
Intro to Git & GitHub
Jay / TDMDAL

Website for this workshop: https://tdmdal.github.io/git-workshop-2022

http://www.rotman.utoronto.ca/FacultyAndResearch/EducationCentres/TDMDAL
https://tdmdal.github.io/git-workshop-2022


What’s Git

• A version control system
• manage the evolution of a set of files (repository / repo)

• usually for source code or text files
• NOT for large datasets, but see git lfs and github lfs

• Version control?
• keep track of changes: version 1, version 2, etc.

• like “Track Changes” in MS Word, or “save progress” in game play

v5v1 v2 v3 v4

f1

https://git-lfs.github.com/
https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-git-large-file-storage


What’s GitHub

• A git-aware online repo host

• Enable repo sharing and collaboration
• raise issues, pull request, etc.

• Free public and private repo (*)

• Other repo hosts exist
• e.g., bitbucket, gitlab, etc.

Your local repo Your co-author’s 
local repo

Remote repo

*Ref: https://github.com/pricing

https://bitbucket.org/
https://about.gitlab.com/
https://github.com/pricing


What’s GitHub (Other than a Git Repo Host)

• GitHub Pages: static web site host
• The workshop website is hosted on github, 

• https://tdmdal.github.io/git-workshop-2022

• GitHub Education; GitHub Classroom
• Organize coding assignments, autograde, etc.

• Actions: automate coding workflow
• Codespaces: online code editor/developer environment
• Copilot: code together with AI
• …

https://pages.github.com/
https://tdmdal.github.io/git-workshop-2022
https://education.github.com/
https://classroom.github.com/
https://github.com/features/actions
https://github.com/features/codespaces
https://github.com/features/copilot


Why Git & GitHub

• Organize (record keeping; traceability)
• Track, compare and undo changes
• Manage multiple versions/ideas at the same time efficiently
• Backup your work

• Share
• e.g., code for your paper

• Collaborate
• co-authors (no more emailing code around)
• open-source community

• Others…
• e.g., personal/project website, and blogs on GitHub, i.e., 

online presence, “I web, therefore I am a spiderman.”

https://bookdown.org/yihui/blogdown/


Using Git: GUI Clients vs Command Line

• GUI is easy to get started
• Today, we will focus on a GUI client, GitHub Desktop
• Briefly discuss the underlying concept & command associated with each GUI operation
• Note that many code editors comes with Git integration too (semi-GUI)

• e.g., RStudio, VSCode, etc.

• Command line is universal
• i.e., same commands for Windows, Mac, and Linux

• It’s easy to go from command line to a GUI client
• Not quite vice versa

https://git-scm.com/downloads/guis
https://desktop.github.com/
https://support.posit.co/hc/en-us/articles/200532077-Version-Control-with-Git-and-SVN
https://code.visualstudio.com/docs/sourcecontrol/overview


Plan for Today

• Focus on a simple linear workflow (demo)
• manage version history in local repo

• push local repo to GitHub

• Intro to
• a simple branching workflow

• a simple collaboration workflow via GitHub

v1 v2 v3

v1 v2 v3

Local Repo

Remote Repo

push

9b4a 3c 4c 5d

4f
Branching



Setup GitHub Desktop

• Step 1: Create a GitHub account, https://github.com/

• Step 2: Install GitHub Desktop, https://desktop.github.com/
• Launch GitHub Desktop

• Sign in GitHub: File → Options… → Accounts

• Set some global options: File → Options… → Git
• Configure git for first-time use (        ): git config

• Optional: Install Git (command line): https://git-scm.com/downloads

https://github.com/
https://desktop.github.com/
https://git-scm.com/downloads


The simplest git workflow (demo)

1. Create a new local git repo

2. Create or make changes to your files/code

3. Snapshot files to prepare versioning (stage the changes)

4. Record version history (commit the changes)

5. repeat (back to 2)…

Check commit history

Compare difference between changes



Create a New Local Git Repo

1

2

3

4

5

6

7 8
9 10

11

12

13



Stage and Commit



Suppress Tracking: .gitignore file

• a file named .gitignore in your git repo folder
• e.g. my_proj/.gitignore

• A collection .gitignore templates
• https://github.com/github/gitignore

Ignore all .log files

Ignore log and data folders…

…except the sample.csv 
in the data folder 

https://github.com/github/gitignore


The simplest git workflow (FYR      )

1. Create a new local git repo: git init

2. Create or make changes to your files/code

3. Snapshot files to prepare versioning (stage the changes): git add

4. Record version history (commit the changes): git commit

5. repeat (back to 2)…

Check commit history: git log; git show

Compare difference between changes: git diff

Basic workflow command line details: https://tdmdal.github.io/git-workshop/basic-git-workflow.html

https://tdmdal.github.io/git-workshop/basic-git-workflow.html


Git Concepts – three trees/areas

repository

staging index

working

Source: Git Essential Training by Kevin Skoglund on LinkedIn Learning

https://www.linkedin.com/learning/git-essential-training-the-basics


Git Concepts – three trees/areas

repository

staging index

working

git add

Source: Git Essential Training by Kevin Skoglund on LinkedIn Learning

snapshot the files in 
preparation for versioning

https://www.linkedin.com/learning/git-essential-training-the-basics


Git Concepts – three trees/areas

repository

staging index

working

git add

git commit

Source: Git Essential Training by Kevin Skoglund on LinkedIn Learning

snapshot the files in 
preparation for versioning

record file snapshots in version 
history

https://www.linkedin.com/learning/git-essential-training-the-basics


Git Concepts – three trees/areas

repository

staging index

working

git add

git commit

Source: Git Essential Training by Kevin Skoglund on LinkedIn Learning

git checkout

snapshot the files in 
preparation for versioning

record file snapshots in version 
history

https://www.linkedin.com/learning/git-essential-training-the-basics


Git Concepts – First commit

4a

HEAD

master



Git Concepts – Second commit

9b4a

HEAD

master



Git Concepts – Third commit and so on…

9b4a 3c

HEAD

master



Publish/Push Local Repo to GitHub (demo)



Publish/Push Local Repo to GitHub (FYR      )

• Create a GitHub project repo

• Push your code there
• backup

• collaborate with your co-authors

• collaborate with open-source community

git remote add

git push



A Simple Remote Repo Workflow

9b4a 3c

master

Remote Repo

Local Repo

Source: Git Essential Training by Kevin Skoglund on LinkedIn Learning

https://www.linkedin.com/learning/git-essential-training-the-basics


A Simple Remote Repo Workflow

9b4a 3c

master

Remote Repo

Local Repo

9b4a 3c

master

origin/master

git push

Source: Git Essential Training by Kevin Skoglund on LinkedIn Learning

https://www.linkedin.com/learning/git-essential-training-the-basics


A Simple Remote Repo Workflow

9b4a 3c

master

Remote Repo

Local Repo

9b4a 3c

master

origin/master

4c

Source: Git Essential Training by Kevin Skoglund on LinkedIn Learning

https://www.linkedin.com/learning/git-essential-training-the-basics


A Simple Remote Repo Workflow

9b4a 3c

master

Remote Repo

Local Repo

9b4a 3c

master

origin/master

4c

4c

git push

Source: Git Essential Training by Kevin Skoglund on LinkedIn Learning

https://www.linkedin.com/learning/git-essential-training-the-basics


Amend, Undo, Revert, Remove & Rename

• Amend the last commit: change commit message or add new files
• In principle, don’t do it if the commit is already pushed

• Undo the last commit: “uncommit” the last commit
• Disabled by GitHub Desktop if the commit is already pushed
• In general, don’t change history

• Revert a previous commit: revert a previous code change and commit it
• May need to resolve conflict

• Remove or Rename a file

Note: Many other “undo” type of operations can be done in command line (         ). See appendix.



Clone a GitHub Repo

A repo on GitHub

1

2



Clone a GitHub Repo (FYR      )

• Clone a GitHub Repo
• Clone your co-author’s code (which you have granted access to)

• Use a public repo as your project starting point

• What is Fork?

git clone



Many more to explore… (when needed)

• Git concept / command
• branch & remote branch
• merge conflict
• git reset
• git stash, rebase, bisect
• …

• Git best practice
• workflows
• commit size / message
• …



Resources

• Git/GitHub with GitHub Desktop
• Youtube Video by Coder Coder (22mins; great review for today’s workshop)

• Git Command Line Tutorials
• Version Control with Git by Software Carpentry
• Git Essential Training by Kevin Skoglund at LinkedIn Learning

• Faculty and staff login from here for UofT free access
• Toronto Public Library free access here for everyone with a library card

• Get Started Tutorials from Bitbucket Atlassian
• Getting Started with Git from GitHub

• Git Ref Book: https://git-scm.com/book/en/v2

https://www.youtube.com/watch?v=8Dd7KRpKeaE&t=2s
http://swcarpentry.github.io/git-novice/
https://www.linkedin.com/learning/git-essential-training-the-basics
https://ulearn.utoronto.ca/linkedin/
https://www.torontopubliclibrary.ca/detail.jsp?R=EDB0187
https://www.atlassian.com/git/tutorials/setting-up-a-repository
https://docs.github.com/en/get-started/getting-started-with-git
https://git-scm.com/book/en/v2


Two More Git Workflows



Branch and Merge (demo)



A Simple Branching Workflow

9b4a 3c

master

HEAD

Source: Git Essential Training by Kevin Skoglund on LinkedIn Learning

https://www.linkedin.com/learning/git-essential-training-the-basics


A Simple Branching Workflow

9b4a 3c

new_idea

master

HEAD

git branch new_idea



A Simple Branching Workflow

9b4a 3c

new_idea

HEAD

master

git checkout new_idea



A Simple Branching Workflow

9b4a 3c

new_idea

4f

HEAD

master

git add; git commit;



A Simple Branching Workflow

9b4a 3c

new_idea

4f

HEAD

master

git checkout master



A Simple Branching Workflow

9b4a 3c

new_idea

4c

4f

HEAD

master

git add; git commit;



A Simple Branching Workflow

9b4a 3c 4c 5d

4f

HEAD

master

new_idea

git merge new_idea



A Simple Collaboration Workflow

9b4a 3c

master

Remote Repo

Local Repo

9b4a 3c

master

origin/master

4c

4c

Source: Git Essential Training by Kevin Skoglund on LinkedIn Learning

https://www.linkedin.com/learning/git-essential-training-the-basics


A Simple Collaboration Workflow

9b4a 3c 4c

origin/master

9b4a 3c 4c 5d

master

master

Remote Repo

Local Repo

Source: Git Essential Training by Kevin Skoglund on LinkedIn Learning

https://www.linkedin.com/learning/git-essential-training-the-basics


A Simple Collaboration Workflow

9b4a 3c 4c 5d

origin/master

9b4a 3c 4c 5d

master

master

Remote Repo

Local Repo

git fetch

Source: Git Essential Training by Kevin Skoglund on LinkedIn Learning

https://www.linkedin.com/learning/git-essential-training-the-basics


A Simple Collaboration Workflow

9b4a 3c 4c 5d

origin/master

9b4a 3c 4c 5d

master

master

Remote Repo

Local Repo

git merge

Source: Git Essential Training by Kevin Skoglund on LinkedIn Learning; Note: git pull = git fetch + git merge 

https://www.linkedin.com/learning/git-essential-training-the-basics


Appendix - “undo” ops in command line



Remove and Rename Files (FYR      )

• Remove files

git rm <file>

• Rename files

git mv <file_old> <file_new>

• After removing or rename files

git commit –m "<remove or rename msg>"



Undo (1 / FYR      )

• Retrieve old version of a file (to staging index & working dir)

git checkout <commit-id> -- <file>

• Undo working directory changes

git checkout -- <file>

• Unstaging files

git reset HEAD <file>



Undo (2 / FYR      )

• Amending last commit

git commit –amend –m “commit message”

• Reverting a commit (by adding a new commit to undo last commit)

git revert <commit-id>

• Undo multiple commits

git reset [-–soft|--mixed|--hard] <commit-id>


