MHulMRERERERk77j9jIiIiIiIHBoXNURERERE5NC4qCEiIiIiIofGRQ0RERERETk0LmqIiIiIiMih/QcGhcA/yMZPagAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(2,1, figsize=(12,8), sharex=True)\n", "\n", "labels = [i for i in etf['Asset_Class'].unique()]\n", "ax[0].plot(assetclass_ts[assetclass_ts.columns[:4]], label=labels) \n", "ax[1].plot(assetclass_ts[assetclass_ts.columns[4:]])\n", "\n", "ax[0].set_ylabel('Month return in USD')\n", "ax[1].set_ylabel('Total Market Value (Net-USD) in millions')\n", "\n", "ax[0].set_title('Month return')\n", "ax[1].set_title('Total Market Value (Net)')\n", "\n", "plt.suptitle('Overview of select portfolios by asset class\\n over the period of 2015 to 2022', fontsize=18)\n", "plt.figlegend()\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "5123ff81", "metadata": {}, "source": [ "For more information on matplotlib, refer to this link : https://matplotlib.org/3.0.3/gallery/" ] }, { "cell_type": "code", "execution_count": null, "id": "2cd2b799", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.12" } }, "nbformat": 4, "nbformat_minor": 5 }