
WEB SCRAPPING WITH PYTHON

April 28, 2021 Prepared by Niti / FinHUB

What you will learn?

4/28/20212

To build a script that fetches data from the web and displays the

content in your machine in a readable format.

1. Basics of HTTP requests, HTML and CSS

2. Python’s requests library to make HTTP request

3. Python’s BeautifulSoup library to handle HTML processings

Agenda

4/28/20213

1. Web Scrapping

2. Connecting to the Data

 HTTP requests and responses

 Python’s requests library

3. Getting the Data

 Inspecting your Data

 HTML

 CSS

 Python’s BeautifulSoup

1. Web Scrapping

1.1 What is Web Scrapping?

4/28/20215

- “Constructing a program to download, parse and organize

data from the web in an automated manner”

- Transfer large amount of data from online source and

store it for later use

- Web scrapping focuses on the transformation of

unstructured data on the web into a more structured

format

1.2 Why Web Scrapping is useful?

4/28/20216

- Web exposes interesting opportunities:

 Reviews

 Wikipedia

 Social networks

 Weather information, etc.

- Google Translate, for instance, utilizes text sources on the
web to train and improve itself

1.3 What is an API?

4/28/20217

- Application Programming Interface (APIs)

- Programs provided by websites to access their data

repository in a structured way

- With API, you can avoid parsing messy HTML documents

- The process is generally more stable than web scrapping

- Lack of quality documentation can make it harder to

inspect the structure of API

1.4 Why Web Scrapping over API?

4/28/20218

- no API for that website

- API is not free

- API has rate limits

- API does not provide all the information you want

1.5 Word of Caution!

4/28/20219

• Some websites don’t like it when automatic scrapers gather
their data while others don’t mind

• The problem usually arises when you scrape websites without
obtaining prior permission to scrape

 Introduction to robots.txt

 Terms of Service (ToS) of the website

• There are also ethical considerations when scraping a website

 On the ethics of web scrapping

https://support.google.com/webmasters/answer/6062608?hl=en
https://robertorocha.info/on-the-ethics-of-web-scraping/

2. Connecting to the Data

2.1 The WEB

4/28/202111

A massive distributed client/server information system

Source: https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview

https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview

2.2 HTTP

4/28/202112

- HyperText Transfer Protocol

- Client-server protocol that is the foundation of data

exchange on the Web

- HTTP client sends requests to an HTTP server, which in

turn returns a response message.
Client makes

a request

(browsers,

robots,

etc.)

Server sends

responses or replies

2.2 HTTP

4/28/202113

1. Transactional

 Refers to a single HTTP request and the corresponding

HTTP response

2. Stateless (not session-less)

 The current request does not know what has been done

in the previous requests

2.3 HTTP Methods

4/28/202114

- GET

- POST

- PUT

- HEAD

- DELETE

- PATCH

- OPTIONS

2.4 HTTP GET Request

4/28/202115

Whenever you enter a URL in the address box of the

browser:

GET /search?hl=en&q=HTTP&btnG=Google+Search HTTP/1.1

Host: http://www.google.com

User-Agent: Mozilla/5.0 Galeon/1.2.0 (X11; Linux i686; U;) Gecko/20020326

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,

text/plain;q=0.8,video/x-mng,image/png,image/jpeg,image/gif;q=0.2,

text/css,*/*;q=0.1

Accept-Language: en

Accept-Encoding: gzip, deflate, compress;q=0.9

Accept-Charset: ISO-8859-1, utf-8;q=0.66, *;q=0.66

Keep-Alive: 300

Connection: keep-alive

Action: Google

“HTTP” on
google.com

2.4 HTTP GET Request

4/28/202116

GET /search?hl=en&q=HTTP&btnG=Google+Search HTTP/1.1

Host: http://www.google.com

User-Agent: Mozilla/5.0 Galeon/1.2.0 (X11; Linux i686; U;) Gecko/20020326

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,

text/plain;q=0.8,video/x-mng,image/png,image/jpeg,image/gif;q=0.2,

text/css,*/*;q=0.1

Accept-Language: en

Accept-Encoding: gzip, deflate, compress;q=0.9

Accept-Charset: ISO-8859-1, utf-8;q=0.66, *;q=0.66

Keep-Alive: 300

Connection: keep-alive

Request
Method

Request
Headers

Request
Line

Version of the
protocol

2.5 HTTP GET Response

4/28/202117

What you get in response:

Response of

“HTTP” search
on google

HTTP/1.1 200 OK

Server: GWS/2.0

Date: Tue, 21 May 2002 12:34:56 GMT

Transfer-Encoding: chunked

Content-Encoding: gzip

Content-Type: text/html

Cache-control: private

Set-Cookie: PREF=ID=58c005a7065c0996:TM=1021283456:LM=1021283456:S=OLJcXi3RhSE;

domain=.google.com; path=/; expires=Sun, 17-Jan-2038 19:14:07 GMT

(Web content compressed with gzip)

2.5 HTTP GET Response

4/28/202118

HTTP/1.1 200 OK

Server: GWS/2.0

Date: Tue, 21 May 2002 12:34:56 GMT

Transfer-Encoding: chunked

Content-Encoding: gzip

Content-Type: text/html

Cache-control: private

Set-Cookie: PREF=ID=58c005a7065c0996:TM=1021283456:LM=1021283456:S=OLJcXi3RhSE;

domain=.google.com; path=/; expires=Sun, 17-Jan-2038 19:14:07 GMT

(Web content compressed with gzip)

Status Line:
1. Version of protocol
2. Status code
3. Status message

Response
Message
Header

Response
Message
Body

Blank line separates
header and body

Response
Headers

2.6 HTTP Requests with Python

4/28/202119

- urllib : built-in Python module

- urllib3 : powerful HTTP client for Python

- requests : simple HTTP library built on top of urllib3

2.7 requests Library

4/28/202120

- simplifies the process of making HTTP requests

- built on top of “urllib3”

- allows you to tackle the majority of HTTP use cases in
code that is short, pretty, and easy to use

- formats a proper HTTP request message in accordance
with what we’ve seen before

- Install request through anaconda:
https://anaconda.org/anaconda/requests

https://anaconda.org/anaconda/requests

2.8 URL

4/28/202121

- Uniform Resource Locators: address of a given unique

resource on the Web

https://finance.yahoo.com/quote/%5EGSPC/history?period

1=1551648546&period2=1583270946&interval=1d&filter=

history&frequency=1d

https://finance.yahoo.com/quote/%5EGSPC/history?period1=1551648546&period2=1583270946&interval=1d&filter=history&frequency=1d

2.9 Anatomy of a URL

4/28/202122

https://finance.yahoo.com

/quote/%5EGSPC/history

?period1=1551648546

&period2=1583270946

&interval=1d

&filter=history

&frequency=1d

Base URL

Query
parameters

Key=value

Separator

Protocol Domain Name

https://finance.yahoo.com/

3. Getting the Data

3.1 Inspect Your Data Source

4/28/202124

- Modern browsers have a powerful suite of developer tools that

among other things also inspects currently-loaded HTML, CSS

and JavaScript to show which aspects the page has been

requested, how long it took to load, etc.

- Developer tools can help understand the structure of a website

- In Firefox, you can access it as:

Menu ➤ Web Developer ➤ Toggle Tools

Tools ➤ Web Developer ➤ Toggle Tools

3.2 Structure of the Web Content

4/28/202125

- Hypertext Markup Language (HTML)

- Cascading Style Sheets (CSS)

- JavaScript

3.3 HTML

4/28/202126

- Defines how a webpage is structured and formatted

- "Hypertext" refers to links that connect web pages

- "markup" annotates text, images and other content to display

- HTML consists of a series of elements, which can be used to

enclose or wrap different parts of content for which tags are

used

https://www.w3schools.com/TAGS/default.ASP

3.4 HTML tags

4/28/202127

- Tags may or may not come in pair

- Tags can be nested inside each other

- Paired tags have content

- Tags may have attributes such as class that provide additional

information about an element

3.5 Anatomy of HTML

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title>My test page</title>

</head>

<body>

</body>

</html>

HTML Elements -
Paired Tags

3.5 Anatomy of HTML

4/28/202129

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title>My test page</title>

</head>

<body>

</body>

</html>

HTML Elements -
Unpaired Tags

3.5 Anatomy of HTML

4/28/2021

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title>My test page</title>

</head>

<body>

</body>

</html>

HTML Elements -
Attributes

3.6 CSS

4/28/202131

- Defines the style and layout of a webpage

- Ex. alter the font, color, size, spacing of content, etc.

- Describes how elements should be rendered on screen

- Allows selective application of styles to HTML elements

3.7 Anatomy of CSS

4/28/202132

p, li, h1 {

color: red;

width: 500px;

border: 1px solid black;

}

Selector

Property Property Value

Declaration

3.6 JavaScript

4/28/202133

- JavaScript (JS) is a lightweight, interpreted, or just-in-time

compiled programming language with first-class functions

- It is most well-known as the scripting language for Web

pages

- HTTP requests to dynamic websites often return JS

instead of HTML document

- Static vs dynamic websites

https://wpamelia.com/static-vs-dynamic-website/

3.6 BeautifulSoup

4/28/202134

- Usually, we do not need the entire webpage but only

certain contents of the webpage

- So we have to parse the HTML document to extract the

content we want

- BeautifulSoup makes navigating HTML pages easy

 Provides intuitive functions to parse structured data

3.7 BeautifulSoup

4/28/202135

find(name, attrs, recursive, string, **keywords)

find_all(name, attrs, recursive, string, **keywords, limit,)

• The tag name you are looking to find
on the webpage

• Pass a string or a list of tags

3.7 BeautifulSoup

4/28/202136

find(name, attrs, recursive, string, **keywords)

find_all(name, attrs, recursive, string, **keywords, limit,)

• Attributes to matches HTML elements
• Pass a Python dictionary of attributes

3.7 BeautifulSoup

4/28/202137

find(name, attrs, recursive, string, **keywords)

find_all(name, attrs, recursive, string, **keywords, limit,)

• Depth of the search
• If True (default), will look into children,

children’s children and so on
• If False, looks at direct child elements

only

3.7 BeautifulSoup

4/28/202138

find(name, attrs, recursive, string, **keywords)

find_all(name, attrs, recursive, string, **keywords, limit,)

• Match based on the test content of
elements

3.7 BeautifulSoup

4/28/202139

find(name, attrs, recursive, string, **keywords)

find_all(name, attrs, recursive, string, **keywords, limit)

• Limit the number of elements that are retrieved
• Find is same as find_all with limit set to 1,

 except that find returns the element and
find_all return a list of elements

3.7 BeautifulSoup

4/28/202140

find(name, attrs, recursive, string, **keywords)

find_all(name, attrs, recursive, string, **keywords, limit,)

• Add extra named arguments, which will be used
as attribute filters

• find(‘id’=‘myid’) is same as
find(attrs={‘id’: ‘myid’}

• Cannot use class and name as a keyword

Future Learnings

4/28/202141

- Python’s Scrapy library

- Scrapping dynamic websites that return JavaScript

- Selenium

- Web crawling, search engine bot

https://scrapy.org/

Questions?
Thank you

