Rotman

INTRO TO R PROGRAMMING

R Tutorial (RSM456) - Session 4

Binomial Logistic Regression

- let Y be a binary outcome variable (i.e., a binary categorical variable)
- e.g. $\mathrm{Y}=\{0,1\}=\{$ fail, pass $\}, \mathrm{Y}=\{0,1\}=\{$ down, up $\}$, etc.
- Let $p=\operatorname{prob}(Y=1) ; \frac{p}{1-p}$ is then the odds of being 1
- The category of $Y=0$ is a reference category
- Reference category is relative as you can set $p=\operatorname{prob}(Y=0)$
- Binary logistic regression models the logit-transformed probability as a linear function of the predictor variables
- Coefficients ($\beta_{0} \ldots \beta_{k}$) are estimated using maximum likelihood method

$$
\operatorname{logit}(p)=\log \left(\frac{p}{1-p}\right)=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}
$$

From Log Odds to Probability to Prediction

- Let $z_{i}=\operatorname{logit}\left(p_{i}\right)=\log \left(\frac{p_{i}}{1-p_{i}}\right)=\beta_{0}+\beta_{1} x_{1, i}+\cdots+\beta_{k} x_{k, i}$.
- Then, $p_{i}=\frac{e^{z_{i}}}{1+e^{z_{i}}}$
- Note $0<p_{i}<1$
- Threshold prob
- It's a hyper-parameter

Interpret the Coefficients Estimated - 1

- An example: predict (or explain) if a student is in an honors class
- Outcome variable: hon = \{1-Yes, 0-No\}. Set No to be the reference category.
- Predictors are math score, female (1-yes, 0-no), and reading score

$$
\operatorname{logit}(p)=\beta_{0}+\beta_{1} \text { math }+\beta_{2} \text { female }+\beta_{3} \text { read }
$$

Interpret the Coefficients Estimated - 2

$$
\operatorname{logit}(p)=\beta_{0}+\beta_{1} \text { math }+\beta_{2} \text { female }+\beta_{3} \text { read }
$$

Call:

```
glm(formula = hon ~ math + female + read, family = binomial, data = df)
```

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) -11.77025 1.71068 -6.880 5.97e-12 ***
math
0.12296
$0.03128 \quad 3.9318 .44 \mathrm{e}-05{ }^{* * *}$
female1
read
0.97995
0.42163
2.324
0.0201 *
0.05906
0.02655
2.22
0.0261 *

Signif. codes: $0{ }^{r * * * \prime} 0.001^{r * * \prime} 0.01^{r * \prime} 0.05^{\prime} \cdot 0.1$ ' 1

Ref: https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-how-do-i-interpret-odds-ratios-in-logistic-regression/

Logistic Regression in R - Stock Market Ex.

- Import the smarket.csv data
- Prepare the data for logistic regression
- Convert categorical variables to factor type (Y, and any predictors X)
- Split data into training and test set
- Perform a logistic regression analysis
- glm(formula, data, family = binomial) and predict()
- Construct confusion matrix and calculate accuracy rate

