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A Brief Overview of Machine Learning
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Traditional Programming vs. Machine Learning
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Machine Learning: Learning by Example
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Write a program with explicit rules:

if email contains “V!agr@”
then mark as spam

else if email contains ..
then mark as spam

else if email contains ..
then mark as spam

otherwise mark as not-spam

MAN VS.

Write a program to “learn” from
labelled examples by changing itself:

labelled emails
(spam, not-spam)

change self to

until satisfied with error

unlabeled emails



Programming without Humans (ML as Software 2.0)?

Program space

It turns out that a large portion of real- Software 1.0
world problems have the property that it is
significantly easier to collect the data than
to explicitly write the program.

Software 2.0
{3 Software 2.0 m

Y Andrej Karpathy

Software 2.0, Andrej Karpathy, https://medium.com/@karpathy/software-2-0-a64152b37¢35
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Artificial Intelligence
ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

Artificial Intelligence:
- Academic discipline that attempts to build machines

that mimic human cognitive functions such as MACHINE LEARNING
"learning" and "problem solving” Algorithms whose performance improve
as they are exposed to more data over time
- Symbolic Al (“Good Old-Fashioned Al” - GOFAI)
- Logic, Search, Simulation, Expert Systems lElA)IEfI?NG
Subset of machine learning in
- Statistical Learning (“Learning from Data”) ““a':tgn%l’taso‘:fdamm‘
- Machine Learning, Deep Learning, Statistical
Inference
. Examples: e
- Forecasting model, Scheduling a timetable, Roomba .

Vacuum, Computer Chess, Nest Thermostat
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What Can Neural Networks Do?




Which one are real vs. Al-generated? (Al Face Generation) Rotman

https://arxiv.org/pdf/1812.04948.pdf



Self Driving Cars Rotman

Source: https://www.techiexpert.com/tesla-using-artificial-intelligence-big-data/



Al vs. Doctors Rotman

9 e '.ﬂ' Follow .\3:' v
¥ @AndrewYNg o J
Should radiologists be worried about their Al can detect skin cancer better than

jobs? Breaking news: We can now diagnose doctors now
pneumonia from chest X-rays better than
radiologists. stanfordmigroup.github.io
/projects/chexn...

3:20 PM - 15 Nov 2017 from Mountain View, CA

1,436 Retweets 2,387 Likes e 3 ) 1"‘3} “+ D ‘, e

PTI | May 29, 2018, 11.58 AM IST

QO 112 Tl 1.4 Q 24

Source:

https://economictimes.indiatimes.com/magazines/panache/ai-can-detect-skin-cancer-better-than-doctors-now/articleshow/64365380.cms
http://www.sciencemag.org/news/2017/04/self-taught-artificial-intelligence-beats-doctors-predicting-heart-attacks
https://venturebeat.com/2019/03/21/nyu-open-sources-breast-cancer-screening-model-trained-on-over-200000-mammography-exams



https://economictimes.indiatimes.com/magazines/panache/ai-can-detect-skin-cancer-better-than-doctors-now/articleshow/64365380.cms
http://www.sciencemag.org/news/2017/04/self-taught-artificial-intelligence-beats-doctors-predicting-heart-attacks
https://venturebeat.com/2019/03/21/nyu-open-sources-breast-cancer-screening-model-trained-on-over-200000-mammography-exams/

Al Art: Deep Dreaming Rotman

Source: https://deepdreamgenerator.com/



Al Conversation Bots (Google's Duplex) Rotman

“Depending on what service she would like.
What service is she looking for?”

https://www.youtube.com/watch?v=NOO0-5Mulvew



Al Making You Dance Rotman

Source Video

Saurce to Terget 1 Result Source 1o Target 2 R“t

https://youtu.be/PCBTZh41Ris
https://arxiv.org/pdf/1808.07371.pdf



Human-Level Language Comprehension

Seed Human Written Text:

In a shocking finding, scientist discovered a herd of
unicorns living in a remote, previously unexplored
valley, in the Andes Mountains. Even more surprising to
the researchers was the fact that the unicorns spoke
perfect English.

Machine Generated Text Examples:

The scientist named the population, after
their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were
previously unknown to science.

https://openai.com/blog/better-language-models/

Rotman

Question and Answer Passage:

The 2008 Summer Olympics torch relay was run from
March 24 until August 8, 2008, prior to the 2008 Summer
Olympics, with the theme of “one world, one dream”.

Machine Generated Answers:

Q: What was the theme?
A: “one world, one dream™.

Q: What was the length of the race’?
A: 137,000 km

Q: Was it Llarger than previous ones?
A: No

Q: Where did the race begin?
A: Olympia, Greece

Q: Is there anything notable about that place?
A: birthplace of Olympic Games



How Did We Get Here?




Massive Growth in Computing Power...

Rotman
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Source: http://content.time.com/time/interactive/0%2C31813%2C2048601%2C00.html



And Massive Growth in Data...

Data Growth

Problem - Tradlifional and Legacy Storage Designed for Transactional, Not Unstructured Data

120 -
100 -
30 - Unstructured
8 data growth of
=
5 60-80%
ﬁ 0 1 per year
* creates
40 - Web-scale
storage needs
20 A .
0 ‘1—'—'—'—'—7—7—!—|

2003 2010 2011 2012 2013 2014 2015 2016 2017
*1 exabyte = 1,000 petabytes =1 million terabytes = 1 billion gigabytes = SourceiDC

https://www.dubber.net/unlocking-unstructured-data-voice-processing-power-zoe/

Rotman



And Some Research... Rotman

1950 2006
27 Comp.uting 1974 1985 1986 . Deep
¢++  Machinery 1960 Backpropaga Boltzmann Restricted 1997 Boltzmann
1940 and ADALINE tion 1980 Machine Boltzmann 1990  LSTMs Machines 2014
Dark Era Intelligence Widrow & Werbos (and  Neocogitron Hinton & Machine  LeNet Hochreiter & Salakhutdinov GANs
Until 1940 Alan Turing Hoff more) Fukushima Sejnowski Smolensky  Lecun Schmidhuber & Hinton Goodfellow
? b ? )
! )}
1943 1958 1969 1980 1982 1986 1986 1997 2006 2012 2017
Neural Nets Perceptron ~ XOR problem Self Hopfield Multilayer RNNs Bidirectional Deep Belief Dropout Capsule
McCulloch & Rosenblatt Minsky &  Organizing Network  Perceptron Jordan RNN Networks- Hinton  Networks
Pitt Papert Map John Hopfield Rumelhart, Schuster & pretraining Sabour, Frosst,
Kohonen Hinton & Paliwal Hinton Hinton
Williams
Made by Favio Vézquez

https://towardsdatascience.com/a-weird-introduction-to-deep-learning-7828803693b0



Why Are Neural Networks So Good?




Manual Feature Engineering

20

Original Gaussian Blur Sharmpen Edge Detection
0 0 0 1 1 2 1 0 -1 0 -1 -1 -1
0 1 0 16 2 4 2 —1 5 —1 -1 8 —1
0 0 0 1 2 1 0 -1 0 -1 -1 -1

Source: https://santexgroup.com/blog/tag/tensor-flow/

Rotman




Automatic Feature “Learning”

Elephants

ASN Y
NZR7L =
A 04NN

=[1S11ms

Source: https://stats.stackexchange.com/questions/146413/why-convolutional-neural-networks-belong-to-deep-learning

21
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Automatic Feature “Learning”
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Neural Networks are Scalable Rotman

Number of Parameters Inception-vé
80 1 .
Inception-v3 ‘ ? © ResNet-152
Linear Regression < 100 ResNet-50 i VGG-16 VGG-19
751 ResNet-101
ResNet-34
LeNet (1998) 60K %70- ) Resnet 18
8 GoogleNet
AlexNet (2012) 60M P R
% © BnN-NIN
VGG-16 (2014) 138M © 60 SM  35M  65M  95M  125M 155M
X BN-AlexNet
Inception-v3 (2015) 23M 55’ AlexNet
ReSNet_152 (2015) 6OM 500 5 10 15 20 25 30 35 40

Operations [G-Ops])

Source: https://www.kdnuggets.com/2016/11/intuitive-explanation-convolutional-neural-networks.html/3
“AN ANALYSIS OF DEEP NEURAL NETWORK MODELS FOR PRACTICAL APPLICATIONS”, https://arxiv.org/pdf/1605.07678.pdf

23



Neural Networks as
Function Approximators




Functions and Machine Learning

A function f maps each element in the domain (X) to a single element in the
range (Y). Most functions we see are real-valued functions, e.g.:

e f(x)=2x*+3

N g(xo'xl) — eax0+[3x1+C

Data = (X,Y) can be thought of as™:
* Inputs X (i.e. features, regressors, covariates etc.)

* Qutputs Y (i.e. observations, response variables, labels etc.)

One useful way to think about machine learning is as function approximation:

* Finding a function that “fits” the data according to some mathematical

objective function

* This is only one (of many) ways to view ML; there are many lenses to understand it

(e.g. probabilistically, algorithmically, optimization etc.)
25

Rotman
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Approximating the data using a line of best fit



What Makes a Good Function Approximator: Linear? Rotman

26

v

Response

Variable Yy = f(X) — ﬁlx + ,80
t

Parameters

2 parameters (1, Bo) provide limited flexibility

1 feature (aka covariate, independent variable,
predictor, regressor)

1 response variable (aka output, dependent variable)
Linear models are rigid (not much flexibility)

>

250
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=50

Features

—— Linear Regression
data

0 20 40 60 80 100



More Complex Linear Function? Rotman

y = f(x) = B3x® + Box* + B1x + By

250 —— Linear Regression
—— Linear Regression++
* 4 parameters (B3, f2, £1, Bo) 200 data

* 3 features (x3,x2,x) where each feature is a function

of our original covariate
* Need to use intuition to come up with right features .. 100
(transformations of raw data observations)

150

50

=50

0 20 40 60 80 100

27



How about a Neural Network? (Definitions)

Define a non-linear (“activation”) function:

ReLU(x) = max(0, x) (element-wise)

Define a "hidden layer” function:

Hpq(x) = ReLU(Wx + b) = ReLU(

Wi1 Wld]

Wni *° Wna

28

Rotman



How about a Neural Network? Rotman

5 hidden layer neural network with 500 hidden units:

y = f(x) = (Hy500) ° (H500500) © (H500,500) © (H500,500) © (H500,500) © (H500,1) ()

= H1 500 (Hsoo,soo (Hsoo,soo (Hsoo,soo (Hsoo,soo (H500'1(x))))> )

250 —— Linear Regression
* 1M+ parameters (each w;;’s in each W matrix is a — Linear Regression++
200  —— Neural Network
parameter) data
« 1 features (x) 150
* No need for any feature engineering . 100
50
0
-50

0 20 40 60 80 100

29



Basics of Feed Forward Neural Networks

aka Multi-Layer Perceptrons, Feed Forward Neural Networks, Deep Feedforward Networks,
ense Neural Networks, Fully Connected Neural Networks)




Demo: Neural Network Playground

31

Rotman

DATA

Which dataset do
you want to use?

Ratio of training to
test data: 50%
—e

Noise: 0
[

Batch size: 10
—e

REGENERATE

4]

Epoch

000,115

FEATURES

Which properties do
you want to feed in?

\ ;
\ D , The outputs are

Learning rate Activation Regularization Regularization rate Problem type
0.03 v Tanh - None i 0 - Classification .
+ — 2 HIDDEN LAYERS OUTPUT
Test loss 0.006
Y = LY = Training loss 0.006
4 neurons 2 neurons

mixed with varying
waights, shown by

e the thickness of
the lines.

This is the output

from one neuron.

Hover to see it 0
larger.

Colors shows -
data, neuronand | u
1

weight values.

[ Showtestdata [] Discretize output

https://playground.tensorflow.org/



https://playground.tensorflow.org/

The Anatomy of a Perceptron (aka neurons) Rotman

Inputs Weights

* Inputs (x;): input features (or outputs from previous
layers)

*  Weights (w;): Learnable real-valued parameters (this is x, 4@
akin to learning the "slope" and "intercept" of a line)

e Sum (X): Summation of product of weights and inputs i ®\

* Activation Function (a): Non-linear function mapping z
to a (usually monotonic and continuous)

* Bias (b): "Intercept" for the perceptron (can be
implemented by making one input constant)

Activation
function

o ———

X1

+ b) =o(WTx +b)

Xn

fx) = a(z wix; + b) = a([wl Wy

32



What Makes a Perceptron Special?

33

10

08

0.6

04

0.2

0.0

sigmoid

-4 -2 0

sigmoid(x) =

1+e*

100

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

Activation Functions

tanh

-4 )

tanh(x) =

1+e2*

-1

RelLU

-4 -2 0 2 4

ReLU(x) = max(0, x)

* Non-linear function allows perceptron to learn "interesting" functions

* The more perceptrons you have, the more "interesting" functions you can learn

Rotman



A Very Simple Neural Network Rotman

* Input Layer: represents input features

* Hidden Layer: represents perceptrons in any
non-input/non-output layers

* Output Layer: represents perceptrons used
to generate final output(s) (for now just the
identify function)

Input

Hidden Output
w-1-1-1
T w2-l-1

.y ]

Name | Value

Inputs 2

Parameters (1-241) + (1:1+41) =3+42=5 x

Hidden Layers 1 f(x) =y, =1d (W2,1,1 ‘0 ([W1,1,1 W1,1,2] [xﬂ + b1,1) + b2,1)
Output Layers 1 =wy-o(wix+by,)+ by,

Depth 2

Width (2,1,1]

34



Adding More Perceptrons Rotman

F@ =11

Wi1,1 Wip21 b1,1
Wa11 W221 W231 X1 by 1
=1Id co| |Wi12 Wiz2 + |bi2| | +
Wa12 Wi22 W32 X b, ,»
W113 Wi2;3 by 5 ’
= Wz 'U(W1x+ bl) +b2
Hidden

Name | Value

Inputs 2

Parameters (3-:2+3) + (2:3+2) =17
Hidden Layers 1

Output Layers 1

Depth 2

Width [2,3,2]

35



Adding More Layers... Rotman

f@ =151
= W4_'O'(W3 'O'(Wz -J(W1x+b1)+b2)+b3) +b4

Hidden Hidden Hidden
Value

| t Output
Inputs 3 neu vl

:3+4) + (4-4+4) +
“4+4) + (3-4+43) =71

Parameters (4
(4
Hidden Layers 3
Output Layers 1
Depth 4
Width (3,4,4,4, 3]

36



A “Deep” Neural Network...

Inputs

Parameters

Hidden Layers
Output Layers
Depth
Width

37

5

(10-5+10) + 9-(10-10+10) +
(5-10+5) = 1105

10
1
11

(5, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 5]

Hidden Hidden Hidden Hidden

"0/ N \\;/

<7

N0l g
\ i WAL
¥ ; ¥
\

2 i
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NN NN ,; D\
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//, IA’A& \
A\
5

2N

Y
i
Ala

Rotman

Hidden

“Deep” = Many of Layers (definition of deep changes as deeper

networks are built)



How Do We Define the Output Perceptrons? Rotman

* QOutput neurons model the “y” values (or labels)
* Activation function should match your response
variable

* Considerations: Hidden Output
* Regression vs Classification problem ‘ w111
* Range of output variable \ w-2-1-1
* Loss function (see this later) w-1-2-1
* Discrete vs. Continuous . /

Input

e We'll look at 4 common activation functions for
output units:

* |dentity
* RelU
* Sigmoid

e Softmax

38



Output Units (Linear, Positive Real-Valued) Rotman

8 |
6 - —
T 7 3
2 - i
0 2
Py _
4 _ 1
6 |- _
8 I I -3 -2 -1 0 1 2 3
8 6 4 2 0 2 4 6 8
Linear Output (Identity Activation Function) Positive-Valued Output
* Real-valued output (y € [—o0, 00]) * Real-valued output (y € [0, o])
* Appropriate for general regression problems * Appropriate for general regression problems

y=WTh+b y = ReLU(WTh + b)

39



Output Units (Binary, Categorical)

1 —

05

D

Binary Probability Output

* Real-valued output (y € [0,1])

* Appropriate for binary classification problems
* Qutput variable is probability of “1” label

y = sigmoid(WTh + b)

40

Rotman
[ y1
y2
0.8 V3
0.6
04
0.2 \
0.0 —
-10 -5 0 5 10

Softmax (Multinomial/Categorical Probability) Output

Categorical Probability (y; € [0,1],;y; = 1)
Appropriate when output labels are categorical labels
(e.g. Red, Green Blue, Yellow)

N output variables corresponding to a probability
distribution across N categories

Z=WTh+b Vi =




Example: A Neural Network for the XOR Function Rotman

XOR Truth Table XOR Function
x x
Lol P
0 0 0
0 1 1 0.8
1 0 1
1 1 0
0.6 y
X - 9
* XORis a basic logic binary operation 0.4 s 1
e XORis not linearly separable (can’t draw a line to
separate 0/1 classes) 0.2
Question:
. : : : 00 @ x
* XORis only defined on inputs with {0,1}, what should
our network return for other inputs (e.g. x; = R 1 e

0.5, %, = 0.5)?

41



Example: Define Our Neural Network
Write out as equations (using the RELU activation and
linear output):

fx;W,c,w,b) =wT maX(O, WTx + c) +b

Wi11 Wi21
= W21 W22 max (O Y "
[ ] "IW11,2 Wip2.2

Given training input data: X =

= =0 O

0
1
1
0

Find values of W, ¢, w, b that minimize error (in this case
mean squared error):

z (yl _f(xi; chiwib)z

X, Yi€(X,y)

42
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Example: Solving our Network Rotman

Here’s a solution that solves this problem:

el U em (b well) b=

Let’s see how these weights (or parameters) solve the XOR problem by doing a “forward pass” of a neural network:
f;W,c,w,b) =wl max(O, WTx + c) +b

First, compute the first weight matrix with our features WT x (we’ll compute all four data points at once):

0

! ﬂzl

1

XW =

== O O
N = = O
N = = O

43



Example: Solving our Network (continued)

0 0 0
Next, add our constant bias WTx + ¢: 1 i + 8
2 2 0

Next, add apply the activation function (i.e. ReLU) maX(O, WwTx + c) ,

Finally, apply weights from the last layer w’ max(O, WTx + C) + b:

44

Rotman

-1 0 -1
—-1{_|1 o0
-1 1 0
-1 2 1
0 —1 0 0
1 0 1 0
max(0,f, o P={1 o
2 1 2 1
0 0 0
1 0|11 |1
10[—2]+0_1
2 1 0



Example: lllustration of Non-Linear Hidden Layers Rotman

XOR Function vs. Hidden Layer Output

1.0 % ® 200 : e
175 °* °© o

0.8 o Input Hidden
1.50 p P

0.6 . 1.25 h, Output
; Eozmx e

0.4 = 0.75 )
/// /
0.2 0.50 .
0.25" 2
00 @ x 0.00 @
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 06 0.8 1.0
x1 h2 0 0
1
H=14 8
* Non-linear hidden layers transformed XOR problem in a linearly 5 1

separable problem

45



Much More to Neural Networks... Rotman

Fundamentals Concepts of Neural Networks

* Training Deep Neural Networks
* Computation graphs and computing gradients

* Optimization through Stochastic Gradient Descent o - - - vt
* Neural Network Architectures — —

* Width, depth — \‘

* Types of layers

* Connectivity .

e Activation functions

* Loss functions .
* Tuning Deep Neural Networks T —

e Overfitting vs. Underfitting
* Regularization

* Learning rate

* Hyper-parameters tuning

46



Summary of Neural Networks

47

Inputs Weights

Neural networks are big function approximators %
with 100Ms of parameters x, e
function
* Allows them to approximate very complicated x, 2 B a
functions

Feedforward Neural Networks are composed of
simple functions called perceptrons: x,

e Compute a linear combination of inputs and
parameters with a non-linear activation
function

”Deep” neural networks (i.e. deep learning) are just
neural networks with many layers

Neural networks have only recently (~10 years)
become very useful because of exponential growth
in computing power (and correspondingly data)

"Deep” Neural Network

Rotman



Deep Learning and Beyond




Convolutional Neural Networks Rotman

- CNNs are composed on multiple successive layers of convolutional layers and fully-connected layers
- Backbone of modern image processing ML to produce state-of-the-art results
- Convolutional layers are used to extract features from the original input size
- Final few layers are usually FC layers to produce output (e.g. image classification)

- Non-linear activation functions are implicit in diagrams

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

Source: https://en.wikipedia.org/wiki/Convolutional_neural_network#/media/File:Typical_cnn.png

49



“Deep” Neural Networks (“ResNet”)

- He, Zhang, Ren, Sun, “Deep Residual Learning for Image Recognition”, 2015
- Achieved 4.49% top-5 error rate; 60M parameters
- https://arxiv.org/abs/1512.00567
- Introduced concept of “Residual Learning”:
- Try to learn H(x) — x (left branch) instead of directly learning H(x)
- Adds “shortcut” connections that are added back to the CNN operations

- Residual blocks enable “deep” networks up to 152 layers

64-d 256-d

A 4
| 1x1, 64
¢ relu
| 3x3, 64 |
J' relu
| 1x1, 256

Two Different Residual Blocks

50

out
size:

uuuuuu

Rotman

output

size!

out

VGG-19 34-layer plain 34-layer residual
e e e
v, [saema ]
s
s
pool, /2
[ 3conv, 128 [ conves,2 ] [x7conv68,2 ]
v v
pool, /2 pool, /2 pool, /2
[ == | I T ]
¥ ¥
ez ] [oewe ]
2
[[33cm,256 | [3comves |
[eamzs ] [ meme ]
]
v
[ seome ]
s
,
28 *
v ]
[33conv,512_ | [ 33conv,128 | I
L2 L2 L2
[osemsz ] [ oeamim ]
L2 v
[Eewsz ] | [memm ]
2
R ;
B ]
B ]
pool, /2 ) 256,/2_| .
h v ¥ ¥
[[(38wmws2 | [[38com,256 |
2 2
[t ] [ ssemms |
2 L2
[ e ] [ ssemms |
L2 2
[ ssemsn ) [ ssemzs
memE ]
T
3x3 conv, 256
.
e
L2
[Eews ]
2
H pool, /2 [3aconvs12,2_|
E
e
L2
p
e
R — rageo



Representation Learning Rotman

- Representation Learning (or feature learning) is a broad set
of techniques to automatically discover the representation

needed for a specific task from raw data. e A = B ENT gt
5 ‘~'\,/~:“\"&’. -W-A' ! ‘? - i

- Supervised techniques: Use labelled data to infer the right - ~’_':’ rmaly
feature representation (e.g. deep nets) '

- Unsupervised techniques: Use unlabeled data to infer —— Bl 1 Hodadager 2 bt s
(usually compact) representations of the data

- Examples:

- Images & CNNs: Each successive convolutional layer is a
“feature map”, forming a hierarchy of features

- Word embeddings (shown later): Representing words as a high-
dimensional continuous real vector

- Dimensionality Reduction e.g. Principal Component Analysis
(PCA)

Source: https://cse.iitk.ac.in/users/piyush/courses/ml_autumn16/771A lec23_slides.pdf
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Transfer Learning Rotman

- Transfer Learning: transfer “knowledge” learned in one or
more ML source tasks to improve performance on a

related target task

. Labelling data is expensive, thus most data is unlabeled Transfer learning: idea

- Utilize the large base of labelled data to improve 1

performance on tasks with small amounts of data Source abels I -—\
A
* I | :mntof

- Example: Gotaflabels
;mntﬁ Teansfor Laamed
. Task: Classifying male/female dolphins images o ki A taovie T
| — !

- Not much labelled data, expensive to obtain
urce I —EEmE—
- Pre-train a deep net network (e.g. ResNet-152) on ImageNet o e ﬁ I

James Le

(14M labelled images)

- Use the pre-trained network to generate features from
existing dolphin images

- Train a new classifier using these new features

https://www.datasciencecentral.com/profiles/blogs/transfer-learning-deep-learning-for-everyone
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Modeling Sequence Data with RNNs

- Recurrent Neural Networks (RNN) are a
family of neural networks for processing
sequential data

« Key RNN ideas:
- Neural networks have a time varying state (h;)

- Utilize the same function (aka “RNN cell’) f(...)
to map h;, x; to hyyq

- Computational graph is unfolded through time to
perform stochastic gradient descent

- Applications:

- Time-series problems (e.g. stock prices, sales
forecasting)

- Video / audio / text prediction tasks (e.g. image
caption generation, machine translation etc.)
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Image Captioning Architecture

<start>  Giraffes standing <end>

I Softmax I I Softmax I I Softmax I

t1

Pretrained CNN
using ImageNet dataset

\
—

2
C’LS/TM —_>
v

—_ LSTM
\Z
LSTM
[
\
—_ LSTM -

Feature vector 1‘
(Izngrt;rzrfg:) at fc layer
X224x
(Ix1x2048)
<start>  Giraffes other

Source: https://www.analyticsvidhya.com/blog/2018/04/solving-an-image-captioning-task-using-deep-learning/



Generative Adversarial Networks (GAN) Rotman

GANs are composed of two deep nets:

Real

amples
- Generator network which generates fake samples of = .
the data conditioned on latent space (random noise) FF_
- Discriminator network which attempts to tell the real vl o
samples from the fake (generator) samples - X
o K —tted D ¢ oltla
- The generator and discriminator play an i Discriminato

. Generator tries to fool the discriminator; and

adversarial game where: o .G
B Generator Generated

Fake
‘:' x Samples

i Fine Tune Training

- Discriminator tries to guess that the data is fake

The generator and discriminator networks alternate Noise
updating via SGD in attempt to "win” via a two GAN Architecture
player minimax game

Applications:

V(D, G) = Ex~pdata(x) [logD(x)] +
- Image / video / audio synthesis min max

E, . | 1-D YA
. Text generation ©r z pZ(Z)[Og( et )))]

Source: https://stats.stackexchange.com/questions/277756/some-general-questions-on-generative-adversarial-networks
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