
WEB SCRAPPING WITH PYTHON

April 28, 2021 Prepared by Niti / FinHUB

What you will learn?

4/28/20212

To build a script that fetches data from the web and displays the

content in your machine in a readable format.

1. Basics of HTTP requests, HTML and CSS

2. Python’s requests library to make HTTP request

3. Python’s BeautifulSoup library to handle HTML processings

Agenda

4/28/20213

1. Web Scrapping

2. Connecting to the Data

 HTTP requests and responses

 Python’s requests library

3. Getting the Data

 Inspecting your Data

 HTML

 CSS

 Python’s BeautifulSoup

1. Web Scrapping

1.1 What is Web Scrapping?

4/28/20215

- “Constructing a program to download, parse and organize

data from the web in an automated manner”

- Transfer large amount of data from online source and

store it for later use

- Web scrapping focuses on the transformation of

unstructured data on the web into a more structured

format

1.2 Why Web Scrapping is useful?

4/28/20216

- Web exposes interesting opportunities:

 Reviews

 Wikipedia

 Social networks

 Weather information, etc.

- Google Translate, for instance, utilizes text sources on the
web to train and improve itself

1.3 What is an API?

4/28/20217

- Application Programming Interface (APIs)

- Programs provided by websites to access their data

repository in a structured way

- With API, you can avoid parsing messy HTML documents

- The process is generally more stable than web scrapping

- Lack of quality documentation can make it harder to

inspect the structure of API

1.4 Why Web Scrapping over API?

4/28/20218

- no API for that website

- API is not free

- API has rate limits

- API does not provide all the information you want

1.5 Word of Caution!

4/28/20219

• Some websites don’t like it when automatic scrapers gather
their data while others don’t mind

• The problem usually arises when you scrape websites without
obtaining prior permission to scrape

 Introduction to robots.txt

 Terms of Service (ToS) of the website

• There are also ethical considerations when scraping a website

 On the ethics of web scrapping

https://support.google.com/webmasters/answer/6062608?hl=en
https://robertorocha.info/on-the-ethics-of-web-scraping/

2. Connecting to the Data

2.1 The WEB

4/28/202111

A massive distributed client/server information system

Source: https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview

https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview

2.2 HTTP

4/28/202112

- HyperText Transfer Protocol

- Client-server protocol that is the foundation of data

exchange on the Web

- HTTP client sends requests to an HTTP server, which in

turn returns a response message.
Client makes

a request

(browsers,

robots,

etc.)

Server sends

responses or replies

2.2 HTTP

4/28/202113

1. Transactional

 Refers to a single HTTP request and the corresponding

HTTP response

2. Stateless (not session-less)

 The current request does not know what has been done

in the previous requests

2.3 HTTP Methods

4/28/202114

- GET

- POST

- PUT

- HEAD

- DELETE

- PATCH

- OPTIONS

2.4 HTTP GET Request

4/28/202115

Whenever you enter a URL in the address box of the

browser:

GET /search?hl=en&q=HTTP&btnG=Google+Search HTTP/1.1

Host: http://www.google.com

User-Agent: Mozilla/5.0 Galeon/1.2.0 (X11; Linux i686; U;) Gecko/20020326

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,

text/plain;q=0.8,video/x-mng,image/png,image/jpeg,image/gif;q=0.2,

text/css,*/*;q=0.1

Accept-Language: en

Accept-Encoding: gzip, deflate, compress;q=0.9

Accept-Charset: ISO-8859-1, utf-8;q=0.66, *;q=0.66

Keep-Alive: 300

Connection: keep-alive

Action: Google

“HTTP” on
google.com

2.4 HTTP GET Request

4/28/202116

GET /search?hl=en&q=HTTP&btnG=Google+Search HTTP/1.1

Host: http://www.google.com

User-Agent: Mozilla/5.0 Galeon/1.2.0 (X11; Linux i686; U;) Gecko/20020326

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,

text/plain;q=0.8,video/x-mng,image/png,image/jpeg,image/gif;q=0.2,

text/css,*/*;q=0.1

Accept-Language: en

Accept-Encoding: gzip, deflate, compress;q=0.9

Accept-Charset: ISO-8859-1, utf-8;q=0.66, *;q=0.66

Keep-Alive: 300

Connection: keep-alive

Request
Method

Request
Headers

Request
Line

Version of the
protocol

2.5 HTTP GET Response

4/28/202117

What you get in response:

Response of

“HTTP” search
on google

HTTP/1.1 200 OK

Server: GWS/2.0

Date: Tue, 21 May 2002 12:34:56 GMT

Transfer-Encoding: chunked

Content-Encoding: gzip

Content-Type: text/html

Cache-control: private

Set-Cookie: PREF=ID=58c005a7065c0996:TM=1021283456:LM=1021283456:S=OLJcXi3RhSE;

domain=.google.com; path=/; expires=Sun, 17-Jan-2038 19:14:07 GMT

(Web content compressed with gzip)

2.5 HTTP GET Response

4/28/202118

HTTP/1.1 200 OK

Server: GWS/2.0

Date: Tue, 21 May 2002 12:34:56 GMT

Transfer-Encoding: chunked

Content-Encoding: gzip

Content-Type: text/html

Cache-control: private

Set-Cookie: PREF=ID=58c005a7065c0996:TM=1021283456:LM=1021283456:S=OLJcXi3RhSE;

domain=.google.com; path=/; expires=Sun, 17-Jan-2038 19:14:07 GMT

(Web content compressed with gzip)

Status Line:
1. Version of protocol
2. Status code
3. Status message

Response
Message
Header

Response
Message
Body

Blank line separates
header and body

Response
Headers

2.6 HTTP Requests with Python

4/28/202119

- urllib : built-in Python module

- urllib3 : powerful HTTP client for Python

- requests : simple HTTP library built on top of urllib3

2.7 requests Library

4/28/202120

- simplifies the process of making HTTP requests

- built on top of “urllib3”

- allows you to tackle the majority of HTTP use cases in
code that is short, pretty, and easy to use

- formats a proper HTTP request message in accordance
with what we’ve seen before

- Install request through anaconda:
https://anaconda.org/anaconda/requests

https://anaconda.org/anaconda/requests

2.8 URL

4/28/202121

- Uniform Resource Locators: address of a given unique

resource on the Web

https://finance.yahoo.com/quote/%5EGSPC/history?period

1=1551648546&period2=1583270946&interval=1d&filter=

history&frequency=1d

https://finance.yahoo.com/quote/%5EGSPC/history?period1=1551648546&period2=1583270946&interval=1d&filter=history&frequency=1d

2.9 Anatomy of a URL

4/28/202122

https://finance.yahoo.com

/quote/%5EGSPC/history

?period1=1551648546

&period2=1583270946

&interval=1d

&filter=history

&frequency=1d

Base URL

Query
parameters

Key=value

Separator

Protocol Domain Name

https://finance.yahoo.com/

3. Getting the Data

3.1 Inspect Your Data Source

4/28/202124

- Modern browsers have a powerful suite of developer tools that

among other things also inspects currently-loaded HTML, CSS

and JavaScript to show which aspects the page has been

requested, how long it took to load, etc.

- Developer tools can help understand the structure of a website

- In Firefox, you can access it as:

Menu ➤ Web Developer ➤ Toggle Tools

Tools ➤ Web Developer ➤ Toggle Tools

3.2 Structure of the Web Content

4/28/202125

- Hypertext Markup Language (HTML)

- Cascading Style Sheets (CSS)

- JavaScript

3.3 HTML

4/28/202126

- Defines how a webpage is structured and formatted

- "Hypertext" refers to links that connect web pages

- "markup" annotates text, images and other content to display

- HTML consists of a series of elements, which can be used to

enclose or wrap different parts of content for which tags are

used

https://www.w3schools.com/TAGS/default.ASP

3.4 HTML tags

4/28/202127

- Tags may or may not come in pair

- Tags can be nested inside each other

- Paired tags have content

- Tags may have attributes such as class that provide additional

information about an element

3.5 Anatomy of HTML

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title>My test page</title>

</head>

<body>

</body>

</html>

HTML Elements -
Paired Tags

3.5 Anatomy of HTML

4/28/202129

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title>My test page</title>

</head>

<body>

</body>

</html>

HTML Elements -
Unpaired Tags

3.5 Anatomy of HTML

4/28/2021

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title>My test page</title>

</head>

<body>

</body>

</html>

HTML Elements -
Attributes

3.6 CSS

4/28/202131

- Defines the style and layout of a webpage

- Ex. alter the font, color, size, spacing of content, etc.

- Describes how elements should be rendered on screen

- Allows selective application of styles to HTML elements

3.7 Anatomy of CSS

4/28/202132

p, li, h1 {

color: red;

width: 500px;

border: 1px solid black;

}

Selector

Property Property Value

Declaration

3.6 JavaScript

4/28/202133

- JavaScript (JS) is a lightweight, interpreted, or just-in-time

compiled programming language with first-class functions

- It is most well-known as the scripting language for Web

pages

- HTTP requests to dynamic websites often return JS

instead of HTML document

- Static vs dynamic websites

https://wpamelia.com/static-vs-dynamic-website/

3.6 BeautifulSoup

4/28/202134

- Usually, we do not need the entire webpage but only

certain contents of the webpage

- So we have to parse the HTML document to extract the

content we want

- BeautifulSoup makes navigating HTML pages easy

 Provides intuitive functions to parse structured data

3.7 BeautifulSoup

4/28/202135

find(name, attrs, recursive, string, **keywords)

find_all(name, attrs, recursive, string, **keywords, limit,)

• The tag name you are looking to find
on the webpage

• Pass a string or a list of tags

3.7 BeautifulSoup

4/28/202136

find(name, attrs, recursive, string, **keywords)

find_all(name, attrs, recursive, string, **keywords, limit,)

• Attributes to matches HTML elements
• Pass a Python dictionary of attributes

3.7 BeautifulSoup

4/28/202137

find(name, attrs, recursive, string, **keywords)

find_all(name, attrs, recursive, string, **keywords, limit,)

• Depth of the search
• If True (default), will look into children,

children’s children and so on
• If False, looks at direct child elements

only

3.7 BeautifulSoup

4/28/202138

find(name, attrs, recursive, string, **keywords)

find_all(name, attrs, recursive, string, **keywords, limit,)

• Match based on the test content of
elements

3.7 BeautifulSoup

4/28/202139

find(name, attrs, recursive, string, **keywords)

find_all(name, attrs, recursive, string, **keywords, limit)

• Limit the number of elements that are retrieved
• Find is same as find_all with limit set to 1,

 except that find returns the element and
find_all return a list of elements

3.7 BeautifulSoup

4/28/202140

find(name, attrs, recursive, string, **keywords)

find_all(name, attrs, recursive, string, **keywords, limit,)

• Add extra named arguments, which will be used
as attribute filters

• find(‘id’=‘myid’) is same as
find(attrs={‘id’: ‘myid’}

• Cannot use class and name as a keyword

Future Learnings

4/28/202141

- Python’s Scrapy library

- Scrapping dynamic websites that return JavaScript

- Selenium

- Web crawling, search engine bot

https://scrapy.org/

Questions?
Thank you

