
INTRO TO R PROGRAMMING
R Tutorial (RSM358) – Part 1 / Session 1 & 2

September 20, 2022 Prepared by Jay Cao / TDMDAL

Website: https://tdmdal.github.io/r-intro-2022-fall/

https://www.rotman.utoronto.ca/FacultyAndResearch/EducationCentres/TDMDAL/
https://tdmdal.github.io/r-intro-2022-fall/

Plan for Session 1 & 2

• Intro to Intro (today)
• What is R and what can R do?
• Setup R
• R learning road map and resources

• Get started with an example: Weighted Dice (today)
• Let’s code together!

• Take Stock & more (next week)
• Expression and assignment
• Basic data structures
• Basic programming structures & functions
• Turn ideas into code

What’s R?

• R = a language + an eco-system
• A free and open-source programming language

• An eco-system of many high-quality user-contributed libraries/packages

• In the past R is mostly known for its statistical analysis toolkits

• Nowadays R is capable of (and very good at) many other tasks
• Tools that cover the whole data analysis workflow

• Tools for web technology (e.g., web scraping, web app/dashboard
development, etc.)

• Many more…

What can R do – Statistics & related

• Statistics & Econometrics
• Regressions
• Time series analysis
• Bayesian inference
• Survival analysis
• …

• Numerical Mathematics
• Optimization
• Solver
• Differential equations
• …

• Finance
• Portfolio management

• Risk management

• Option pricing

• …

• Machine learning
• …

• see R Task View for more

https://cran.r-project.org/web/views/NumericalMathematics.html
https://cran.r-project.org/web/views/Finance.html
https://cran.r-project.org/web/views/MachineLearning.html
https://cran.r-project.org/web/views/

What can R do – Graphics (static ones)

…

Ref: 1) https://www.r-graph-gallery.com/
2) https://timogrossenbacher.ch/2016/12/beautiful-thematic-maps-with-ggplot2-only/;

https://r-graph-gallery.com/
https://timogrossenbacher.ch/2016/12/beautiful-thematic-maps-with-ggplot2-only/

What can R do – Graphics (dynamic ones)

https://plot.ly/r/3d-surface-plots/; https://gganimate.com/;

https://plot.ly/r/3d-surface-plots/
https://gganimate.com/

Setup R (Install R & its Coding Environment)

• R & RStudio on your computer
• Install R (https://www.r-project.org/)
• Install RStudio (https://rstudio.com/products/rstudio/download/)

• R & Notebook in the Cloud (run R without installation)
• Option 1: Google Colab (https://colab.to/r)
• Option 2: UofT JupyterHub Notebook (https://jupyter.utoronto.ca/hub/login)

• R & RStudio in the Cloud (run R without installation)
• Option 1: RStudio Cloud (https://rstudio.cloud/)
• Option 2: UofT JupyterHub RStudio (https://jupyter.utoronto.ca/hub/login)

Our Choice

Our Choice

https://www.r-project.org/
https://rstudio.com/products/rstudio/download/
https://colab.to/r
https://jupyter.utoronto.ca/hub/login
https://rstudio.cloud/
https://jupyter.utoronto.ca/hub/login

R Learning Road Map (From Zero to Hero)

• Step 1. Basic R programming skills (Beginner)
• Data and programming structure; how to turn an idea into code;
• Book: Hands-On Programming with R

• Step 2. R Data Science skills (Intermediate)
• Data wrangling, basic modeling, and visualization/reporting; Best practice;
• Book: R for Data Science

• Step 3. Take your R Skill to the next level
• Book: Advanced R

Ref. For other free R books, check bookdown.org often

https://rstudio-education.github.io/hopr/
https://r4ds.had.co.nz/
https://adv-r.hadley.nz/
https://bookdown.org/

Weighted Dice - Let’s Get Started

• Goal: Simulate dice rolls and plot the distribution of the result

• Can handle difference kind of dice and the dice can be unfair
• 4 faces (), 6 faces (), 8 faces (), etc.

• Can handle multiple rolls as one simulation
• sum over the numbers rolled as 1 simulation result

• For example: a 6-face dice, 2 rolls as 1 simulation
• 1st roll: 4; 2nd roll: 6; result for this simulation is 4 + 6 = 10

Ref. https://en.wikipedia.org/wiki/Dice

https://en.wikipedia.org/wiki/Dice

Weighted Dice – Let’s Code Together

• Learning by doing
• Follow what I code

• I will ask you to code variations of what I do too

• While working towards the weighted dice,
• Get comfortable with RStudio

• Learn some basic concepts of R

Plan for Session 1 & 2

• Intro to Intro (today)
• What is R and what can R do?
• Setup R
• R learning road map and resources

• Get started with an example: Weighted Dice (today)
• Let’s code together!

• Take Stock & more (next week)
• Expression and assignment
• Basic data structures
• Basic programming structures & functions
• Turn ideas into code

Expression and Assignment

expression

2 + sqrt(4) + log(exp(2)) + 2^2

assignment

x <- 3

y <- (pi == 3.14)

R Data Structure - Overview

Homogeneous Heterogeneous

1-d Atomic vector List

2-d Matrix Data frame

n-d Array

http://adv-r.had.co.nz/Data-structures.html

http://adv-r.had.co.nz/Data-structures.html

R Data Structure - Overview

Homogeneous Heterogeneous

1-d Atomic vector List

2-d Matrix Data frame

n-d Array

http://adv-r.had.co.nz/Data-structures.html

http://adv-r.had.co.nz/Data-structures.html

Atomic Vectors

create R vectors

vec_character <- c("Hello,", "World!")

vec_integer <- c(1L, 2L, 3L)

vec_double <- c(1.1, 2.2, 3.3)

vec_logical <- c(TRUE, TRUE, FALSE)

Hello, World!

1 2 3

1.1 2.2 3.3

TRUE TRUE FALSE

List

create an R list

l1 <- list(

1:3,

"a",

c(TRUE, FALSE, TRUE),

c(2.3, 5.9)

)

ref. https://adv-r.hadley.nz/vectors-chap.html#list-creating

https://adv-r.hadley.nz/vectors-chap.html#list-creating

Data Frame

create a data frame

df1 <- data.frame(

x = 1:3,

y = letters[1:3],

z = c(1.1, 2.2, 3.3)

)

x y z

1 "a" 1.1

2 "b" 2.2

3 "c" 3.3

Data Frame

create a data frame

df1 <- data.frame(

x = 1:3,

y = letters[1:3],

z = c(1.1, 2.2, 3.3)

)

x y z

1 "a" 1.1

2 "b" 2.2

3 "c" 3.3

Data Frame

create a data frame

df1 <- data.frame(

x = 1:3,

y = letters[1:3],

z = c(1.1, 2.2, 3.3)

)

x y z

1 "a" 1.1

2 "b" 2.2

3 "c" 3.3

A Cousin to Data Frame - Tibble

load tibble library (part of tidyverse lib)

library(tibble)

create a tibble

tb1 <- tibble(

x = 1:3,

y = letters[1:3],

z = c(1.1, 2.2, 3.3)

)

x y z

1 "a" 1.1

2 "b" 2.2

3 "c" 3.3

https://r4ds.had.co.nz/tibbles.html#tibbles-vs.data.frame

https://r4ds.had.co.nz/tibbles.html#tibbles-vs.data.frame

Programming Structure: Control Flows

Sequential

• Example: Sum of Squares

𝑡=1

3

𝑡2

sum of squares

t <- 1:3

y <- sum(t^2)

print(y)

Sequential

• Example: Sum of Squares

𝑡=1

3

𝑡2

sum of squares

t <- 1:3

y <- sum(t^2)

print(y)

1 2 3t

Sequential

• Example: Sum of Squares

𝑡=1

3

𝑡2

sum of squares

t <- 1:3

y <- sum(t^2)

print(y)

1 2 3t

1 4 9t^2

14sum(t^2)

Programming Structure: Functions

• What’s a function
• a logical block of code
• input -> output

• Why write functions
• Reusability
• Abstraction
• Maintainability

• Example: σ𝑡=1
𝒏 𝑡2

sum of squares from 1 to n

ss <- function(n) {

t <- 1:n

sum(t^2)

}

calling the ss() function

print(ss(2))

print(ss(3))

Conditional (if…else…)

if (cond) {

run here if cond is TRUE

} else {

run here if cond is FALSE

}

y greater than 10?

if (y > 10) {

print("greater than 10")

} else {

print("less or equal to 10")

}

Conditional (if…else…)

if (cond) {

run here if cond is TRUE

} else {

run here if cond is FALSE

}

y greater than 10?

if (y > 10) {

print("greater than 10")

} else {

print("less or equal to 10")

}

y>10?

“great…” “less…”

T F

Conditional (if…else if…else…)

if (cond1) {

run here if cond1 is TRUE

} else if (cond2) {

run here if cond1 is FALSE but cond2 is TRUE

} else {

run here if neither cond1 nor cond2 is TRUE

}

Iteration

for (var in seq) {

do something

}

while (cond) {

do something if cond is TRUE

}

sum of squares

t <- 1:3

y <- 0

for (x in t) {

y <- y + x^2

}

print(y)

Programming Structure: Functions

• What’s a function
• a logical block of code
• input -> output

• Why write functions
• Reusability
• Abstraction
• Maintainability

• Example: σ𝑡=1
𝒏 𝑡2

sum of squares from 1 to n

ss <- function(n) {

t <- 1:n

sum(t^2)

}

calling the ss() function

print(ss(2))

print(ss(3))

Programming Structure: Functions

• What’s a function
• a logical block of code
• input -> output

• Why write functions
• Reusability
• Abstraction
• Maintainability

• Example: σ𝑡=1
𝒏 𝑡2

sum of squares from 1 to n

ss <- function(n) {

t <- 1:n

sum(t^2) # return(sum(t^2))

}

calling the ss() function

print(ss(2))

print(ss(3))

Turn Ideas into Code

• Solve problems using code: three main ingredients
• Data Structure (vector, list, data frame, etc.)
• Programming Structure (sequential, conditional, iterative)
• Algorithm (sorting, searching, optimization, etc.)
• Design to bind the above 3 together (functions, classes, design patterns…)

• Examples
• Generate and solve Sudoku puzzles
• Implement and backtest a trading rule/algorithm
• Import, manipulate, and model data

• For us, in most cases, we solve problems by
• Using other people’s algorithm implementations (i.e., functions from R packages)
• Simple design to combine algorithms, data & programming structures to model data (slightly

easier, but still need practices to write good code.)

